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Abstract: Metastable states appear in many areas of physics as a result of symmetry-breaking phase
transitions. An important challenge is to understand the microscopic mechanisms which lead to the
formation of the energy barrier separating a metastable state from the ground state. In this paper,
we describe an experimental example of the hidden metastable domain state in 1T-TaS2, created by
photoexcitation or carrier injection. The system is an example of a charge density wave superlattice
in the Wigner crystal limit displaying discommensurations and domain formation when additional
charge is injected either through contacts or by photoexcitation. The domain walls and their crossings
in particular display interesting, topologically entangled structures, which have a crucial role in the
metastability of the system. We model the properties of experimentally observed thermally activated
dynamics of topologically protected defects—dislocations—whose annihilation dynamics can be
observed experimentally by scanning tunnelling microscopy as emergent phenomena described by
a doped Wigner crystal. The different dynamics of trivial and non-trivial topological defects are quite
striking. Trivial defects appear to annihilate quite rapidly at low temperatures on the timescale of the
experiments, while non-trivial defects annihilate rarely, if at all.

Keywords: domain walls; electronic crystal; Wigner crystal; polarons; TaS2; transition metal dichalco-
genide; topological defect; dislocations; scanning tunnelling microscopy; topological protection

1. Introduction

Metallic transition metal dichalcogenides (TMDs) commonly display commensurate
charge-ordering at low temperatures. While some materials have received particularly
detailed attention with a focus on specific features, the generic features, and the origin
of broken translational symmetry, in particular, cannot be easily described in terms of
traditional concepts, such as Fermi surface nesting, exciton condensation phenomena or
peculiarities of the electron–phonon interaction occurring in specific systems. On the
other hand, a lattice Wigner crystal description appears to offer a common conceptual
starting point for discussion not only of the ground-state ordering, but also metastable
states in the system. The justification for the lattice Wigner crystal comes from the ratio
of the kinetic energy T in relation to the Coulomb energy V, expressed in terms of the
Wigner–Seitz radius rs, that defines the crossover from Fermi-liquid behaviour to a lattice
Wigner crystal state with dominant Coulomb interactions. The ratio of Coulomb energy to
kinetic energy defines rs =

V
T = e2m∗/

(
}2n1/2

)
, where n is the electron density, e is the

elementary charge, and m∗ is the effective mass of electron [1]. rs is strongly dependent
on the electron density n. In the prototypical dichalcogenide charge-density-wave (CDW)
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system—1T-TaS2, for example—the electron density n is small (one electron per 13 unit
cells). Due to strong coupling to the lattice [2], polaronic effects renormalize the electronic
bands, which become narrow, resulting in an increase in effective mass [3], which leads
to an rs = 70 ∼ 100 and carrier localization in the lattice Wigner-crystal limit. There are
two consequences: the first is the introduction of Mott physics [4,5], where the ordering
dynamics are dominated by the Coulomb interaction, and the second is instability towards
domain formation upon external perturbation or doping that takes place in the form of
a symmetry-breaking transition.

The domains in such electronic crystals display very rich physics [6–9]. For exam-
ple, the structure of domains created by laser excitation displays intertwined orders and
intricate chiral ordering [9]. The structure of domain walls (DWs) themselves has been
addressed on different levels [10–13]. In the context of Wigner crystal domains, Karpov
and Brazovskii [10] introduced fractional charges associated with different mutual domain
configurations. On a microscopic level, domain walls were analysed with scanning tun-
nelling microscopy in combination with density-functional-theory calculations [10–13],
revealing the electronic structure within DWs. However, such modelling cannot be used to
understand domain formation kinetics, the origins of metastability [14], or the dynamics of
domain relaxation, governed by spatial topological constraints; nor can it be used to predict
the generic formation of commensurate and domain structures across the entire series of
metallic TMDs. The first step toward understanding such phenomena is the experimental
characterization of the topology of the domain structure.

Here, we present an experimental analysis of the domain wall junctions, analysing
the vertex structure in terms of 2D classical edge dislocations. Real-time measurements of
domain relaxation using scanning tunnelling microscopy show the possibility of measuring
dislocation annihilation dynamics.

2. Experimental Results

At low temperature (<140 K), the unperturbed ground state in 1T-TaS2 is an electronic
superlattice with a filling of 1/13 with respect to the atomic triangular lattice, which is
commonly referred to as the commensurate charge-density-wave (CCDW or C-state). The
superlattice vector is given by A = 3a+ b, where a and b are the fundamental crystal lattice
vectors (Figure 1a), the stars signify the polaronic distortions around extra electron charge
on the Ta atom at the centre of each star-of-David hexagram. Domains are ubiquitously
observed when a charge is injected by a large STM tip current pulse [6], an electrical pulse
through contacts of a device [8], or by photoexcitation (photodoping), where the effect was
originally discovered [14]. The resulting ‘hidden’ (H) domain state is metastable and has
a lifetime that is sufficiently long that its domain structure can be investigated in detail at
low temperatures [15].

In the present work, we excite in situ cleaved single crystals of 1T-TaS2 at 4.2 K with
a voltage pulse from the tungsten tip of an STM. The area around the location of the voltage
pulse is first probed to determine where the hidden state borders the surrounding CCDW.
When an appropriate area is found, we let the STM scanning run until at least several
frames are acquired and a substantial relaxation is observed. Typical domain-forming pulse
parameters are V = 4 V, pulse duration 1 ms and tunnel junction resistance 1 GΩ.

To study the topological properties of the domain network, we need to accurately
determine domains’ phase shifts, fitting them on the underlying atomic lattice. To this end,
we employ a simulated annealing Monte Carlo (MC) algorithm: first, we determine the
most probable values of phase shifts for each neighbouring pair of domains, which we then
globally optimize for the whole domain network. Such a local procedure supplemented
by global “sewing” helps us to determine the domains’ phases, even for big STM images
which exhibit non-uniform values of the underlying lattice constant or lattice rotation angle.
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Figure 1. (a) Schematic representation of the commensurate superlattice showing twelve possible 
interdomain phase shifts with the corresponding colour coding. The parallelogram shows the CDW 
superlattice unit cell. (b) STM image (V = -800 mV) of a part of the domain state with a relatively 
high density of dislocations. Yellow arrows indicate non-zero Burgers vectors at the vertices. (c) 
Zoom-in of the orange square on (b), rotated to align the underlying atomic lattice with the hori-
zontal axis. Colour shading indicates different domains. A yellow arrow represents the Burgers vec-
tor. (d) Same as in (c) for a trivial vertex marked with the blue square in (b). (e) A schematic repre-
sentation of the 3-vertex in (c). Blue circles are tantalum atoms; star of David overlays represent 
polarons using the same colour scheme as (c). Black arrows are CDW superlattice vectors indicating 
the Burgers circuit around the vertex. Blue vectors are relative shifts of domains upon crossing a 
domain wall. The inset shows that the relative shifts add up to a CDW superlattice vector, the Burg-
ers vector of the vertex. (f) Same as in (e) for the trivial vertex. The inset of image 9 (f) shows that 
relative shift vectors add up to zero. Note that all domain wall types are the most common ones 
observed as reported previously in Ref. [13]. 
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Using the above procedure, we analyse a large area domain structure formed by STM 
tip current injection shown in Figure 1b. The domain walls cross, typically forming three 

Figure 1. (a) Schematic representation of the commensurate superlattice showing twelve possible
interdomain phase shifts with the corresponding colour coding. The parallelogram shows the CDW
superlattice unit cell. (b) STM image (V =−800 mV) of a part of the domain state with a relatively high
density of dislocations. Yellow arrows indicate non-zero Burgers vectors at the vertices. (c) Zoom-in
of the orange square on (b), rotated to align the underlying atomic lattice with the horizontal axis.
Colour shading indicates different domains. A yellow arrow represents the Burgers vector. (d) Same
as in (c) for a trivial vertex marked with the blue square in (b). (e) A schematic representation of the
3-vertex in (c). Blue circles are tantalum atoms; star of David overlays represent polarons using the
same colour scheme as (c). Black arrows are CDW superlattice vectors indicating the Burgers circuit
around the vertex. Blue vectors are relative shifts of domains upon crossing a domain wall. The inset
shows that the relative shifts add up to a CDW superlattice vector, the Burgers vector of the vertex.
(f) Same as in (e) for the trivial vertex. The inset of image 9 (f) shows that relative shift vectors add up
to zero. Note that all domain wall types are the most common ones observed as reported previously
in Ref. [13].

Using the above procedure, we analyse a large area domain structure formed by STM
tip current injection shown in Figure 1b. The domain walls cross, typically forming three
or four-pronged vertices. The vertices may be trivial, or non-trivial, according to whether
a Burger’s vector construction around the vertex is zero (B = 0), or non-zero (B 6= 0), to
which we refer as trivial (t) and non-trivial (nt) vertices, respectively. In Figure 1b, vertices
are labelled according to whether the Burger’s vector construction is t (no arrow), or nt
(the yellow arrow shows B). Figure 1c,d show examples of nt and a t vertices, respectively.
The corresponding Burgers circuit construction in each case is shown in Figure 1e,f. The
construction is always made, along with the shortest possible interdomain shifts upon
crossing a domain wall, which is either of the nearest-neighbour types, with length a, or the
next nearest-neighbour type with length √3a (Figure 1e,f). We emphasize that the Burgers
vector construction does not depend on the detailed structure of the vertex or the presence
of extrinsic defects in its vicinity.

A relaxation sequence of the H state induced by a voltage pulse from the STM tip is
shown in Figure 2. The domain area is entirely surrounded by the C-state (red overlay).
The panels a–b6 show a gradual diminishing of the H-state and expansion of the C-state
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in discrete steps. Each frame was analysed by the MC-simulated annealing algorithm to
determine the presence of dislocations at vertices. The vertices are labelled according to
how many domains are adjacent to the vertex, which is the first number, and whether
they are trivial (t) or non-trivial (nt). The arrows next to non-trivial vertices indicate their
Burgers vector, yellow for 4nt and white for 3nt. Panels b1–b6, with overlaid Burgers
vectors, display the dislocation dynamics. We observe a constant number of dislocations
in the domain reconfiguration process until the last frame, where two dislocations with
opposite Burgers vectors annihilate. The latter two are marked by blue circles on image b5
prior to annihilation. Movement of some dislocations is also observed (which we attribute
to a combination of climb and glide—see Figure 3).
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Figure 2. Relaxation sequence of the hidden state induced by a voltage pulse from the STM tip.
(a,b) Analysed STM sequence of the relaxation of a patch of hidden state surrounded by the CCDW.
Vertices are marked by yellow markings, with the number representing the number of domains
that meet at a vertex and the letters “t” and “nt” stand for trivial and non-trivial, respectively
(3nt = non-trivial 3-vertex). The yellow arrow next to non-trivial vertices indicate their Burgers vector.
Red shading indicates the surrounding CCDW and the domain, which is not shifted with respect
to the CCDW. Blue circles in frames 4- and 5-mark pairs of dislocations that annihilate in the next
frame. (c) Colour maps of domains for each frame in (a,b) as a result of the Monte Carlo algorithm.
Colours correspond to relative domain shifts according to Figure 1d, with the origin (red) chosen as
the CCDW. The colour of lines connecting centres of domains represents the quality of recognition
of the MC algorithm. Green edges correspond to the best reliability, orange to lesser, red even less
and black poor recognition. The vast majority of lines in all frames are green indicating reliable
interdomain shift recognition. White lines in the CCDW are used to cut it into smaller pieces for
better algorithm recognition.



Symmetry 2022, 14, 926 5 of 10

Symmetry 2022, 14, x FOR PEER REVIEW 6 of 11 
 

 

 
Figure 3. (a) Relaxation events involving annihilation of non-trivial defects. The Burger’s vectors are 
indicated by the yellow arrows; (b) two examples of glide and climb motion of 3𝑛𝑡 dislocations. 
The red overlay represents the bordering CCDW. 

Figure 4. Temporal dynamics of (a) trivial (𝑡) and (b) non-trivial (𝑛𝑡) vertex relaxation, respectively 
in consecutive STM scans. Each scan takes around 20 min. (Note the different scales.) (c) The number 
of 𝑛𝑡 vertices as a fraction of the total number of vertices. 

3. Domain Textures as An Emergent Phenomenon 
To understand the formation of domains, one may approach it from different direc-

tions [9–14,16,17]. A generally applicable theory with useful predictive value considers 
the domain structure as an emergent property, as a response of the polaronic Wigner crys-
tal to doping [10,14,16]. The model Hamiltonian is given by [16]: 𝐻 = Σ୍,୨𝑉,𝑛𝑛 (1)

where 𝑛 = 0 or 1 is the occupation number of a polaron on the site 𝑖, and 𝑉(𝑖, 𝑗)  =  𝑉 𝑒𝑥𝑝(−𝑟/𝑟௦ )/𝑟 (2)

Figure 3. (a) Relaxation events involving annihilation of non-trivial defects. The Burger’s vectors are
indicated by the yellow arrows; (b) two examples of glide and climb motion of 3nt dislocations. The
red overlay represents the bordering CCDW.

The panels c1–c6 show the same time evolution with colour maps for domains gener-
ated by the MC algorithm. The colouring of domains is according to their shift with respect
to the original reference domain (which is chosen to be the C-state) following the colouring
scheme of Figure 1a. We note that the colouring of domains remains consistent throughout
the relaxation in the sense that domains do not change the CDW phase until they disappear.
This is to be expected, since it is energetically costly to change the phase shift of a whole
domain. They do, however, change their shape and size during relaxation.

Annihilation, glide and climb. Figure 3a shows three examples of dislocation pair
annihilation in subsequent frames. In the middle panel, three dislocations disappear; in the
last panel, two dislocations annihilate, and one is displaced. Yellow arrows are Burgers
vectors, red shading indicates the surrounding CCDW. Figure 3b shows two examples of
dislocation (3nt vertex) displacements, which we can attribute to a combination of glide
and climb motion, as indicated by the different-coloured arrows (glide: white, climb: red).
Glide motion involves motion along the direction of B, while climb involves motion at an
angle of either 60◦ or 120◦ to B.

Annihilation dynamics. By examining STM frames in sequence, we can obtain an idea
of the different rates of dislocation annihilation. While the amount of data is limited by the
small number of frames and the slow relaxation rate, we can clearly distinguish different
relaxation rates for different types of vertices. Figure 4 shows a count of the number of t and
nt vertices for three- and four-pronged vertices on the full STM sequence of images shown
in Figure 2. The three-pronged t vertices appear to show relaxation on the timescale of tens
of minutes. In contrast, the four-pronged vertices show much slower dynamics. This is
possibly due to the fact that most 3t vertices are located closer to the border with the CCDW,
or simply due to the fact that they have more phase constraints and are therefore more
energetically costly to relax. The nt defects show very little dynamics on this timescale. The
number of dislocations is constant until the last frame (when two dislocations annihilate)
and so they form a sort of stable backbone of the domain wall network. It is clear from
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the examination of the STM images that t and nt vertices are inextricably entangled with
each other in the sense that vertex (3nt) and anti-vertex (3nt) pairs are not adjacent to
each other, but there may be other vertices geometrically constraining their annihilation.
It is quite likely that some defects have their anti-defects outside the image area, and the
present experiments are limited in this way. Nevertheless, the general trend is clear. We
also note that the fraction of nt vertices increases during relaxation, making the hidden
state more topologically protected. This could have implications for data retention in
memory-device applications.
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3. Domain Textures as an Emergent Phenomenon

To understand the formation of domains, one may approach it from different direc-
tions [9–14,16,17]. A generally applicable theory with useful predictive value considers the
domain structure as an emergent property, as a response of the polaronic Wigner crystal to
doping [10,14,16]. The model Hamiltonian is given by [16]:

H = ΣI,jVi,jninj (1)

where ni = 0 or 1 is the occupation number of a polaron on the site i, and

V(i, j) = V0 exp
(
−rij/rs

)
/rij (2)

is the Yukawa screening potential, where V0 = e2 /ε0a in CGS units and rij =
∣∣ri − rj

∣∣,
where ri is the dimensionless position of the i-th polaron, and rs is the dimensionless
screening radius. ε0 is the dielectric constant of the material. The use of the model for quasi-
2D transition metal dichalcogenides has been justified previously, and has predicted the
existence of electronic superlattices at magic-filling fractions and domains or amorphous
electronic structures in between. Details of the calculation can be found in Ref. [16].

One possible way to represent the topological defects in the data is by using Wigner–
Seitz cell (or sometimes called Voronoi) constructions around each polaron. Figure 5b shows
such a construction for the large area experimental STM image with a large density of
dislocations in Figure 5a. As before, the domains are first put to the underlying lattice with
the MC simulated annealing process. Hexagons are coloured blue, while pentagons and
heptagons are coloured orange and green, respectively. We see that nt vertices indicated by
the arrows (which have non-zero B) are associated with heptagon–pentagon pairs. These
are topologically equivalent to dislocations on a hexagonal lattice. The Wigner–Seitz cell
representation is thus a useful abstraction for the rather complicated domain structure
observed in STM experiments.
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simulation after adding an electron (e-), or a hole (h+) to the lattice at different effective temperatures.
Colour code: hexagons (blue), pentagons (orange), and heptagons (green).

The results of the calculation for lightly doped (adding 1 electron or 1 hole) Wigner
crystal with a magic filling fraction of 1/13 are shown in Figure 5c in the form of a Wigner–
Seitz cell plot. We see that doping creates topological defects in the form of pentagon–
heptagon pairs, irrespective of the temperature. At higher temperatures, additional defects
are visible due to e− h pair excitations appearing as fluctuations in the number density.
Comparing the predictions of this classical polaronic lattice gas model (Figure 5c) with
the experiment in Figure 5b, we see that the model predicts the formation of the same
kind of defects associated with doping. In both cases, we can see paired dislocations. The
difference is in the presence of single heptagon–pentagon pairs in the experimental image,
while in the model they are all paired or clustered. The comparison strongly suggests that
the vertices are associated with an extra trapped charge.

Our simulations also show that the number of defects increases as we increase doping
in the system and when doping is zero, no defects are remaining. Therefore, from the point
of view of our polaronic Wigner crystal approach, the domain formation mechanism is the
following. Photoexcitation or charge injection introduces additional charges in the system.
Karpov and Brazovskii [10] have already shown that a domain wall is energetically more
favourable than a hole or interstitial charge; therefore, a network of domain walls forms.
The number of topologically protected defects is governed by the doping level and this
number does not change if the doping level remains the same. Trivial defects, however, can
relax and disappear. Experimentally, it was noted before [16] that the doping level differs
in the ground state and metastable state, which suggests that extra charges responsible
for topologically protected defects also eventually leak back into the Fermi sea below the
Fermi level.
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4. Discussion

‘Standard’ theory of domain walls in CDW systems considers the energy of DW
formation and energy of DW crossings (DWCs), which are of opposite signs, such that the
two form a metastable minimum in the free energy of the system [14,18–21]. The minimum
corresponds to a particular, topologically protected domain state, in the sense that the
minimum is determined by specific details of the material and is immune to external
single-particle perturbations. However, this does not include the additional complication
of real-space pinning defects, nor is it immune to strain, for example [15]. In the same sense,
the domain size is controlled by carrier injection [14,22,23]. The self-organized intrinsic
formation of topological defects at DW crossings observed above is not included in the
theory, yet it is likely to have a significant effect on the system stability, and hence the
free-energy potential landscape. The dynamics of dislocations in particular are governed
by annihilation dynamics, the bottleneck being matched defect pair annihilation. In 2D,
conventional Kosterlitz–Thouless (K-T) theory, the dynamics are discussed in terms of edge
dislocations, which are created and annihilated in pairs. At high density, the dislocations
destroy long-range order, resulting in a hexatic phase. When the dislocations dissociate
into five- and seven-fold disclinations, an additional isotropic phase may appear. The
two-step melting of such a phase is described in terms of the Kosterlitz–Thouless–Halperin–
Nelson–Young (KTHNY) theory with two consecutive K-T transitions. These theories do
not consider the dynamics of the dislocations, which can be quite intricate.

The dynamics of classical lattice dislocations under stress is governed by a Peach–
Koehler (P-K) force between dislocations described in terms of their Burger’s vector and the
stress tensor, with additional terms arising from pinning by extrinsic defects, temperature-
driven lattice fluctuations, local (Peierls-Nabarro) strains, etc. [24,25]. Simulations of the
dynamics in classical 2D systems typically reveal aggregation of dislocations in the form of
clusters, and at the edges.

In the case of an electronic crystal on a hexagonal lattice, the structure of non-trivial
defects is formally equivalent to lattice dislocations, but the microscopic structural details,
on which the dynamics will depend, are quite specific. The experimental data above
show the structure of trivial and non-trivial vertex dynamics and are presented formally
in terms of dislocation dynamics. Aggregation of dislocations at the edges or in the
centre of the domain structures is not observed on the timescale of the STM experiments,
suggesting that annihilation is faster than the P-K dynamics at 4 K. More importantly,
the dynamics is governed by the entanglement of defect pairs, which prevents direct
annihilation of defect–anti-defect pairs through a simple glide or climb motion, but requires
‘circumnavigation’ and annihilation in a particular sequence. The fact that the domains are
created spontaneously, from initial fluctuation–nucleation after a quench suggests some
degree of randomness in the initial distribution of defects. However, domain-wall repulsion
and the energy gained by crossings at vertices act to form a more uniform, long-ranged
order in the domain structure. The latter process is hindered by topological constraints at
the vertices.

We note that the present analysis is limited to the temporal and spatial window of the
STM experiments. Dynamics on other timescales cannot be excluded, but currently, there
are no other methods to observe the defect dynamics. In spite of experimental limitations,
the dynamics of the observed difference in nt and t dynamics are quite significant, indicating
that the forces between nt and t are quite different. An additional complication arises
from the fact that nt and t vertices are intertwined, which brings a complex topology to
the problem.

On a phenomenological level, the relaxation was previously described in terms of the
Ostwald ripening process, with double exponential relaxation, but the approach is not very
insightful in explaining the magnitude of the energy barrier EB for relaxation to the ground
state [15]. However, the strong observed sensitivity of EB to external strain suggests that
a general P-K approach is reasonable.
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A suitable framework for describing the quantum nature of such a system may be
provided by fractions, excitations within a tensorial field theory that are dual to classical
elasticity theory used in the present analysis [26], but such treatment is beyond the scope
of this paper.

Given that the detailed construction of DWCs is likely to play an important role
in the overall relaxation process of the electronic Wigner crystal, one may comment on
the prospect of dealing with the dynamics of such a system on the microscopic level
(e.g., density functional theory) used recently to describe the static structure of single DWs.
Such modelling may be useful in determining the relative energy stability of different DWs
and eventually DWCs. The transitions between states on the resulting energy landscape
may form the basis of more material-specific relaxation dynamics.

5. Conclusions

The difference in t and nt dynamics is striking and proves that the topological pro-
tection of nt vertices plays a crucial role in the stability of the domain state. We conclude
by commenting on the fact that at low temperatures, the dynamics are limited by macro-
scopic quantum tunnelling between different, but energetically near-degenerate domain
configurations that were shown, in recent experiments, to be finite [27].

Author Contributions: Conceptualization, D.M., A.K., Y.G. and Y.V.; methodology, P.K., A.K. and
D.M.; software, P.K., A.K. and J.V.; formal analysis, A.K., P.K. and J.V.; writing—original draft
preparation, D.M. and A.K.; writing—review and editing, D.M., A.K., P.K., Y.V. and J.V.; funding
acquisition, D.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Slovenian Research Agency, grant P1-0040 and A.K. to
PR-06158. We thank the CENN Nanocenter for the use of its facilities.

Data Availability Statement: Not applicable.

Acknowledgments: We thank the CENN Nanocenter for the use of its facilities, Petra Šutar for the
samples used in this work, and Maksim Litskevich for the help with measurements.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schrieffer, J.R. Theory of Superconductivity; Westview Books: Boulder, CO, USA, 1964; ISBN 0738201200.
2. Machida, Y.; Hanashima, T.; Ohkubo, K.; Yamawaki, K.; Tanaka, M.; Sasaki, S. Observation of Soft Phonon Modes in 1T-TaS 2by

Means of X-ray Thermal Diffuse Scattering. J. Phys. Soc. Jpn. 2004, 73, 3064–3069. [CrossRef]
3. Rossnagel, K. On the Origin of Charge-Density Waves in Select Layered Transition-Metal Dichalcogenides. J. Phys. Condens.

Matter 2011, 23, 213001. [CrossRef] [PubMed]
4. Fazekas, P.; Tosatti, E. Charge Carrier Localization in Pure and Doped 1T-Tas2. Phys. B+C 1980, 99, 183–187. [CrossRef]
5. Tosatti, E.; Fazekas, P. On the Nature of the Low-Temperature Phase of 1T-TaS2. J. Phys. Colloq. 1976, 37, C4-165–C4-168.

[CrossRef]
6. Ma, L.; Ye, C.; Yu, Y.; Lu, X.F.; Niu, X.; Kim, S.; Feng, D.; Tománek, D.; Son, Y.W.; Chen, X.H.; et al. A Metallic Mosaic Phase and

the Origin of Mott-Insulating State in 1T-TaS2. Nat. Commun. 2016, 7, 10956. [CrossRef]
7. Cho, D.; Cheon, S.; Kim, K.-S.; Lee, S.-H.; Cho, Y.-H.; Cheong, S.-W.; Yeom, H.W. Nanoscale Manipulation of the Mott Insulating

State Coupled to Charge Order in 1T-TaS2. Nat. Commun. 2016, 7, 10453. [CrossRef]
8. Vaskivskyi, I.; Mihailovic, I.A.; Brazovskii, S.; Gospodaric, J.; Mertelj, T.; Svetin, D.; Sutar, P.; Mihailovic, D. Fast Electronic

Resistance Switching Involving Hidden Charge Density Wave States. Nat. Commun. 2016, 7, 11442. [CrossRef]
9. Gerasimenko, Y.A.; Karpov, P.; Vaskivskyi, I.; Brazovskii, S.; Mihailovic, D. Intertwined Chiral Charge Orders and Topological

Stabilization of the Light-Induced State of a Prototypical Transition Metal Dichalcogenide. npj Quantum Mater. 2019, 4, 32.
[CrossRef]

10. Karpov, P.; Brazovskii, S. Modeling of Networks and Globules of Charged Domain Walls Observed in Pump and Pulse Induced
States. Sci. Rep. 2018, 8, 4043. [CrossRef]

11. Cho, D.; Gye, G.; Lee, J.; Lee, S.-H.; Wang, L.; Cheong, S.-W.; Yeom, H.W. Correlated Electronic States at Domain Walls of
a Mott-Charge-Density-Wave Insulator 1 T-TaS 2. Nat. Commun. 2017, 8, 392. [CrossRef]

12. Park, J.W.; Cho, G.Y.; Lee, J.; Yeom, H.W. Emergent Honeycomb Network of Topological Excitations in Correlated Charge Density
Wave. Nat. Commun. 2019, 10, 4038. [CrossRef] [PubMed]

http://doi.org/10.1143/JPSJ.73.3064
http://doi.org/10.1088/0953-8984/23/21/213001
http://www.ncbi.nlm.nih.gov/pubmed/21558606
http://doi.org/10.1016/0378-4363(80)90229-6
http://doi.org/10.1051/jphyscol:1976426
http://doi.org/10.1038/ncomms10956
http://doi.org/10.1038/ncomms10453
http://doi.org/10.1038/ncomms11442
http://doi.org/10.1038/s41535-019-0172-1
http://doi.org/10.1038/s41598-018-22308-7
http://doi.org/10.1038/s41467-017-00438-2
http://doi.org/10.1038/s41467-019-11981-5
http://www.ncbi.nlm.nih.gov/pubmed/31492870


Symmetry 2022, 14, 926 10 of 10

13. Park, J.W.; Lee, J.; Yeom, H.W. Zoology of Domain Walls in Quasi-2D Correlated Charge Density Wave of 1T-TaS2. NPJ Quantum
Mater. 2021, 6, 32. [CrossRef]

14. Stojchevska, L.; Vaskivskyi, I.; Mertelj, T.; Kusar, P.; Svetin, D.; Brazovskii, S.; Mihailovic, D. Ultrafast Switching to a Stable
Hidden Quantum State in an Electronic Crystal. Science 2014, 344, 177–180. [CrossRef] [PubMed]

15. Vaskivskyi, I.; Gospodaric, J.; Brazovskii, S.; Svetin, D.; Sutar, P.; Goreshnik, E.; Mihailovic, I.A.; Mertelj, T.; Mihailović, D.
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