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Abstract: Video question answering (QA) aims to understand the video scene and underlying plot
by answering video questions. An algorithm that can competently cope with this task needs to be
able to: (1) collect multi-modal information scattered in the video frame sequence while extracting,
interpreting, and utilizing the potential semantic clues provided by each piece of modal information
in the video, (2) integrate the multi-modal context of the above semantic clues and understand the
cause and effect of the story as it evolves, and (3) identify and integrate those temporally adjacent or
non-adjacent effective semantic clues implied in the above context information to provide reasonable
and sufficient visual semantic information for the final question reasoning. In response to the above
requirements, a novel temporally multi-modal semantic reasoning with spatial language constraints
video QA solution is reported in this paper, which includes a significant feature extraction module
used to extract multi-modal features according to a significant sampling strategy, a spatial language
constraints module used to recognize and reason spatial dimensions in video frames under the
guidance of questions, and a temporal language interaction module used to locate the temporal
dimension semantic clues of the appearance features and motion features sequence. Specifically, for a
question, the result processed by the spatial language constraints module is to obtain visual clues
related to the question from a single image and filter out unwanted spatial information. Further, the
temporal language interaction module symmetrically integrates visual clues of the appearance
information and motion information scattered throughout the temporal dimensions, obtains the
temporally adjacent or non-adjacent effective semantic clue, and filters out irrelevant or detrimental
context information. The proposed video QA solution is validated on several video QA benchmarks.
Comprehensive ablation experiments have confirmed that modeling the significant video information
can improve QA ability. The spatial language constraints module and temporal language interaction
module can better collect and summarize visual semantic clues.

Keywords: video question answering; visual language interaction; multi-modal semantic reasoning

1. Introduction

Video question answering (QA) involves theoretical approaches to computer vision
and natural language processing, in which it is not only necessary to have the same ability
as image retrieval or image caption [1,2] to understand the visual semantic information
provided by a single image, but it is also necessary to have the ability of video caption or
video moment retrieval [3,4] to understand the potential semantics in the rich visual, text,
and audio clues scattered throughout the video. Most importantly, video QA also needs
to calculate the above potential semantics to achieve a near-human QA capability [5] and
find the most appropriate answers to the natural language questions in the video. Such
intriguing video QA tasks have become an important research issue in artificial intelligence
(AI) [6–8].
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Compared with image QA, video QA is undoubtedly more challenging [9]. The input
information is changed from a single image to a sequence with continuous images, and an
entire storyline scatters across these frames, which requires an algorithm to collect multi-
modal information scattered in the video frame sequence while extracting, interpreting,
and utilizing the potential semantic clues provided by each modal information in the
video, such as the text content provided by natural language questions, the appearance
information, the spatial location information provided by the spatial dimension information
of video frames, and the dynamic evolution of this visual information with the story’s
development. In order to achieve high-quality video QA capabilities, QA models need to
perform further computations to integrate the multi-modal context of the above semantic
clues and understand the cause and effect of the story as it evolves. For a given question,
the QA model also needs to identify and integrate those temporally adjacent or non-
adjacent effective semantic clues implied in the above context information and filter out
irrelevant or harmful context information to provide reasonable and sufficient visual
semantic information for the final question reasoning. The above requirements make
deriving the most accurate and appropriate answer to a given question require more than
image QA’s next-generation AI capabilities.

In order to solve the challenging video QA tasks discussed above, this paper conducts
research on feature extraction, spatial semantic cue reasoning, and temporal language
interaction. The primary purpose is to locate the multi-modal semantic clues related to
the question from the whole video efficiently to QA. Firstly, the previous video question
answering algorithm mainly obtains multi-modal information of the video through uniform
sampling [6,10]. However, there is no solid temporal regularity in the story’s progression,
and the multi-modal information may undergo rapid or slow semantic changes over
a period of time. As a result, the visual semantic clues are likely to be non-uniformly
distributed in the temporal space, making the uniform sampling liable to miss some
critical visual semantic clues. Furthermore, increasing the sampling rate may lead to the
redundancy of semantic clues due to repeated sampling. Secondly, the video consists of
continuous frames and an entire storyline scattered in these frame sequences. Therefore, the
video QA model is not only required to locate the semantic clues of the spatial dimension of
a single image, but it is also necessary to locate the semantic clues of the temporal dimension
of the whole video. Some existing methods focus on modeling the temporal context
information in the video but insufficiently exploit the feature of the spatial dimension [7].
Other methods try to apply spatio-temporal attention to videos [10]. However, they show
even worse performance than temporal-only attention, possibly due to the lack of spatial
guidance for temporal dimensions.

As for these problems, a novel temporally multi-modal semantic reasoning with
spatial language constraints video QA solution is reported in this paper, which includes
a significant feature extraction module used to extract multi-modal features according
to the characteristic that the spatial difference of pixels between video frames can reflect
the development and change of temporal information, a spatial language constraints
module (SLC) used to recognize and reason spatial dimensions in video frames under
the guidance of questions, and a temporal language interaction module (TLI) used to
locate the temporal dimension semantic clues of the appearance features and motion
features sequence.

Figure 1 shows the overall architecture of our video QA solution. Features extracted
from the significant feature extraction module are used to establish condensed semantic
clues of video appearance and motion features for the answer decoder through the multi-
modal data spatio-temporal reasoning (MSTR) network composed of the spatial language
constraint module and the temporal language interaction module.

In detail, for a given question, the results processed by the spatial language constraints
module of appearance features are to obtain visual clues related to the question and filter
out unwanted spatial information. Further, the temporal language interaction module
symmetrically integrates visual clues of the appearance information and motion infor-
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mation scattered throughout the temporal dimensions, obtains the temporally adjacent
or non-adjacent effective semantic clue, and filters out irrelevant or detrimental context
information to obtain video appearance condensed features and video motion condensed
features. Finally, we use different answer decoders to answer video QA questions based on
different types (open-ended, multi-choice, and repeat count tasks).
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Figure 1. Overview architecture of our video QA solution. It consists of three modules: (a) significant
feature extraction module, (b) multi-modal data spatio-temporal reasoning (MSTR) network with
spatial language constraint module (SLC) and temporal language interaction module (TLI), and
(c) answer decoder module. Specifically, the significant feature extraction module can take raw videos
as input and accurately obtain the video’s significant information through a series of deep networks.
The MSTR networks take multi-modal visual features Vapp and Vmot as inputs. It acquires visual
semantic clues provided by different video frames and video clips in a bottom-up manner, providing
more effective spatio-temporal visual semantic clues for the further understanding and reasoning of
questions. Finally, our video QA solution uses different answer decoders to answer questions based
on the different types of video QA.

The proposed video QA solution was validated on three vital video QA benchmarks:
TGIF-QA [11], MSVD-QA [12], and MSRVTT-QA [13]. The experimental results show that
our method outperforms state-of-the-art video QA algorithms across a range of question
types. Moreover, comprehensive ablation experiments and visual results have also con-
firmed the necessity of video QA modeling based on significant information from video
and the rationality of multi-modal data spatio-temporal reasoning networks.

The main contributions of this paper are as follows:

(1) A practical and straightforward significant feature extraction module is proposed,
which can capture the significant visual semantic clues that change with the story
progression and reduce the redundant expression of the video.

(2) A novel multi-modal data spatio-temporal reasoning network is proposed, which
can establish the cross-modal interaction between vision and question along with
the story of the video and provide the most accurate and reasonable visual semantic
information for video QA tasks. Moreover, spatial reasoning can guide the temporal
language interaction to focus on the appearance features sequence associated with the
question, rather than the whole frame sequence.

(3) A novel video QA solution is reported, building upon the aforementioned two new
algorithmic modules, which can collect the visual semantic clues provided by signifi-
cant video frames and significant video clips in a bottom-up manner. This solution
outperforms all state-of-the-art video QA algorithms across a range of question types,
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as consistently demonstrated through our comprehensive comparison experiments
executed on publicly available benchmark datasets.

2. Related Works

To achieve satisfactory video QA capabilities, QA models need to capture the rich
visual semantic clues scattered throughout the video. Furthermore, for a given question, the
QA model also needs to identify and integrate those temporally adjacent or non-adjacent
effective semantic clues implied in the above context information and filter out irrelevant
or even harmful context information. Visual semantic extraction and visual language
interaction have become two key challenges of video QA at the present stage. We present a
brief review of the related work on the two challenges.

2.1. Visual Semantic Extraction

Visual semantic extraction aims to obtain the rich visual semantics contained in the
video and provide reasonable visual semantic clues for the following video QA reasoning.
Video QA researchers extract visual semantic features from original videos through a series
of deep networks [14,15], aiming at digesting various visual semantic information provided
by videos.

Zhao et al. [16] used VGGnet [17] to extract the appearance features of video frames
as the visual semantic expression. Yu et al. [18] first equidistantly sampled one per ten
frames from a video and extracted the appearance features of the above frames from the
res5c layer of ResNet [14]. Then, they used the pooling and convolution layers to reduce
visual semantic clues requiring reasoning. In order to obtain visual semantic clues with
more visual spatial semantic dimensions, Jiang et al. [10] uniformly sampled 10 frames
of images from the video as video expressions firstly. Then, they used the res4c layer of
ResNet to extract the corresponding appearance features.

In order to enable the video question answering model to acquire spatio-temporal
visual semantic clues, Jang et al. [11] proposed a dual-stream architecture using appearance
and motion features, which uniformly sampled video frames and video clips to reduce
video redundancy, and used ResNet-152 [14] and C3D [15] networks to obtain visual
semantic clues. Xu et al. [12] uniformly sampled 20 video frames and clips independently
first. Then, they used VGG and C3D networks to obtain the videos’ appearance and
motion features. Le et al. [7] evenly divided the video into eight video clips, and then
selected 16 consecutive frames from each video clip as the image sequence of each video.
Finally, ResNet and ResNexT [19,20] were used to extract the visual semantics of the video.

The above works promote the development of visual semantic expression and provide
effective visual semantic clues for video QA. However, the visual semantic expression
provided by the video is non-uniformly distributed in the temporal space. As a result,
the uniform sampling can miss some critical visual semantic clues, while increasing the
sampling rate also leads to the redundancy of semantic clues due to repeated sampling.

In order to capture the complete visual semantic clues scattered throughout the video,
Zhu et al. [21] proposed a multirate visual recurrent model based on a multirate gated
recurrent network. These recurrent models [22] can capture significant visual information
in the video but have difficulties in training. Feichtenhofer et al. [23] obtained visual
semantic expressions of different distributions provided by videos through double-channel
timing sampling. In the video QA, Wang et al. [24] presented a question-related video
content localization module to learn the video’s significant visual semantic distribution.
Kim et al. [25] proposed a temporal localization module to learn the distribution of sig-
nificant features of videos. However, this kind of training relies on the labeling of the
dataset [26] and is challenging to promote.

In order to cope with this challenge, a significant feature extraction module is proposed
in this paper. This module extracts multi-modal features according to the characteristic
that the spatial difference of pixels between video frames can reflect the development and
change of temporal information, and the video content can be accurately sampled. As
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a result, the video QA model can obtain the complete visual semantic clues scattered in
the video.

2.2. Visual Language Interaction

Visual language interaction is the task of projecting multi-modal information into a
common space for interactive retrieval [27]. Several attention models have shown good
visual language interaction ability in temporal visual language interaction [12,28], spatial
visual language interaction [29,30], and spatio-temporal visual language interaction [11,31].

The spatial attention model is designed to focus on significant spatial dimensions
rather than the whole image to obtain more valid semantic clues [32]. A large number of
variations of spatial attention models have been proposed, including fine-grained atten-
tion and co-attention [33,34]. To obtain spatial semantic cues, Wan et al. [5] proposed a
hierarchical fusion network capable of the nonlinear transformation and iterative fusion of
input information, which effectively perceives the spatial semantics related to the question
and provides effective visual clues for the final question prediction. These attention-based
models significantly improve the performance of QA reasoning.

Compared with the spatial attention model, the temporal attention model transforms
the processing objects into the visual semantic appearance of the video frame sequence.
Moreover, it pays more attention to the temporal modeling of context between video frames,
aiming to find the sequence of visual features relevant to the question [26,35]. Li et al. [36,37]
proposed a co-attention attention model between learning video appearance sequences
and questions and enhanced co-attention by using the self-attention [38] mechanism. To
obtain fine-grained visual semantic language interaction information, some researchers
have also proposed object temporal attention based on object–language interaction [8].

In order to be able to unify visual semantic clues between the appearance, motion, and
the question, Jang et al. [11] first combined the spatial attention model with the temporal
attention model and proposed a spatio-temporal attention model for the video QA model.
Due to its superior performance, attention models such as multi-modal fusion memory [39],
co-memory attention [31], and multi-modal attention [40] were soon derived Moreover,
hierarchical attention [41,42] and multi-step progressive attention [43,44] are proposed
to obtain a broader visual language interaction capability. Researchers also rely on the
structure of the video to achieve multi-level visual language interactions from video frames
to video clips [7,45]. The question-aware and reasoning features penetrate the visual
language interaction of each video level, thus achieving good visual semantic interaction
performance, which suggests that building the semantic interaction relying on the structure
of the video is essential for improving the performance of video QA. Our work is related to
the above visual semantic interaction but provides a different perspective.

In our visual language interaction framework, the low-level visual language interac-
tion no longer models the temporal expression between adjacent frames and integrates
essential representations in the spatial dimensions of the video. It can realize the constraint
of the spatial semantic dimension under the guidance of the question and make the video
QA algorithm focus on the appearance features related to the question. At the higher level
of visual language interaction modeling, the video QA model can obtain the guidance of
the question and enable the temporal language interaction modeling to focus on the spatial
dimension related to the question with the constraint of the semantic space dimension.
As a result, the model can better capture the visual semantics provided by the video and
obtain complete spatio-temporal visual language interaction information.

3. Materials and Methods

This section introduces the problem formulation of video QA in Section 3.1, followed
by the significant feature extraction module in Section 3.2, the multi-modal data spatio-
temporal reasoning network in Section 3.3, and the answer decoder in Section 3.4.
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3.1. Problem Formulation

The goal of video QA is to deduce the answer a∗ to question q from a video V . This
process can be defined as follows:

a∗ = argmax
a∈A

F (a|q, V ), (1)

where V represents multi-modal features in the video, such as the appearance feature [14]
and motion feature [20] of the video; q is a sequence of text composed of natural language
and represents a query to the content contained in the video; a is part of the candidate
answer space A, and F is the mapping function that maps a pair of videos and questions
to an answer. For the open-ended question [12], the answer space contains all possible
alternative answers, and for the multiple-choice question [11], this space contains a set of
candidate answers.

3.2. Significant Feature Extraction Module

Multi-modal information (motion and appearance as the description of the video) is
not evenly distributed in the video frame sequence. Different from multi-modal video
information by uniform sampling, in this paper, we propose a significant feature extraction
module to accurately sample the significant frame/clips of the video by the characteristic
that the spatial difference of pixels between video frames can reflect the development and
change of temporal information. Moreover, a series of deep networks are used to capture
significant features in the above frames and clips.

Formally, we consider a video V of length L, which contains a set of frames. At first,
we use the frame difference method to obtain the sequence {Di}L−1

i=1 of the pixel spatial
difference between adjacent frames. Moreover, the following formula is used to weaken
the difference between frames and obtain the sequence

{
D̂i
}L−1

i=1 of spatial differences of
pixels with context information:

D̂i =
i+s

∑
j=i−s

αj × Dj, (2)

where αj = sin j−(i−s)
2s π is the weight parameter, and s is the sliding window length. If

the sliding window is outside of the video sequence, we fill it with the D1 or DL−1. Then,
according to the above distribution, more sampling points are arranged in the region
with large spatial pixel variation and N sampling points are used to obtain the significant
frames F = { fi}N

i=1.
Finally, we use the res5c layer (i.e., R7×7×2048) of ResNet [14], and apply an average

pooling with a linear projection matrices Wapp ∈ R2048×d to extract the appearance feature

Vapp =
{

vapp
i

∣∣∣vapp
i ∈ Rw∗h∗d

}N

i=1
provided by the frame corresponding to each sampling

point, where w, h, and d are the height, width, and feature dimension of Vapp feature map.
Moreover, for each sampling point fi, we take adjacent frames ti − T to ti + T to

capture the context information near the sampling point, where ti is the position of the
sampling point in the video, and we can obtain the significant clips C = {ci}N

i=1. Finally,
the ResNeXt-101 [19,20] with linear projection matrices Wmot ∈ R2048×d is used to extract

the motion feature Vmot =
{

vmot
i

∣∣∣vmot
i ∈ Rd

}N

i=1
.

For linguistic representation, we first embed all words in the question and all words
in candidate answers in the case of multi-choice questions into vectors of 300 dimensions
with pre-trained GloVe Word Embeddings [46]. Then, we use biLSTM to obtain the context
information. Finally, we concatenate the output hidden states of the forward and backward
LSTM passes as a linguistic representation. Through the above process, we can obtain the
semantic information q ∈ Rd of the question and the semantic information {ai ∈ Rd}Nca

i=1
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of the candidate answers, where Nca represents the number of candidate answers for
multi-choice tasks.

3.3. Multi-Modal Data Spatio-Temporal Reasoning Network

A video QA solution needs to understand the above multi-modal information. It also
needs the ability of visual language interaction to provide effective visual semantic clues
for the final question reasoning. In order to satisfy the above requirements, we propose
a multi-modal data spatio-temporal reasoning network composed of a spatial language
constraint (SLC) module and a temporal language interaction (TLI) module. With the above
module, the visual language interaction between vision and question can be established,
along with the story of the video, and provide the most accurate and reasonable visual
semantic information for video QA tasks. Specifically, we use multi-modal visual features
Vapp and Vmot as the visual information input of the MSTR network. Under the guidance
of question q, we use TLI and SLC modules to deduce and integrate effective semantic cues
existing in video appearance and motion features.

The spatial language constraint module (SLC) aims to obtain the spatial visual clues
related to the question. Figure 2 shows the module structure in detail. The question q is
used to perceive the spatial dimensions related to the question in the appearance feature
vapp

i of a significant frame and obtain the question label Maski, which marks the correlation
between each spatial dimension and the question. This process can be defined as follows:

Maski = g(vapp
i , q)

= softmax(W2(ELU(W1[v
app
i ; q]))), (3)

v̂app
i = Maski � vapp

i , (4)

where W1 ∈ R2d×d and W2 ∈ Rd×1 are different linear projection matrices (in this paper,
W always is a linear projection matrix), ELU is the Exponential Linear Unit [47], [.; .]
represents the tensor concatenation, and � represents the element-wise multiplication.
Through the above formula, we can preliminarily obtain spatial features v̂app

i ∈ Rw×h×d

related to the question.

Spatial dimension constraint under the question-guided
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Figure 2. An illustration of spatial language constraint module. This module allows a frame to
interact with question q in spatial dimensions, which obtains semantic clues provided by the spa-
tial dimensions related to the question and summarizes them toward a higher-level condensed
representation with the guidance of the question.

Then, the following formula SP(.) is used further to obtain the semantic interaction
feature hSP

i between the spatial appearance feature v̂app
i and the question q, which is the

spatial semantic clue hidden state of the significant frame.

hSP
i ∈ Rw×h×d = SP(v̂app

i , q)

= ELU(W3[v̂
app
i ; q]), (5)

where W3 ∈ R2d×d. At the same time, we notice that the question can perceive the video
content related to the question, and video content can also complete the supplementary



Symmetry 2022, 14, 1133 8 of 20

understanding of the question. Therefore, we sum the spatial semantic information hSP
i to

obtain the video question qSP
i ∈ Rd after the spatial semantic supplement.

Then, in order to further use question qSP
i with the spatial semantic supplement to

analyze and summarize the hidden states of spatial semantic clues, we use a multi-head
attention model [38] to explore the semantic relationship between visual semantics hSP

i and
question qSP

i . This model is shown in the following formula:

ĥSP
i = MultiHead(qSP

i , hSP
i , hSP

i )

= WO(head1, head2, ...., headH), (6)

headj = softmax(
WQ

j qSP
i ×WK

j hSP
i√

d/H
)WV

j hSP
i , (7)

where WQ
j ∈ Rd× d

H , WK
j ∈ Rd× d

H , WV
j ∈ Rd× d

H and WO ∈ Rd×d are different linear projec-
tion matrices, j ∈ 1, 2, ..., H. Through this formula, we can realize the question’s analysis of
spatial information and obtain the condensed spatial semantic expression ĥSP

i ∈ Rd that
the question qSP

i pays attention to hSP
i from different linear spaces.

Finally, we fuse the spatial semantic supplement question qSP
i with the condensed

spatial semantic expression ĥSP
i as the spatial semantic clue vsapp

i of the frame fi. The
formula is as follows:

vsapp
i ∈ Rd = ELU(W4[ĥSP

i ; qSP
i ]), (8)

where W4 ∈ R2d×d. With the above process, we can complete the spatial semantic interac-
tion between appearance features Vapp of significant frames and question q, and obtain a

higher level of appearance condensed representation Vsapp =
{

vsapp
i

∣∣∣vsapp
i ∈ Rd

}N

i=1
.

In the temporal language interaction module (TLI), we symmetrically conduct tem-
poral language interaction modeling for the higher level of appearance features Vsapp ={

vsapp
i

∣∣∣vsapp
i ∈ Rd

}N

i=1
and motion features Vmot =

{
vmot

i

∣∣∣vmot
i ∈ Rd

}N

i=1
, respectively, and

obtain condensed visual clues related to the question. Figure 3 shows this module’s details.
It takes the question q and the video feature VS as input, and outputs the higher-level visual
semantic feature hS . When VS is defined as Vsapp and Vmot, respectively, the condensed
visual clues are happ and hmot.
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Temporal relationships modeling Temporal visual-language interaction
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T

Sq

ˆT
Sh

T
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Figure 3. An illustration of the temporal language interaction module. This module allows a video
feature sequence to interact with question q in temporal dimensions, which can recognize, infer,
and integrate multi-modal context information under the question’s guidance and provide the most
accurate and reasonable visual semantic information for QA reasoning.
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Firstly, we take VS as the input of a multi-head attention model to explore the temporal
correlation of VS itself. Ignoring the multi-head process of Equation (7), the final output is
given by:

V̂S ∈ RN×d = MultiHead(VS, VS, VS). (9)

Then, in order to analyze the hidden temporal semantic clues hT
S existing in the context,

the following formula is used to obtain the semantic interaction feature of V̂S =
{

v̂S
i
}N

i=1
and question feature q: {

hT
S,i = ELU(Wi[v̂S

i ; q])
hT

S = [hT
S,1; ...; hT

S,N ]
, (10)

where {Wi ∈ R2d×d}N
i=1 are different linear projection matrices. Identical to the SLC

module, we sum the temporal semantic information hT
S to obtain the video question

qT
S ∈ Rd supplemented by the temporal semantic information.

Moreover, the question qT
S and hidden temporal semantic information hT

S are taken
as the input of multi-head attention, which serves to realize the question analysis of the
temporal information and obtain the condensed temporal semantic expression ĥT

S related
to the question qT

S . Ignoring the multi-head process of Equation (7), the process is given by:

ĥT
S ∈ Rd = MultiHead(qT

S , hT
S , hT

S ). (11)

Finally, we fuse the temporal semantic supplement question qT
S with the condensed

temporal semantic expression ĥT
S as the semantic clue hS of the video. The formula is

as follows:
hS ∈ Rd = ELU(W5[ĥT

S ; qT
S ]), (12)

where W5 ∈ R2d×d. With the above process, we can symmetrically realize the temporal
visual language reasoning for the appearance feature and motion features and obtain
higher-level visual semantic clues happ ∈ Rd and hmot ∈ Rd.

3.4. Answer Decoder

To deal with video questions that need to understand both appearance and motion
information, the video QA model needs to have the ability to integrate this multi-modal
information. In this paper, different answer decoders with loss functions are adopted for
the final QA reasoning to fulfil the answer prediction of different question types.

Open-ended questions. We treat the open-ended questions as multi-label classifica-
tion problems. Firstly, we take the features happ, hmot and the question q as input, and use
the following formula to decode the open-ended questions:

δ′open ∈ RNo = Wopen(ELU(Wo[happ; hmot; Wqq])), (13)

where Wo ∈ R3d×d, Wopen ∈ Rd×No , Wq ∈ Rd×d are linear projection matrices, and No
represents the length of the answer space |A|. Then, we obtain the final score δopen ∈ RNo

of each candidate answer:

δopen ∈ RNo = so f t max(δ′open). (14)

Finally, the highest score is selected as the prediction answer:

a∗ = arg max
ao

(δopen). (15)

The cross-entropy loss function is used for the open-ended questions.
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Repetition count task. We obtain the number δcount ∈ R1 of repetitions of the action
by the following formula:

δ′count ∈ R1 = Wcount(ELU(Wc[happ; hmot; Wqq])), (16)

where Wc ∈ R3d×d, Wcount ∈ Rd×1 are linear projection matrices. Moreover, we use a
rounding function for integer count results. Finally, mean squared error (MSE) is used as
the loss function.

Multi-choice question. The multi-choice question is treated as a multi-label classi-
fication problem. Firstly, we take the features happ, hmot, q and {ai}Nca

i=1 as input, and the
following formula is used to decode the multi-choice question:

δi = Wmulti(ELU(Wm[happ, hmot, Wqq, Waai]), (17)

where Wm ∈ R4d×d, Wmulti ∈ Rd×1, and Wa ∈ Rd×d are linear projection matrices. Finally,
the candidate with the largest δ value is selected as the answer such that:

a∗ = arg max
i

(δi). (18)

In this type of video QA, the cross-entropy loss function is used for training.
In order to ensure that the multi-modal information of our video QA solution is not

lost, we use multi-task loss to train our network:

loss = 0.8× lossall + 0.1× lossapp + 0.1× lossmot, (19)

where lossapp and lossmot represent the loss value of predicted results in the appearance
and motion branches of the MSTR network, respectively. In addition, lossall represents the
loss value of the last predicted results of our video QA solution.

4. Experimental Results Analysis

In this section, we evaluate the performance of our video QA solution proposed in this
paper through several experiments. In order to verify the effectiveness of our video QA
solution and its components, we compared our solution with the state-of-the-art methods,
conducted a large number of ablation experiments, and further analyzed the impact of our
solution on performance through a large number of qualitative analyses.

4.1. Dataset Details

In order to evaluate our methods objectively and fairly, we selected three widely used and
challenging video QA datasets for subsequent experiments: TGIF-QA [11], MSVD-QA [12],
and MSRVTT-QA [13]. The detailed statistics on the number of QA pairs and possible
answers for each question in the three datasets are shown in Table 1.

Table 1. Statistics of TGIF-QA [11], MSVD-QA [12], and MSRVTT-QA [13]. “Possible answers”
denotes the number of possible answers to each question.

QA Pairs.
TGIF-QA

MSVD MSRVTT
Action Trans Frame Count

Train 18,427 47,433 35,452 24,158 30,933 158,581
Val 2048 5271 3940 2685 6415 12,278
Test 2274 6232 13,691 3554 13,157 72,821

Total 22,749 58,936 53,083 30,397 50,505 243,680

Possible
answers 5 5 1541 11 1852 4000
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TGIF-QA: TGIF-QA uses TGIF [48] as the data source, contains 165K QA pairs, and is
divided into four subtasks according to the unique attributes of the question. (1) Repeating
action is a multi-choice question with five candidate answers, which requires the algorithm
to determine the actions by spatio-temporal reasoning according to the given number of
actions. For example, “What does the woman do 10 or more than 10 times?”. (2) State
transition is also a multi-choice question with five candidate answers. It requires the
algorithm to understand the spatio-temporal information and determine the change of state
transition. For example, “What does the man do after putting hand on hips?”. (3) Repeating
counting is an open-ended question requiring an algorithm to determine the number of
action occurrences with spatio-temporal information. Specifically, each count question
has 11 possible answers, ranging from zero to ten. For example, “How many times does
the man raise his left eyebrow?”. (4) Frame QA is similar to image QA and is an open-
ended question, which requires an algorithm to find the spatial visual clues relevant to the
question among all videos and use spatial reasoning ability to answer the question. As an
open-ended question, each question has 1541 possible answers. For example, “What is the
man talking on a headset using?”.

MSVD-QA: In this dataset, 50K video QA pairs are marked in 1970 video clips.
Each video clip is approximately 10 s. As an open-ended question, each question has 1852
possible answers.

MSRVTT-QA: This dataset marks 243K question pairs in 10K video clips. Compared
with the first two video question answering datasets, this dataset has a 10–30 s video
sequence, making the scene in the video more complex and information more redundant,
posing a higher challenge to the video QA algorithms.

4.2. Implementation Details

(1) Experimental Settings: For the significant feature extraction, the length of the sliding
window is set to s = 16 and we sample N = 8 significant frames from the video
to represent the appearance information of the video and obtain the T = 8 adjacent
frames to capture the motion information near the significant frames. The pre-trained
ResNet [14] and ResNext-101 [19,20] are used to obtain the appearance feature with
w = 4, h = 4 and motion feature with w = 1, h = 1, respectively. For parameter settings,
the number of heads in the multi-head attention network is set to 8, and we set the
feature dimension d to 512. For a fair comparison, the original Adam optimizer [49]
is employed to optimize the model, which is widely used in video QA. In the train
processing, the batch size is set to 32, and the learning rate is 1e-4 with a staircase
learning rate schedule, where we multiply the learning rate by 0.5 every 5 epochs. In
addition, we employ the dropout rate of 0.1 to prevent over-fitting, and all experiments
are terminated after 25 epochs.

(2) Evaluation Metrics: For the count task in the TGIF-QA dataset, mean squared error
(MSE) loss is used to evaluate the difference between the ground truth and the
predicted answer. Compared with the accuracy, MSE can objectively and accurately
reflect the difference between the predicted and current values. Therefore, the smaller
the difference (MSE value), the better the performance. For other tasks of video QA
datasets, accuracy is employed to evaluate the performance of the models: the better
the performance, the higher the accuracy.

4.3. Ablation Studies

In order to verify our contribution, extensive ablation experiments are performed on
our proposed solution to verify the effectiveness of spatial dimensions, the feasibility of
accurate sampling, the feasibility of significant feature extraction, and the effectiveness of
our MSTR networks.

The effectiveness of spatial dimensions. In this paper, our video QA solution divides
visual language interaction into appearance features with the spatial dimension. Intuitively,
our video QA solution can perceive the location information of the object in the video and
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obtain fine-grained visual semantic clues related to the question. In order to verify the
effect of spatial attributes on video QA performance, we compare the influences of different
spatial dimensions (w, h) = {(1, 1), (2, 2), (4, 4), (7, 7)} on performance in the Frame QA
task of the TGIF-QA datasets and MSVD-QA datasets, and we leave the rest of the model
unchanged. As seen in Table 2, with the increase in the number of spatial dimensions, the
performance of video QA is improved, which verifies the contribution of spatial attributes
to video QA. In addition, the improvement in Frame QA is more significant than MSVD-
QA, which verifies that spatial attributes are more helpful for us in answering questions
about spatial reasoning.

Table 2. Verifying the effectiveness of spatial dimensions. We compare the influences of different
spatial dimensions (w, h) = {(1, 1), (2, 2), (4, 4), (7, 7)} on performance.

(w×h) 1 × 1 2 × 2 4 × 4 7 × 7

Frame QA 58.5 58.9 60.1 60.4
MSVD-QA 39.0 39.1 39.9 40.2

The feasibility of accurate sampling. Our video QA solution believes that accurate
sampling can effectively reduce redundant visual information, which helps us to focus
on modeling the significant content of the video better. In order to further verify the
impact of sampling frequency on performance, we used the different sampling frequencies
N = {1, 2, 4, 8, 16} to obtain different visual expressions. As seen from Table 3, with the
increase in the number of samples, the performance of video QA has not quickly improved.
In particular, the sample numbers N = 8 and N = 16 have very similar performance for
the video QA test. However, the model parameters increased by 4M due to the excess
sampling, while the data size increased by two times. The above results verify the feasibility
of significant feature extraction and the redundancy of the video content itself.

Table 3. Verifying the feasibility of significant feature extraction. We compare the influences of
different sampling frequencies N = {1, 2, 4, 8, 16} on performance. The data size is for the MSRVTT-
QA datasets.

Sample Num. Frame QA MSVD-QA MSRVTT-QA Parameter Data Size

1 57.1 36.0 33.3 24 M 1.4 GB
2 58.7 38.1 35.2 25 M 2.8 GB
4 59.9 39.3 36.2 26 M 5.6 GB
8 60.1 39.9 36.7 28 M 11.1 GB
16 60.1 40.1 36.8 32 M 22.2 GB

The effectiveness of MSTR networks. This paper designs a multi-modal data spatio-
temporal reasoning network composed of the spatial language constraint (SLC) module
and temporal language interaction (TLI) module. To better understand the contribution
of this network, we performed ablation experiments on network inputs and the module
composition of the MSTR network, shown in Table 4. We evaluate the following settings:
N w/o appearance—removing the branch of the appearance feature, we only use the
branch of the motion feature to solve the video QA problem. N w/o motion—the branch of
the motion feature is removed and we only use the branch of the appearance feature for
the video QA problem. N w/o SLC—we remove the spatial language constraint module
and use video features with no spatial dimension information input to the MSTR network.
N w/o S-V2Q—we remove the supplementary understanding of the question by spatial
semantics. N w/o TLI—we remove the temporal language interaction module and use
sum operations to summarize the temporal information. N w/o T-V2Q—we remove the
supplementary understanding of the question by temporal semantics. As seen in Table 4,
all of the modules presented in this paper are important, and removing any of them will
degrade the corresponding performance. It is worth noting that when we only use the SLC
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module, our algorithm in the Frame QA task also achieves excellent performance, which
also verifies the superiority of the spatial visual language interaction module.

The necessity of significant feature extraction. This paper accurately sampled the
significant video information by the characteristic that the spatial difference of pixels
between video frames can reflect the development and change of temporal information.
Moreover, it built the video significant visual features, which effectively reduced the cost
of data storage and network model. In order to prove the necessity of this visual feature
extraction method, we compare the performance of HCRN [7] and our video QA solution
in original data (extracted by the HCRN), our features without a spatial dimension, and
our features in Table 5.

Table 4. Verifying the effectiveness of our MSTR networks. We performed ablation experiments on
network inputs and module composition of MSTR networks. The lower, the better for the count.

Model
TGIF-QA

MSVD-QA
Frame Count

Input conditioning
w/o appearance 51.5 3.94 35.1

w/o motion 59.2 4.21 37.8

Components of MSTR
w/o SLC 58.0 3.89 38.8

w/o S-V2Q 58.6 3.86 39.2
w/o TLI 59.0 3.97 38.4

w/o T-V2Q 59.1 3.95 38.9

Table 5. The necessity of significant feature extraction, where the data size is the sum of all datasets.
w/o sp denotes the feature without spatial dimension. The original data are extracted by HCRN. Our
feature denotes the significant feature proposed in this paper. The lower, the better for the count.

Model
TGIF-QA

MSVD-QA Parameter Data Size
Frame Count

HCRN (original) 55.9 3.82 36.1 44 M 91.4 GB
HCRN (our feature w/o sp) 57.0 3.83 38.1 28 M 10.76 GB

HCRN (our feature) 57.0 3.84 37.8 44 M 91.4 GB

Ours (original) 58.2 3.78 38.4 21 M 91.4 GB
Ours (our feature w/o sp) 58.5 3.86 39.0 21 M 10.76 GB

Ours (our feature) 60.1 3.80 39.9 23M 91.4 GB

As shown in Table 5, the HCRN can achieve better performance than the original
algorithm when using the significant features without the spatial dimension proposed in
this paper. Moreover, the network parameters can be reduced by nearly 36% and the visual
features that we extracted are only 11.7% of the original features [7]. The above results
strongly prove the redundancy in feature extraction of the current video QA solution and
verify the necessity of extracting the significant content of the video. Furthermore, when
our features with spatial dimensions were used, HCRN’s performance did not improve
further. It even decreased in MSVD-QA, indicating that the video QA model needs the
ability to process spatial dimension information to obtain better QA capability.

We also conducted the same experiment in our video QA solution. The results show
that our solution achieves superior (or equal) performance to HCRN when using features
extracted by HCRN, which verifies the superiority of the multi-modal data spatio-temporal
reasoning network. It is worth noting that we can see from the counting tasks that the
significant features are not superior to those extracted by HCRN. The above result is
that the actions in the video always have a particular time rule, which also verifies that
the significant feature proposed in this paper can handle these high-frequency repetition
count tasks.
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4.4. Comparison to State-of-the-Art

We compare our video QA solution against the following state-of-the-art video
QA methods.

• Co-mem [31]: A motion-appearance co-memory network that uses appearance and
motion semantic clues to compute video QA’s attention distribution.

• HME [39]: A model that generates a global context-aware text representation and
visual representation by first interacting current inputs with memory content. Then, it
integrates visual and textual features for QA reasoning.

• L-GCN [50]: A model that builds the relationships between detected objects for a
video QA task by a location-aware graph, which incorporates an object’s location
features into the graph construction.

• HGA [51]: A deep heterogeneous graph alignment network is designed for QA rea-
soning with four steps: representation, fusion, alignment, and reasoning.

• QueST [10]: An attention network for spatio-temporal context based on question
guidance is proposed, which divides question information into spatial and temporal
parts and interprets visual features better under the guidance of the corresponding
dimensional question information.

• HCRN [7]: A conditional relationships network, and as the network block to build the
video QA solution.

• HOSTR [8]: An object-oriented video QA method, which uses location information to
model video entity relations, and obtains fine-grained spatio-temporal representation
and QA reasoning.

• DualVGR [6]: A dual visual graph reasoning unit for video QA simulates rich spatio-
temporal interactions between video clips related to the question through itera-
tive stacking.

• ACRTransformer [52]: An action-centric relation transformer network, which empha-
sizes the frames with high actionness probabilities and exploits the interplays between
temporal frames.

• HRNAT [53]: A hierarchical representation network with auxiliary tasks, which is
used to learn the multi-level representations and obtain syntax-aware video captions.

Table 6 shows the experimental results of the TGIF-QA, MSVD-QA, and MSRVTT-
QA datasets. Our model achieves state-of-the-art performance and outperforms existing
methods in all tasks except the count task. In particular, we obtain the best performance in
the MSRVTT-QA dataset, which shows that our method can handle large datasets well.

Table 6. Comparison of our solution with state-of-the-art methods on several video QA datasets.
Mean square error is used as the evaluation metric for the count test, and accuracy for others.

Model
TGIF-QA

MSVD ↑ MSRVTT ↑
Action ↑ Trans ↑ Frame ↑ Count ↓

Co-mem [31] 68.2 74.3 51.5 4.10 31.7 32.0
HME [39] 73.9 77.8 53.8 4.02 33.7 33.0

L-GCN [50] 74.3 81.1 56.3 3.95 34.3 ——
HGA [51] 75.4 81.0 55.1 4.09 34.7 35.5

QueST [10] 75.9 81.0 59.7 4.19 36.1 34.6
HCRN [7] 75.0 81.4 55.9 3.82 36.1 35.4
HOSTR [8] 75.6 83.0 58.2 3.65 39.4 35.9

DualVGR [6] —— —— —— —— 39.0 35.5
ACRTrans-
former [52] 75.8 81.6 57.7 4.08 —— ——

HRNAT [53] —— —— —— —— 38.2 35.3

ours 77.2 83.5 60.1 3.80 39.9 36.7

The experimental results in Table 6 show that our video QA solution performs better
than the most state-of-the-art methods on these three datasets. The improvement is that our
video QA solution can accurately obtain significant video information, enabling the video



Symmetry 2022, 14, 1133 15 of 20

QA model to obtain the complete visual semantic clues provided by the video. Moreover, it
can accurately calculate the spatial dimension information of video frames and the dynamic
evolution of this visual information. As a result, it can obtain reasonable and sufficient
visual semantic clues. The experiment proves the effectiveness and superiority of our video
QA solution.

4.5. Qualitative Results

In order to verify the rationality of using the significant feature extraction module to
extract information features, we prepared some visualizations of video significant informa-
tion distribution. As shown in Figure 4a, there is a strict temporal rule in the count task,
which explains why our performance in the count task is not improved significantly. How-
ever, in Figure 4b, although the focus is on counting actions, there is no strong regularity
in repeating action videos. Therefore, we can obtain excellent performance by capturing
such non-uniform distribution. In Figure 4c, Frame QA video has a relatively concentrated
sequence of significant frames, which explains why we can still perform better in Frame QA
tasks with only a single significant frame. In Figure 4d, the significant information in the
state transition video is mainly concentrated in the process of state transformation, which
demonstrates the reason that our video QA solution can achieve better performance in
state transition tasks. Finally, in Figure 4e,f, video significant information distribution has
no significant time rule, verifying that using uniform sampling may lose some important
information. It also verifies the rationality of using the significant feature extraction module
to extract significant visual features.

(a) (b) (c)

(d) (e) (f)

Figure 4. Visualizations of video significant information distribution. Different videos have different
significant information distributions. By exploring the video information distribution, the video
QA model can better sample video content and obtain the complete storyline. (a) Count Task;
(b) Repeating Action; (c) Frame QA; (d) State Transition; (e) MSVD-QA; (f) MSRVTT-QA.

Furthermore, in order to better understand our contribution to visual language interac-
tion in video QA, we have prepared some visual demonstration results of visual language
interaction. As shown in Figure 5, the visual attention is unencumbered by complex visual
information and pays attention to the correct visual information, namely “dog”, “man”,
“violin”, “lady”, and “onion.” The above visual experiment proves that our video QA
solution can find the location of the answer semantics in the visual–spatial dimension.
Moreover, it demonstrates that our video QA solution can understand the question, deduce
the correct answer, and verify our solution’s superiority.

We also prepared some visualizations of our unsuccessful predictions, as shown in
Figure 6, which included four video QA questions. In question (a), although our video QA
solution can focus the visual semantics on the correct area, due to a lack of understanding
of complex concepts, such as “treadmill,” it makes the wrong prediction, “box”. In question
(b), although our video QA solution can focus the visual semantics on the correct area, some



Symmetry 2022, 14, 1133 16 of 20

critical physical features are obscured, leading to false predictions on “woman”. In question
(c), although our video QA solution can focus the visual semantics on the correct area,
our video QA solution does not fully recognize the difference between “shoot” and “fire”,
thus making the wrong prediction. The most interesting question is question (d). It can
be seen from the video that people are using ropes to climb, and our video QA solution
accurately understands the semantic clues provided by the video and gives its prediction of
“rope”, but this is different from the correct answer, “gear”. The above visual experiment
proves that our video QA solution can accurately understand the semantic clues provided
by the video but it failed to distinguish more complex semantic expressions, resulting in
wrong predictions.

Question: Who is talking to a woman by phone?

Prediction: man

Groundtruth: man

Question: Who put the pastries into the oven?

Prediction: lady

Groundtruth: lady

Question: What does a woman play?

Prediction: violin

Groundtruth: violin

Question: Who is playing guitar?

Prediction: man

Groundtruth: man
√ √

√ √

Question: What plays with a baby?

Prediction: dog

Groundtruth: dog
√

Question: What does a man dice?

Prediction: onion

Groundtruth: onion

√

(a)

(c)

(b)

(d)

(e) (f)

Figure 5. Visualization of visual language interaction. For each QA pair, we visualized the spatial
information concerned by the MSTR network in video frames. Our model can accurately pay attention
to the spatial semantic content related to the question and deduce the correct answer.

Finally, we prepared some visualization results of feature distributions, as shown in
Figure 7. In Figure 7a, the original visual features have a broader semantic space than the
question, proving that only a small part of the visual semantics within the visual features
are associated with the question, which verifies the redundancy of visual information.
Furthermore, after the interaction between visual and question through our MSTR network
shown in Figure 7b, visual information and question have a similar distribution in the
feature space. The above results prove that our video QA solution can effectively obtain
visual clues related to the question from complex videos.
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Question: What is a man doing?

Prediction: shoot

Groundtruth: fire
×

Question: What are two people climbing up a wall using?

Prediction: rope

Groundtruth: gear
×

(a)

(d)(c)

(b)

Question: who cut the onion in half ?

Prediction: man

Groundtruth: lady
×

Question: what is the dog using?

Prediction: box

Groundtruth: treadmill
×

Figure 6. Unsuccessful predictions on the MSVD-QA dataset. For each QA pair, we visualized the
spatial information concerned by the MSTR network in video frames. Taking question (a), our model
can accurately pay attention to the spatial semantic content related to the question. However, due to a
lack of understanding of complex concepts, such as “treadmill”, it makes the wrong prediction, “box”.

(a) (b)

Figure 7. t-SNE plots for visualizing the embedding distribution of various features. Original features
are derived directly from feature extractors, and MSTR descriptors are outputs of our MSTR network.
(a) Original features; (b) MSTR descriptors.

5. Conclusions

This paper proposes a novel temporally multi-modal semantic reasoning with spa-
tial language constraints video QA solution. Specifically, a significant feature extraction
module is designed to capture the significant visual semantic clues that change with the
story progression, providing more affluent visual information for the video question rea-
soning and reducing the redundancy of visual features. Furthermore, we design a new
multi-modal data spatio-temporal reasoning network that can model the significant depen-
dency relationship from the spatial dimension of a single frame image to the whole video.
The qualitative and quantitative experimental results show that the performance of our
method outbalances the state-of-the-art video QA algorithms. In the future, we will study
the imbalanced dataset problem and multi-label feature selection problem of video QA and
develop an end-to-end video QA network to contribute to artificial intelligence.
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