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Abstract: Most deep-learning-based multi-channel speech enhancement methods focus on designing
a set of beamforming coefficients, to directly filter the low signal-to-noise ratio signals received by
microphones, which hinders the performance of these approaches. To handle these problems, this
paper designs a causal neural filter that fully exploits the spectro-temporal-spatial information in the
beamspace domain. Specifically, multiple beams are designed to steer towards all directions, using a
parameterized super-directive beamformer in the first stage. After that, a deep-learning-based filter
is learned by, simultaneously, modeling the spectro-temporal-spatial discriminability of the speech
and the interference, so as to extract the desired speech, coarsely, in the second stage. Finally, to
further suppress the interference components, especially at low frequencies, a residual estimation
module is adopted, to refine the output of the second stage. Experimental results demonstrate that
the proposed approach outperforms many state-of-the-art (SOTA) multi-channel methods, on the
generated multi-channel speech dataset based on the DNS-Challenge dataset.

Keywords: multi-channel speech enhancement; neural beam filter; deep learning

1. Introduction

In the real world, speech is often corrupted by noise and/or reverberation. Speech
enhancement aims to extract the clean speech and suppress the noise and reverberation
components, which is one of the core problems in audio signal processing. It is reported
that multi-channel speech enhancement (MCSE) tends to have superior performance,
when compared with monaural speech enhancement, owing to the additional spatial
information [1]. Therefore, multi-channel speech enhancement has been widely applied as
a preprocessor in video conferencing systems, automatic speech recognition (ASR) systems,
and smart TVs. In the past forty years, several beamforming-based [2] and blind-source-
separation-based [3] methods have been developed. The deep neural networks (DNNs)
are the artificial neural networks (ANNs), with multiple hidden layers between the input
and output layers. With the help of their strong nonlinear modeling ability, DNNs have
been, widely, used in a variety of audio tasks, such as emotion recognition, ASR, and
speech enhancement/separation. Recently, DNNs have facilitated the research in MCSE,
yielding notable performance improvements over conventional statistical beamforming
techniques [4–11].

Considering the success of DNNs in the single-channel speech enhancement (SCSE)
area, a straightforward strategy is to extend the previous SCSE models to extract spatial
features, either heuristically or implicitly [4–9]. This paradigm is prone to cause nonlinear
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speech distortion, such as spectral blackholes in low signal-to-noise (SNR) scenarios, since
the advantage of the spatial filter with microphone-array beamforming is not fully exploited
to null the directional interference and suppress the ambient noise [10,11]. Another category
follows the cascade-style regime. To be specific, in the first stage, an SC-based network
was adopted to predict the mask of each acoustic channel in parallel, followed by the
steering vector estimation and noise spatial covariance matrix (SCM) calculation. In the
second stage, a traditional beamformer, such as minimum variance distortionless response
(MVDR) or eigenvalue decomposition (GEV), was adopted for spatial filtering [10,12–14].
These methods have shown their effectiveness in ASR, since ASR can tolerate a latency of
hundreds of milliseconds. When the latency should be much lower, such as no more than
20 ms [15] for many practical applications, such as speech communication, hearing aids,
and transparency, these methods may degrade their performance, significantly, for these
low-latency systems. Moreover, the performance heavily depends on the mask estimation
accuracy, which can degrade a lot in complex acoustic scenarios.

As a solution, an intuitive tactic is to enforce the network to directly predict the
beamforming weights, which can be done in either the time domain [16,17] or the frequency
domain [11,18–20]. Nonetheless, according to the signal theory, the desired beam pattern
is required to form its main beam towards the target direction and, meanwhile, form the
null towards the interference direction, which tends to be difficult, especially, in low-SNR
scenarios, from the optimization perspective. Moreover, slight errors of the estimated
weights are able to lead to severe distortions in the beam pattern and, thus, affect the
performance of the algorithm.

In this paper, we design a neural filter in the beamspace domain, rather than the
spatial domain, for real-time multi-channel speech enhancement. In detail, the multi-
channel signals are, first, processed by a set of pre-defined fixed beamformers. A beam set
is sampled, uniformly, with various directions in the space. Then, the network is utilized to
learn the spectro-temporal-spatial discriminative features of the target speech and noise,
which aims to generate the bin-level filtering coefficients to, automatically, weight the beam
set. Note, different from the previous neural beamformer-based literature [8,11], where
the output weights are applied to multi-channel input signals directly, here the predicted
coefficients are to filter the noise component of each pre-generated beam and fuse them.
We dub it a neural beamspace-domain filter, to distinguish it from the existing neural
beamformer, literally. The rationale of such network design logic is three-fold.

• The target signal can be pre-extracted with the fixed beamformer, and the dominant
part should exist within at least one directional beam, serving as the SNR-improved
target priori to guide the subsequent beam fusion process. The interference-dominant
beam can be obtained, when the beam steers towards the interference direction,
providing the interference priori for better distinguishment in a spatial-spectral sense.
Besides, the target and interference components may co-exist within each beam, while
their distributions are dynamically changed, due to their spectral difference. Therefore,
the beam set can be viewed as a reasonable candidate to indicate the spectral and
spatial characteristics.

• In addition to the design of beam pattern in the spatial domain, the proposed system
can, also, learn the spectral characteristics of the interference components, to can-
cel residual noise in the spectral domain, completing the enhancement of both the
spatial domain and the spectral domain, which can achieve a higher upper limit of
performance than the neural spatial network that only performs filtering in the spatial
domain.

• From the optimization standpoint, the small error in the beamforming weights may
lead to serious distortion of the beam pattern, while the beamspace-domain weights
will only leak some undesired components when the error occurs, which has much
less direct impact on the performance of the system. Therefore, the beamspace-domain
filter is more robust.
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As the beam set is only discretely sampled in the space, the information loss tends
to arise due to the limited spatial resolution at low frequencies, which causes speech
distortion. To this end, a residual branch is designed to refine the fused beam. We have to
emphasize that, although the multi-beam concept is used in both [21] and this study, they
are very different, as [21] is in essence a parallel single beam enhancement process, while
the proposed system can be regarded as the filter and fusion process of the multi-beam.
Experiments conducted on the DNS-Challenge corpus [22] show that the proposed neural
beam filter outperforms previous state-of-the-art (SOTA) baselines.

Our main contributions are summarized as follows:

• We propose a novel multi-channel speech enhancement scheme in the beam-space
domain. To the best of our knowledge, this is the first work that shows the effectiveness
of the neural beamspace-domain filter for multi-channel speech enhancement.

• We introduce the residual U-Net into the convolutional encoder-decoder architec-
ture, to improve the feature representation capability. A weight estimator module
is designed, to predict the time-frequency bin-level filter coefficients, and a residual
refinement module is designed to refine the estimated spectrum.

• We validate the superiority of the proposed framework, by comparing it with state-
of-the-art algorithms in both the directional interference and diffuse noise scenarios.
These evaluation results demonstrate the superiority and potentiality of the pro-
posed method.

The remainder of the paper is organized as follows. We describe the proposed neural
beam filter in Section 2. The experimental setting and results are given in Section 3 and
Section 4, respectively. Finally, we draw some conclusions in Section 5.

2. Materials and Methods

The aim of this work is to develop a real-time multi-channel speech enhancement
system, to extract the clean speech and suppress the noise and reverberant components.
The noisy mixtures are recorded by the microphones of an array. The spectra of these
signals are used as the inputs of the proposed system. This system comprises three modules,
namely fixed beamforming module (FBM), beam filtering module (BFM), and residual
refinement module (RRM). The enhanced speech is, then, obtained and transmitted to
the telecommunication circuit and/or speech recognition system. The proposed system is
presented in Figure 1.
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Figure 1. Overview of the proposed framework. Different modules are highlighted with different colors.

2.1. Signal Model

Considering an M-channel microphone array placed in noisy-reverberant environ-
ments, the signal received in the m-th microphone can be represented by:

ym(n) = hm(n) ∗ s(n) + vm(n), m = 0, 1, · · · , M− 1, (1)
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where

Ym(t, f ) is the STFT of ym(n).
S(t, f ) is the STFT of s(n).
Vm(t, f ) is the STFT of vm(n).
t ∈ {0, 1, · · · , T − 1} refers to the index of frames.
f ∈ {0, 1, · · · , F− 1} refers to the index of frequency bins. Considering the symmetry
of Ym(t, f ) in frequency, F = N/2 + 1 is chosen throughout this paper.
Xearly

m (t, f ) is the direct-path signal of the speech source and its early reflections.
Xlate

m (t, f ) is the late reverberant speech.

By N-point short-time Fourier transform (STFT), the physical model in the time-
frequency domain can be expressed as:

Ym(t, f ) = Hm(t, f )S(t, f ) + Vm(t, f ) = Xearly
m (t, f ) + Xlate

m (t, f ) + Vm(t, f ), (2)

where

Xearly
m (t, f ) = Hearly

m (t, f )S(t, f ), (3)

Xlate
m = Hlate

m (t, f )S(t, f ), (4)

where

Ym(t, f ) is the STFT of ym(n).
S(t, f ) is the STFT of s(n).
Vm(t, f ) is the STFT of vm(n).
t ∈ {0, 1, · · · , T − 1} refers to the index of frames.
f ∈ {0, 1, · · · , F− 1} refers to the index of frequency bins. Considering the symmetry
of Ym(t, f ) in frequency, F = N/2 + 1 is chosen throughout this paper.
Xearly

m (t, f ) is the direct-path signal of the speech source and its early reflections.
Xlate

m (t, f ) is the late reverberant speech.

In this paper, the aim of the proposed algorithm is to extract the direct-path, plus
the early reflected components X(t, f ) = Xearly

re f (t, f ), from the multi-channel input signals
Y(t, f ) = {Y0(t, f ), · · · , YM−1(t, f )}, by the model F (·), assuming that the 0-th microphone
is chosen as the reference microphone, and defining the reflections within the first 100 ms
after the direct sound as the early reverberation. From now on, we will omit the subscript
(t, f ), when no confusion arises. The above process can be formulated as:

X̂ = F (Y; Φ). (5)

where

Φ denotes the parameter set of the mapping function F (·).
After transforming X̂ by inverse STFT (iSTFT), the enhanced time-domain signal can

be reconstructed by the overlap-add (OLA) method.

2.2. Forward Stream

Figure 1 shows the overall diagram of the proposed architecture, which consists of
three components, namely fixed beamforming module (FBM), beam filtering module (BFM),
and residual refinement module (RRM).

In FBM, the fixed beamformer is employed to sample the space uniformly and obtain
multiple beams steering towards different directions. The beam set denotes Bd ∈ CT×F,
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with d = 0, · · · , D− 1, where D denotes the number of resultant multi-beam. The process
is, thus, given by:

{Bd}d=0,··· ,D−1 = FFBM({Ym}m=0,··· ,M−1; ΦFBM), (6)

where

FFBF(·) is the function of FBM.
ΦFBF denotes the parameter set.

We concatenate the beam set along the channel dimension, serving as the input of
BFM, which denotes B = Cat(B0, · · · , BD−1) ∈ R2D×T×F. Here, 2 means that both real
and imaginary (RI) parts are considered. As muti-beams can represent both spectral and
spatial characteristics, BFM is adopted to learn the spectro-temporal-spatial discriminative
information between speech and interference and attempt to assign the filter weights
Ĝd ∈ CT×F for each beam. It is worth noting that as the beam set is discretely sampled in the
space, the information loss tends to arise due to the limited spatial resolution. To alleviate
this problem, the complex spectrum of the reference channel is, also, incorporated into the
input and, meanwhile, similar to [23], the complex residual needs to be estimated with
RRM, which aims to compensate for the inherent information loss of the filtered spectrum.
This process can be presented as:

Ĝ = FBFM([{Bd}d=0,··· ,D−1, Y0]; ΦBFM), (7)

R̂ = FRRM([{Bd}d=0,··· ,D−1, Y0]; ΦRRM), (8)

where

Ĝ ∈ CD×T×F is the complex filter estimated by BFM.
R̂ ∈ CD×T×F is the complex residual estimated by RRM.

By applying the estimated weights {Ĝd}d=0,··· ,D−1 to filter the beams {Bd}d=0,··· ,D−1
and, then, summing them along the channel axis, the fused beam X̂BFM can be obtained by:

X̂BFM = ∑
d

Ĝd × Bd, (9)

where × denotes the complex-valued multiplication operator. We, then, add the filtered
beam and estimated complex residual together, to obtain the final output X̂, i.e.,

X̂ = X̂BFM + R̂. (10)

2.3. Fixed Beamforming Module

In this module, the fixed beamformer is leveraged to transform input multi-channel
mixtures into several beams, which steer towards different-looking directions and, uni-
formly, sample the space. As the fixed beamformer is data-independent, it is robust in
adverse environments and has low computational complexity. Moreover, filtering multi-
channel mixtures with the fixed beamformer allows our system to be less sensitive to the
array geometry. In this paper, we choose the super-directivity (SD) beamformer as the
default beamformer, due to its promising performance in high directivity [24]. Note that
other fixed beamformers can, also, be adopted, which is out of the scope of the paper.
Assuming the target directional angle is θd, the weights of the SD beamformer can be
calculated as:

wd( f ) =
Γ−1

nn ( f )v(θd, f )
vH(θd, f )Γ−1

nn ( f )v(θd, f )
, (11)

where

v(θd, f ) is the steering vector.
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(·)H is the complex transpose operator.
Γnn( f ) denotes the covariance matrix of a diffuse noise field with the diagonal loading
to control the white noise gain.

Note that the diagonal-loading level, often, needs to be chosen carefully, to make
a good balance between the white noise gain and the array gain [25]. In this paper, the
diagonal loading level is fixed to 1 ×10−5, and its impact on performance will be studied in
the near future. The (i, j)-th element of Γnn( f ) represents the coherence between the signals
received by two microphones, with indices i and j in an isotropic diffuse field, which can
be formulated as:

Γ
(i,j)
nn ( f ) = sinc

(
2π fs f lij/N

c

)
, (12)

where

sinc(x) = sin(x)
x .

lij is the distance between the i-th and j-th microphones.
c is the speed of sound.
fs is the sampling rate.

Defining Y(t, f ) = {Y0(t, f ), · · · , YM−1(t, f )}, the output of the d-th SD beamformer
can be expressed as:

Bd(t, f ) = wH
d ( f )Y(t, f ). (13)

2.4. Beam Filter Module

As shown in Figure 1, the beam filter module (BFM) consists of a causal convolu-
tional encoder-decoder (CED) architecture and a weight estimator (WE). For the encoder,
it comprises six gated linear units with residual U-Net (GLU-RSU) blocks, to consecutively
halve the feature size and extract high-level features, which is described in Section 2.4.2.
The decoder is the mirror version of the encoder except that all the convolution operations
are replaced by the deconvolutional version (dubbed DeconvGLU). Similar to [26], a stack
of squeezed temporal convolutional networks (S-TCNs) is inserted as the bottleneck of
CED, to model the temporal correlations among adjacent frames. After that, in the weight
estimator, we simulate the filter generation process, where T-F bin-level filter coefficients
are assigned for each beam. To be specific, the output embedding tensor of the decoder is,
first, normalized by layer normalization (LN), and, then, the LSTM is employed to update
the feature frame by frame, with ReLU serving as the intermediate nonlinear activation
function. The weights Ĝ are obtained after the output linear layer. Then, these weights are
applied to each beam to obtain the target beam.

2.4.1. CED Architecture

Convolutional encoder–decoder architecture is widely used in speech enhancement [27].
It consists of a convolutional encoder, followed by a corresponding decoder. The encoder
is a stack of convolutional layers, and the encoder is a stack of deconvolutional layers in
the reverse order. The convolution layer uses a filter, namely kernel, to extract the local
patterns of the low-level input feature to the high-level embedding. It is widely used in
computer vision [28], neural language processing [29], and acoustic signal processing [30,31].
The deconvolution layer is a special convolution layer, which can map low-resolution
features to the features with the input feature size. The symmetric CED structure ensures
that the output has the same shape as the input, which is, naturally, suitable for the speech
enhancement task.

2.4.2. GLU-RSU Block

The GLU-RSU block consists of convolutional gated linear units (ConvGLUs) [32],
batch normalization (BN), Parameter ReLU (PReLU), and a residual U-Net (RSU) [33],
which is shown in Figure 2.
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Figure 2. The architecture of GLU-RSU.

Firstly, the input feature fGLURSU
i is passed by a ConvGLU, which can obtain better

modeling capacity than a plain convolutional layer, due to the learnable dynamic feature
selection by a gating mechanism, which can be expressed as:

fGLU
o = (fGLURSU

i ∗W1 + b1)� σ(fGLURSU
i ∗W2 + b2), (14)

where

∗ is the convolution operator.
� is the Hadamard product operator.
W1 and W2 are the weights of these two convolutional layers.
b1 and b2 are the bias of these two convolutional layers.
σ(·) is the Sigmoid function.

Then, the U-Net in the RSU is used to recalibrate feature distribution, by modeling the
spectrum feature in different scales and extracting intra-beam time-frequency discrimina-
tion by continuous downsampling. Finally, a residual connection is utilized, to mitigate the
gradient-vanishing problem. The above process can be formulated as:

fGLURSU
o = FUNet(fGLU

o ; ΦUNet) + fGLU
o . (15)

where

FUNet(·) is the function of U-Net.
ΦUNet denotes the parameter set.

2.4.3. Squeezed Temporal Convolutional Network

TCN is used to effectively capture the temporal dependence of speech. Compared with
recurrent neural network (RNN), TCN is able to interfere in parallel and achieve better per-
formance, by utilizing 1-D dilated convolutions. S-TCN is a lightweight TCN and consists
of several squeezed temporal convolutional modules (S-TCM). From Figure 3, one can see
that S-TCM includes the input point convolution, the gated depth-wise dilated convolution
(GDD-Conv), and the output point convolution, where the input point convolution and
the output point convolution are applied to squeeze and restore the feature dimension,
respectively, and GDD-Conv has three differences with the depth-wise dilated convolution
in traditional TCM. Firstly, the channel of the dilated causal convolution (DC-Conv) in
GDD-Conv is less to effectively represent the information, due to the time-frequency sparse-
ness of the speech spectrum. Moreover, GDD-Conv introduces a gating branch to facilitate
information flow in the gradient back-propagation process. The gating branch utilizes
the Sigmoid activation function, to map the output of DC-Conv to (0, 1) for changing the
feature distribution of the main branch. Note that PReLU and normalization layers are
inserted between adjacent convolutional layers, to facilitate the network convergence.



Symmetry 2022, 14, 1081 8 of 17

p
o

in
t 

co
n
v

P
R

eL
U

N
o

rm

p
o

in
t 

co
n
v

P
R

eL
U

N
o

rm

D
C

-C
o
n
v

S
ig

m
o

id

P
R

eL
U

N
o

rm

D
C

-C
o
n
v

Figure 3. The architecture of the Squeezed Temporal Convolutional Network.

2.5. Residual Refinement Module

Since the SD beamformer tends to amplify the white noise to ensure the array gain at
low frequencies, the weighted beam output with BFM, often, contains lots of residual noise
components, which need to be further suppressed to improve speech quality. Meanwhile,
speech distortion is, often, introduced, due to the mismatch between the main beam steering
toward the predefined direction and the true direction of the target speech, which is because
the number of the fixed beamformers is limited. To refine the target beam, a residual
refinement module (RRM) is proposed, which comprises a decoder module similar to that
of BFM and a residual block (ResBlock) containing three residual convolution modules,
as shown in Figure 1. The output of S-TCN serves as the input feature of the RRM. After
decoding from multiple U2 blocks, the output tensor fRes ∈ R64×T×F is concatenated,
with the original complex spectrum of the reference microphone Y0, and is fed to a point
convolution to squeeze the feature dimension to 16. Then, a series of residual convolution
modules is applied which comprises a plain convolution layer with a 2× 3 kernel and
1 × 1 stride, BN, PReLU, and a identity shortcut connection. Finally, the complex residual
spectrum R̂ is derived by the output 1×1-conv, to reduce the dimensions to 2, and applied
to refine the filtered beam output X̂BFM.

2.6. Loss Function

In this paper, a two-stage training method is used. Firstly, we train the BFM with the
magnitude regularized complex spectrum loss, which is defined as:

L1 = α ∑
t, f
|Xearly

re f (t, f )− X̂BFM(t, f )|2 + (1− α)∑
t, f
||Xearly

re f (t, f )| − |X̂BFM(t, f )||2, (16)

where α is the regularized factor and is set to 0.5, empirically. The first term and the second
term in the loss function are, respectively, the complex spectrum mean squared error (MSE)
loss and the magnitude spectrum MSE loss.

Then, we freeze the parameters of BFM when training RRM. The same loss function
is utilized:

L2 = α ∑
t, f
|Xearly

re f (t, f )− X̂early
re f (t, f )|2 + (1− α)∑

t, f
||Xearly

re f (t, f )| − |X̂early
re f (t, f )||2. (17)

Note that both the estimations and the targets are adopted with the power compression,
to improve the speech enhancement performance. The power-compression process can be
expressed as:
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Xβ = |X|β(X/|X|), (18)

where the compression factor β is set to 0.5 [34].

2.7. Datasets

In this paper, we conduct two datasets for the performance evaluation in the directional
interference situation and the diffused noise situation. The DNS-Challenge corpus (https:
//github.com/microsoft/DNS-Challenge (accessed on 22 April 2022)) [22] is selected to
convolve with multi-channel room impulse responses (RIRs), which represent the transfer
function between the sound source and microphones of the array, to generate multi-channel
pairs for experiments. To be specific, the clean clips are randomly sampled from the neutral
clean speech set [22], which includes about 562 h speaking by 11,350 speakers. We split it
into two parts without overlap, namely for training and testing. The noise clips in the
DNS-Challenge corpus are selected for the directional interference. The utterances in the
TIMIT corpus [35] are used to conduct a diffused babble noise field.

For the directional interference situation, around 20,000 types of noise in the DNS-
Challenge corpus are selected as the interference source in the training phase, with a
duration time of about 55 h [23,26]. For testing, three types of unseen noise are chosen,
namely babble, factory1 noises taken from NOISEX92 [36], and cafe noise taken from
CHiME3 [37]. We generate the RIRs with the image method [38] using a uniform linear
array with 9 microphones, and the distance between two adjacent microphones is around
4 cm. The room size is sampled from 3× 3× 2.5 m3 to 10× 10× 3 m3, and the reverberation
time RT60 ranges from 0.05 s to 0.7 s. The source is randomly located in angle from 0◦ to
180◦, and the distance between the source and the array center ranges from 0.5 m to 3.0 m.
The signal-to-noise ratio (SNR) ranges from −6 dB to 6 dB.

For the diffused babble noise situation, we select the utterances from 480 speakers in
the TIMIT corpus for training and validation, while the utterances from other speakers are
used for generating test diffused noise. In total, 72 different speakers are selected randomly
and are assigned to 72 directions (0◦, 5◦, · · · , 355◦), to simulate diffused babble noise. The
SNR ranges from −6 dB to 6 dB with 1 dB interval. The settings of the room size, RT60,
and the speaker location are the same as above.

Totally, in each situation, about 80,000 and 4000 multi-channel noisy and reverberant
mixtures, respectively, are generated for training and validation. For the testing set, SNR is
set to {−5,−2, 0, 2, 5} dB, and 150 pairs are generated for each case. Note that the speakers
and the room sizes for the test are, also, unseen in both the training and validation sets.

3. Experiments
3.1. Baselines

In this paper, three multi-channel speech enhancement systems, namely MC-Conv-
TasNet [39], FaSNet-TAC [16], and MIMO-UNet [20], are chosen as the comparative systems.
MC-Conv-TasNet is the multiple-input version of Conv-TasNet, which is one of the most
effective time-domain speech enhancement and separation models. FaSNet-TAC is an
end-to-end filter-and-sum style time-domain multi-channel speech enhancement system,
which can achieve better performance than mask-based beamformers. MIMO-UNet is a
frequency-domain neural beamformer, which is the winner of the INTERSPEECH Far-field
Multi-Channel Speech Enhancement Challenge for Video Conferencing [40]. Note that all
the models are set with causal configuration, that is, no future frames are involved in the
calculation and inference of the current frame.

https://github.com/microsoft/DNS-Challenge
https://github.com/microsoft/DNS-Challenge
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3.2. Experiment Setup
3.2.1. Training Detail

All the utterances are sampled at 16 kHz, and a 32 ms Hann window is utilized, with
50% overlap between adjacent frames. Accordingly, 512-point FFT is utilized, leading to
257-D spectral features. Adam optimizer is applied, with the initial learning rate set to
5 × 10−4. If validation loss does not decrease for two consecutive epochs, the learning
rate will be halved. All models are trained for 60 epochs. The system is completely built
with Python 3.6 and PyTorch 1.6.0. We carry out the training procedures on a workstation
with Montage(R) Jintide(R) C2460 1 CPU and one TESLA V100 PCIe GPU. More detailed
information of the hardware is listed in Table 1.

Table 1. The parameters of the hardware.

Parameters Description

Architecture x86-64
CPU op-mode(s) 32-bit, 64-bit

CPU(s) 96
On-line CPU(s) list 0-95
Thread(s) per core 2

Vendor ID GenuineIntel
CPU family 6

Model 85
Model name Montage(R) Jintide(R) C2460 1

Stepping 4
CPU MHz 1001.030

CPU max MHz 2101.0000
CPU min MHz 1000.0000

BogoMIPS 4202.12
Memory device(s) 32 GB × 16

GPU TESLA V100 PCIe 32 GB

3.2.2. Network Detail

Assuming the input feature of the BFM is B ∈ R2D×T×F, in the encoder and decoder
parts, the kernel size and stride of the 2D convolution layers are 2× 3 and 1× 2, except
for the first layer, which are 2× 5 and 1× 2, respectively. For six GLU-RSU blocks in the
encoder, the number of encoding layers in these U-Net blocks Q is set to {4, 3, 2, 2, 1, 0}, and
the number of decoding layers of these U-Net blocks is {0, 1, 2, 2, 3, 4}. The kernel size of all
the convolutional layers in these U-Net blocks is 1× 3, and the stride is 1× 2. The number
of channels remains 64, by default. Three S-TCNs are adopted, each of which consists of
6 S-TCMs, with kernel size and dilation rate being 5 and {1, 2, 4, 8, 16, 32}, respectively.

After the CED, an embedding is generated and its size is 64× T × F. In the weight
estimator module, two uni-directional LSTM layers, with 64 hidden nodes and two full-
connected layers with 64 nodes and 2D nodes, are employed to predict time-frequency
bin-level weights. In the ResBlock, the kernel size and stride are 2× 3 and 1× 1, respectively.

4. Results and Discussion

We choose perceptual evaluation speech quality (PESQ) [41] and extended short-time
objective intelligibility (ESTOI) [42] as objective metrics, to compare the performance of
different models. The PESQ score is used to evaluate speech quality of the enhanced
utterance, which is obtained from the clean speech and the enhanced speech. Its value
ranges from −0.5 to 4.5. The higher the PESQ score is, the better the speech perceptual
quality. The ESTOI score is chosen to evaluate speech intelligibility. The higher the ESTOI
score is, the better the speech intelligibility.
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4.1. Results Comparison in the Directional Interference Case

The objective results of different SE systems are shown in Tables 2–4. For comparison,
the number of beams D is set to 10, which means that the sampling resolution is 20◦.
We evaluate these systems in terms of PESQ and ESTOI.

From these tables, several observations can be made. First, compared with SCSE-
extension-based multi-channel speech enhancement approaches, such as MC-ConvTasNet,
end-to-end neural spatial filters, such as FaSNet-TAC and MIMO-UNet, yield notable
performance improvements, consistently, thanks to linear filtering of the multi-channel
signals, which can reduce speech distortion. For example, compared with MC-ConvTasNet,
FaSNet-TAC achieves 0.21 and 2.83% improvements, in terms of PESQ and ESTOI under the
cafe noise, and MIMO-UNet gets 0.20 PESQ improvement and 4.96% ESTOI improvement.
Second, the proposed system outperforms neural beamforming-based approaches by a
large margin, in all cases. For example, compared with FaSNet-TAC, our system achieves
0.61 and 13.63% improvements, in terms of PESQ and ESTOI for cafe noise, respectively.
Moreover, our model outperforms MIMO-UNet by 0.62 and 11.50% in PESQ and ESTOI,
respectively. This demonstrates the superiority of filtering the beams over the best neural
spatial filters, based on frequency and time domains. This is because designing weights
for beams is easier to optimize than approximating the desired beam pattern. Moreover,
speech- and noise-dominant beams help the network learn their discriminative features.
Finally, noise-dominant beams enable the noise characteristic to better cancel the residual
noise in speech-dominant beams.

Figure 4 shows the spectrograms of the speech, corrupted by the cafe interference and its
processed utterances. One can find that the proposed method has better noise suppression and
less speech distortion, when compared with baselines. In particular, the proposed algorithm
recovers harmonic structures well and obtains less speech distortion in the high-frequency
(around 4 kHz–8 kHz) low-SNR bins, since the fixed beamformer, which has good spatial
resolution at high frequencies, is able to better suppress high-frequency interference.
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Figure 4. Spectrogram processed by different methods: Spectrogram of (a) a noisy reverberant
mixture and enhanced signals processed by (b) MC-ConvTasNet, (c) MIMO-UNet, (d) FaSNet-TAC,
and (e) the proposed system. (f) Spectrogram of clean speech.
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Table 2. Objective result comparisons among different causal MCSE models, in terms of PESQ and ESTOI for babble noise. BOLD indicates the best score in
each case.

Metrics
PESQ ESTOI (%)

−5 dB −2 dB 0 dB 2 dB 5 dB Avg. −5 dB −2 dB 0 dB 2 dB 5 dB Avg.

Unprocessed 1.38 1.54 1.58 1.70 1.91 1.62 25.81 35.86 40.42 47.51 56.77 41.27
MC-ConvTasNet 1.93 2.18 2.20 2.33 2.41 2.21 56.80 64.42 64.60 68.93 71.99 65.35
MIMO-UNet 1.93 2.18 2.27 2.41 2.57 2.27 54.99 63.73 66.81 71.77 75.74 66.61
FaSNet-TAC 2.03 2.31 2.34 2.47 2.66 2.36 54.64 64.46 66.20 71.03 75.73 66.41
Proposed 2.52 2.87 2.96 3.10 3.30 2.95 67.98 77.03 79.68 82.79 87.36 78.97

Table 3. Objective result comparisons among different causal MCSE models, in terms of PESQ and ESTOI for factory1 noise. BOLD indicates the best score in
each case.

Metrics
PESQ ESTOI (%)

−5 dB −2 dB 0 dB 2 dB 5 dB Avg. −5 dB −2 dB 0 dB 2 dB 5 dB Avg.

Unprocessed 1.27 1.35 1.43 1.54 1.76 1.47 24.35 32.89 39.00 44.20 54.32 38.95
MC-ConvTasNet 1.98 2.09 2.24 2.34 2.41 2.21 55.61 59.62 63.49 67.29 68.36 62.87
MIMO-UNet 2.11 2.35 2.51 2.56 2.70 2.45 57.06 65.17 69.45 71.84 75.65 67.83
FaSNet-TAC 2.11 2.23 2.40 2.48 2.63 2.37 55.10 60.87 66.30 69.29 73.32 64.98
Proposed 2.59 2.78 2.97 3.11 3.26 2.94 67.20 73.58 78.46 81.47 85.44 77.23

Table 4. Objective result comparisons among different causal MCSE models, in terms of PESQ and ESTOI for cafe noise. BOLD indicates the best score in each case.

Metrics
PESQ ESTOI (%)

−5 dB −2 dB 0 dB 2 dB 5 dB Avg. −5 dB −2 dB 0 dB 2 dB 5 dB Avg.

Unprocessed 1.38 1.54 1.68 1.78 1.94 1.66 29.91 38.43 45.49 51.73 60.65 45.24
MC-ConvTasNet 2.00 2.13 2.24 2.31 2.41 2.22 56.52 62.84 64.07 67.38 70.94 64.35
MIMO-UNet 2.09 2.34 2.47 2.53 2.69 2.42 58.21 66.97 70.40 73.38 77.59 69.31
FaSNet-TAC 2.14 2.32 2.45 2.57 2.69 2.43 56.97 64.63 66.79 71.56 75.97 67.18
Proposed-10beams 2.68 2.88 3.07 3.22 3.38 3.05 71.73 77.23 81.68 84.84 88.58 80.81
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4.2. Results Comparison in the Diffused Babble Noise Case

The evaluation results of different multi-channel speech enhancement models in the
diffused babble noise scenario are shown in Table 5.

Table 5. Objective result comparisons among different causal MCSE models, in terms of PESQ and
ESTOI for diffused babble noise. BOLD indicates the best score in each case.

Metrics
PESQ ESTOI (%)

−5 dB −2 dB 0 dB 2 dB 5 dB Avg. −5 dB −2 dB 0 dB 2 dB 5 dB Avg.

Unprocessed 1.36 1.49 1.54 1.62 1.78 1.56 26.54 35.27 39.86 45.49 53.87 40.21
MC-ConvTasNet 1.89 2.16 2.28 2.38 2.55 2.25 51.67 59.84 64.02 67.37 72.53 63.08
MIMO-UNet 2.29 2.55 2.66 2.76 2.92 2.63 60.44 68.67 72.29 75.50 79.58 71.30
FaSNet-TAC 2.14 2.35 2.44 2.52 2.65 2.42 56.45 63.35 66.61 69.24 73.73 65.88

Proposed-10beams
(w/o U-Net) 2.64 2.89 2.98 3.08 3.24 2.97 69.83 76.83 80.07 82.36 85.97 79.01

Proposed-10beams 2.73 2.97 3.07 3.17 3.32 3.05 71.93 78.43 81.69 83.76 87.10 80.58

It can be seen that the trend of the model performance is similar to that of the direc-
tional interference scenario. The neural spatial filters, such as FaSNet-TAC and MIMO-
UNet, are, consistently, superior to MC-ConvTasNet. The proposed algorithm significantly
outperformed all baseline systems in the PESQ and ESTOI metrics of each SNR. For
example, going from FaSNet-TAC to the proposed system, average 0.63 and 14.70% im-
provements are achieved, in terms of PESQ and ESTOI, respectively. Moreover, it improves
the MIMO-UNet baseline by 0.42 PESQ, and 9.28% ESTOI, on average. This demonstrates
the superiority of the proposed system, over the best neural spatial filters in the diffused
babble noise case.

4.3. Ablation Analysis

We also validate the role of FBM, BFM, and RRM. Table 6 shows the average results of
three directional interferences in each case.

Table 6. Objective results of ablation experiments.

Metrics
PESQ ESTOI (%)

−5 dB −2 dB 0 dB 2 dB 5 dB Avg. −5 dB −2 dB 0 dB 2 dB 5 dB Avg.

Unprocessed 1.34 1.48 1.56 1.67 1.87 1.58 26.69 35.73 41.64 47.81 57.25 41.82
Proposed-10beams
(w/o RSU) 2.35 2.64 2.79 2.95 3.14 2.77 63.34 71.86 76.29 80.33 85.14 75.39

Proposed-10beams
(w/o RRM) 2.48 2.70 2.85 3.01 3.20 2.85 65.73 73.64 77.94 81.46 85.79 76.91

Proposed-7beams 2.57 2.82 2.97 3.12 3.29 2.95 68.45 75.49 79.52 82.72 86.85 78.61
Proposed-10beams 2.60 2.84 3.00 3.14 3.31 2.98 68.97 75.95 79.94 83.03 87.13 79.00
Proposed-19beams 2.61 2.87 3.01 3.15 3.33 2.99 69.69 76.52 80.17 83.24 87.44 79.41

To analyze the effectiveness of FBM, we set another two candidates of D of 7 (30◦)
and 19 (10◦), where 7 (30◦) means D = 7, and each main beam width is about 30◦; 19 (10◦),
analogously. It can be seen that the performance of the beam neural filter gradually
improves with the increase in D, which reveals the importance of FBM. However, the
relative performance improvement decreases as the spatial sampling interval becomes
progressively smaller, although there is still a mismatch between beam pointing and source
direction, which indicates that the proposed model is robust to direction mismatch, whereas
the spatial filter is more sensitive to direction estimation error.

To show the effectiveness of BFM, we visualize the norm of estimated complex weights
in Figure 5. The input signals are mixed by a speech radiating from 85◦ and a Factory1
noise source from 45◦. We can find that greater weights are assigned to beams steering
toward the surroundings of the target direction, while beams steering to other directions,
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including those steering toward the interference direction, are given little weights during
speaking, while all weights are small in non-speech segments.

(a) Spectrogram

1 2 3 4 5
Time (s)

0

2

4

6

8

Fr
eq

ue
nc

y 
(k

H
z)

-60

-40

-20

0

20

(b) Beam weights

1 2 3 4 5
Time (s)

5

10

15

B
ea

m
 I

D

0.05

0.1

0.15

0.2

(dB)

Figure 5. Visualization results of the filter weights, estimated by the proposed system: (a) the
spectrogram of the signal received by reference microphone, (b) visualization results of the norm of
the complex weights, estimated by the neural network.

Besides, the proposed system with RRM achieves PESQ improvements of 0.13 and
ESTOI improvements of 2.09%. Comparing the visualization results of the model with and
without RRM from Figure 6, one can see that the residual noise components are further
suppressed at low frequencies, and some missing speech components are recovered, which
confirms the effectiveness of RRM in the proposed system.
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Figure 6. Visualization results of (a) unprocessed (SIR = 0 dB), (b) BFM, (c) proposed-19beams,
(d) RRM.
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Finally, we can find that using RSU, followed by the (De)ConvGLU, can achieve
significant performance improvements compared to using (De)ConvGLU only, and achieve
0.21 and 3.53% PESQ and ESTOI average improvements in the cafe interference scenario,
demonstrating that U-Net can extract stronger discriminating feature characterizatio,n by
modeling multi-beam information at different scales.

5. Conclusions

Speech signals are often distorted by background noise and reverberation in daily
listening environments. Such distortions severely degrade speech intelligibility and quality
for human hearing, as well as make automatic speech recognition more difficult. In this
paper, we propose a causal neural beamspace-domain filter for real-time multi-channel
speech enhancement, to recover clean speech from the noisy mixtures received by the
microphone array. It comprises three components, namely FBM, BFM, and RRM. Firstly,
FBM is adopted, to separate the sources from different directions. Then, BFM maps filter
weights, by jointly learning the spectro-temporal-spatial discriminability of speech and
interference. Finally, RRM is adopted, to refine the weighting beam output.

From the experimental results, we have the following conclusions:

• The proposed system achieves better speech quality and intelligibility over previous
SOTA approaches in the directional interference case.

• In the diffused babble noise scenario, our method, also, achieves better performance
than previous systems.

• From the spectrograms of BFM and RRM, one can see that RRM is helpful to refine
the missing components of the output of BFM.

• From the ablation study, RSU is able to learn stronger discriminating features to
improve the performance.

Video conferencing plays a very crucial part in our daily social interactions, due to the
COVID-19 virus. This proposed method can be used to suppress noise and reverberation
during a video conference, to improve speech quality and intelligibility. Moreover, it also
can be applied to human–machine interaction systems and mobile communication devices.

Future work could concentrate on designing an MCSE system for amultiple speakers
scenario, based on the proposed method. Moroever, a more effective feature extraction
module of BFM can be explored.
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