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Abstract: To solve the energy efficiency (EE) optimization in a multi-cell (MU) massive multiple-input
multiple-output (MIMO) downlink system, of which channels are of symmetry in the Time-Division
Duplex (TDD) protocol, we utilize a spatially correlated channel model and adopt the minimum
mean-squared error (MMSE) estimator to tailor linear precoding vectors. Then, we derive the
expression of downlink spectral efficiency (SE), taking interference into account. Subsequently, we
establish the EE optimization function, which is defined as the average capacity divided by power
consumption. In an interference-limited scenario, the EE optimization is of high complexity to solve
globally as it is not jointly concave. To this end, we propose the Dinkelbach-like power allocation
algorithm to obtain a suboptimal solution. We transform the EE problem in a fractional form into
a subtractive optimization form called an auxiliary subproblem. Then, we relax the sub-problem
to a concave problem by initializing the interference and omitting the dynamic power term about
throughput. Lastly, we solve iteratively the Karush–Kuhn–Tucker (KKT) conditions by bisection
search. Consequently, we obtain a sub-solution with modest complexity. The simulation results justify
the rationality of the Dinkelbach-like algorithm and demonstrate that the proposal outperforms the
reference schemes and effectively improves the performance metrics EE and SE.

Keywords: massive MIMO; energy efficiency; power allocation; Dinkelbach algorithm

1. Introduction

Concerning the vision of ubiquitous wireless intelligence, emerging Internet of Ev-
erything applications will require a convergence of communication, sensing, control, and
computing functionalities [1]. Many widely anticipated future services, including eHealth
and autonomous vehicles, will be critically dependent on the delivery of high reliability
and low latency with high data rates, which consequently calls for a higher area throughput
and delivering must-have services due to the imminent data traffic crunch and the rising
expectations of service quality. Moreover, the amount of data traffic growing at an expo-
nential pace entails not only a dramatic improvement in spectral efficiency (SE) but also
steep power consumption. Consequently, both economic and environmental concerns are
in compelling need of consideration in addition to the demand for data traffic [2]. To this
end, energy efficiency emerges as SE is unable to characterize an energy-efficient network,
which is highlighted in next-generation network designs. Notably, massive multiple-input
multiple-output (MIMO) stands out in various candidate technologies as providing sig-
nificant improvements in spectral efficiency and energy efficiency, which enables a set of
user equipment (UE) to serve over the same time–frequency interval by deploying multiple
receive antennas [3]. Hence, energy efficiency optimization in massive MIMO has received
tremendous attention.

Spurred by both economic and environmental concerns, energy efficiency (EE) has
been exposed to extensive research to satisfy the energy-efficient performance metric vital to
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the sixth-generation communication network. Academic researchers have spared no effort
to seek seminal contributions to improving energy-efficient performance, such as resource
allocation, energy harvesting, and network deployment [2]. Herein, we cast our attention to
power allocation as maximizing the energy efficiency with a given transmit power budget
in line with not increasing energy consumption. The study [4] considered the maximization
of the global energy efficiency, as well as of the minimum energy efficiency, which is
nonconvex. Exploiting the fractional programming and sequential convex develops a
power allocation algorithm that guarantees the convergence to a Karush–Kuhn–Tucker
(KKT) point. However, it comes at the cost of high computational complexity and feedback
requirements. In the study [5], EE optimization in the downlink multi-cell massive MIMO
was investigated, which took into account different users’ quality-of-service requirements.
An iterative optimization algorithm was obtained by alternating optimization about the
optimal amount of data rate, the number of antennas, and users. Thus, it was of high
complexity incurred from the alternating iterations of multiple parameters. The study [6]
proposed an adaptive power allocation to maximize the SE and EE in a MIMO broadcast
channel. Applying the Lagrangian method solved the objective function, which involved a
threshold of the effective capacity for each user. However, both [5,6] apply to the special case
of spatially uncorrelated fading channels with perfect channel state information (CSI). The
study [7] used an energy-efficient low-complexity algorithm (EELCA) to obtain an optimal
power allocation solution based on Newton’s methods in the noise-limited scenario, and it
exploited the linear power allocation and perfect CSI. In fact, it is challenging to acquire
perfect CSI due to the presence of the channel estimation error. The studies [8,9] proposed
power allocation for an energy-efficient massive MIMO with imperfect CSI, while the power
consumption models were linear about antennas and UE. The study [10] investigated energy
efficiency and the spectral efficiency trade-off for a single-cell massive MIMO downlink
transmission with statistical channel state information available at the transmitter. A low-
complexity suboptimal two-layer water-filling-structured power allocation algorithm was
proposed, which reached near-optimal performance. Practical channels were generally
spatially correlated, also known as having space-selective fading [11]. In the study [12],
to address the EE optimization in a multi-cell downlink massive MIMO operating over
spatially correlated Rician fading channels with imperfect CSI, the authors transformed the
problem into a geometric program and developed an iterative power allocation algorithm
under the constraints of a given sum spectral efficiency and a maximum total. Nevertheless,
the closed-form solution came at the expense of staggering computational complexity.

From the above analysis, extensive studies have been conducted on EE optimization
in massive MIMO with perfect CSI, whereas the case with imperfect CSI in an interference-
limited scenario is still open to be studied due to its nonconvexity. In addition, the linear
power allocation model taking users and antennas into account has been widely used,
which is adopted in studies [13–15], for instance. Consequently, we consider spatially
correlated Rayleigh fading channels with imperfect CSI and exploit the nonlinear power
consumption model, which encompasses dynamic power about throughput and nonlinear
power terms from BS’s computation in contrast to the linear power model. The global opti-
mum acquisition comes at the price of unbearable computational complexity as the objective
is tough to convert to a convex problem. Herein, we propose a computationally efficient
power allocation scheme called Dinkelbach-like power allocation to obtain a suboptimal
solution with limited complexity, and the simulation results manifest that the proposed
power allocation is a computationally efficient method that jointly increases EE and SE and,
meanwhile, performs well in SE fairness compared to several reference schemes.

The remainder of this paper is organized as follows: The spatially correlated channel
model is described and spectral efficiency is derived by adopting the minimum mean-
squared error (MMSE) estimator and maximum ratio (MR) precoding in Section 2. In
Section 3, a realistic power consumption model is considered and the EE optimization
of multi-cell multi-user massive MIMO is obtained. Subsequently, Section 4 proposes a
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sub-optimal power allocation algorithm. In the last section, the simulation results and
conclusion are presented.

Notation: In this paper, matrices and column vectors are denoted by upper-case bold
letters and lower-case bold letters, respectively; AH and A∗ denote the conjugate transpose
and the complex conjugate of matrix A, respectively, and AT is the transpose; IM denotes a
unit matrix of order M; |·| denotes the Euclidean norm of a scalar, and E{·} denotes the
mathematical expectation. [W]jk denotes the (j, k)th element of a matrix W.

2. System Model

Provided spatially correlated channels in the non-line-of-sight case are considered,
also referred to as having space-selective fading, a more general and realistic model is
generated by the local scattering spatial correlation model. In addition, each coherence
block is operated in Time-Division Duplex (TDD) mode for the sake of saving for pilots’
overhead, as a result of downlink channels symmetrical to uplink counterparts.

2.1. Channel Model

Suppose each cell of L cells covers a square, where each base station (BS) equipped
with M antennas located in the center of the corresponding cell serves K single-antennas,
and user equipment (UE) drops uniformly at distances larger than 35 m from the serving
BS to guarantee a plane wave reaches it. The multi-cell massive MIMO downlink model is
illustrated in Figure 1.
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As the spatially correlated channel model is regarded as Rayleigh fading, it is essential
to generate a channel response vector as hl

jk ∼ NC
(

0M, Rl
jk

)
.

h =
N

∑
n=1

gn

[
1 e2π jdH sin(ϕn) · · · e2π jdH(M−1) sin(ϕn)

]T
(1)

Notice that the subscript indicates the identity of the kth UE in cell j, while the
superscript is the index of the serving BS l. Due to the scattering, the received signal is the
superposition of N multipath components, illustrated in Figure 2, where gn ∈ C accounts
for the gain and phase-rotation for the nth path, which implicitly implies the relevance to
spatial correlation and large-scale gain. dH is antenna spacing, which is measured in the
number of wavelengths between adjacent antennas. ϕn = ϕ + δ, where ϕ is a deterministic
nominal angle once given a drop and δ ∼ N

(
0, δsf) is a random deviation from the ϕ.
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The multidimensional central limit theorem then implies convergence. Subsequently,
it follows from the (l, m)th element of the R spatial correlation matrix that

[R]l,m =
N
∑

n=1
E
{
|gn|2

}
E
{

e2π jdH(l−1) sin(ϕn)e−2π jdH(m−1) sin(ϕn)
}

= β
∫

e2π jdH(l−m) sin(ϕn) f (ϕ)dϕ

(2)

Spatial correlation is the function with respect to ϕn = ϕ + δ angular distribution. and
the average channel gain “β” is denoted by

β
j
lk = Υ− 10α log10

(
dj

lk
1km

)
+ Fj

lk (3)

where γ determines the median channel gain at a reference distance of 1 km and path-
loss exponent α determines how fast the signal decays. F ∼ N

(
0,σ2

s f

)
is called shadow

fading. dj
lk is the distance of UElk to its serving BS j. The variance R is interpreted as the

macroscopic large-scale fading, which includes distance-dependent path loss, shadowing,
antenna gains, and penetration losses in non-line-of-sight propagation.

2.2. Channel Estimation and Linear Processing

MIMO brings a coextensive increase in intercell and intracell interference due to space-
division multiple access. To make efficient use of the Massive MIMO, each BS needs to
estimate the channel responses to perform interference suppression. As the TDD protocol
illustrated in Figure 3 is matched to the coherence blocks, the uplink and downlink channels
are considered reciprocal and symmetrical [16], and the BS can make use of uplink estimates
for both reception and downlink transmission.
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As we assume, τp samples are reserved for uplink pilot transmission in each coherence
block. The pilot sequence of UEjk is denoted by φjk ∈ Cτp , which satisfies φH

jk φjk = τp. After
uplink pilot transmission, the BS j received uplink signal is given by

Yp
j =

K

∑
k=1

√
pjkhj

jkφT
jk +

L

∑
l=1

K

∑
i=1

√
plih

j
liφ

T
li + Np

j (4)

where Np
j ∈ CM×τp is the additive white-Gaussian-noise-distributed NC(0, σ2

UL),and pjk
is the uplink pilot transmit power. To estimate a particular UE, multiplying the received
signal with its pilot sequence obtains the corresponding received pilot signal given as

yp
jli = Yp

j φ?
li =

L

∑
m=1

K

∑
n=1

√
pmnhj

mnφT
mnφ?

li + Np
j φ?

li (5)

Using a pilot book with mutually orthogonal sequences, the MMSE estimate of the
uplink channel is denoted by [17]

ĥj
li =
√

pliR
j
liΨ

j
liy

p
jli

Ψj
li =

(
∑

(m,n)∈Φli

pmnτpRj
mn + δ2

UL IM

)−1 (6)

where Φli = {(m, n) : φmn = φli, m = 1, . . . , L, n = 1, . . . , K}, (m, n) ∈ Φli means UEmn
utilizes the same pilot sequences as UEli, and φli is the pilot sequence assigned to UEli.

The precoding design typically strikes a tradeoff between eliminating the intercell
interference and maximizing the signal-to-interference-to-noise ratio (SINR). A simple
and popular one is the maximum ratio (MR) precoding scheme. As uplink channels and
downlink channels are symmetrical, the BS can conveniently use uplink estimates to tailor
the precoding vectors in the downlink. The expression is

wjk = ĥj
jk (7)

where the precoding vector wjk ∈ CM is tailored for UE k in cell j, namely UEjk, which
determines the spatial directivity of the transmission.

2.3. Downlink Spectral Efficiency

Each BS transmits payload data to its UEs in the downlink (DL), using MR linear
precoding. Sjk ∼ NC

(
0, ρjk

)
denotes the random data signal intended for UEjk, namely

UE k in cell j, for j = 1, . . . , L and k = 1, . . . , K. The desired signal to UE k in cell j propagates

over the precoded channel gjk =
(

hj
jk

)H
wjk, where wjk ∈ CM is tailored for UE k in cell j.

UE can blindly obtain the scalar of gjk from the payload data signals. The signal power ρjk
is the transmit power allocated to this UE. The UE does not know the precoded channel a

priori but can approximate it with the mean value E
{

gjk

}
= E

{(
hj

jk

)H
wjk

}
, which is a

reasonable assumption due to channel hardening [18]. Therefore, the received DL signal
yjk can be expressed as

yjk = E
{(

hj
jk

)H
wjk

}
sjk +

((
hj

jk

)H
wjk −E

{(
hj

jk

)H
wjk

})
sjk

+
K
∑
i=1
i 6=k

(
hj

jk

)H
wjisji +

L
∑
l=1
l 6=j

K
∑

i=1

(
hl

jk

)H
wlisli + njk

(8)
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where njk ∼ NC
(
0, δ2

DL
)

is independent addictive receiver noise with variance δ2
DL. As the

average precoded channel E
{(

hj
jk

)H
wjk

}
is deterministic, and the remaining terms are

uncorrelated with the signal sjk, then the DL ergodic channel capacity of UE k in cell j can
be lower-bounded as

SEDL
jk =

τd
τc

log2(1 + SINRDL
jk ) (9)

SINRDL
jk =

ρjk

∣∣∣E{wH
jkhj

jk

}∣∣∣2
L
∑

l=1

K
∑

i=1
ρliE

{∣∣∣wH
li hl

jk

∣∣∣2}− ρjk

∣∣∣E{wH
jkhj

jk

}∣∣∣2 + σ2
DL

(10)

Equation (9) is referred to as the use-and-then-forget (UatF) bound as the channel
estimates are used for precoding and not for signal detection [19]. For simplicity, (9) can be
expressed more compactly as

SEDL
jk =

τd
τc

log2

1 +
ρjkajk

L
∑

l=1

K
∑

i=1
ρliblijk + δ2

DL

 (11)

For UE k in cell j, where (12) and (13) are the average channel gain and average
interference gain, respectively,

ajk =
∣∣∣E{wH

jkhj
jk

}∣∣∣2 (12)

blijk =


E
{∣∣∣wH

li hl
jk

∣∣∣2}, (l, i) 6= (j, k)

E
{∣∣∣wH

jkhj
jk

∣∣∣2}− ∣∣∣E{wH
jkhj

jk

}∣∣∣2, (l, i) = (j, k).
(13)

where signal power ρjk is the transmit power allocated to UEjk, τc is the sample numbers
per coherence block, and τd is the sample numbers for downlink transmission. In addition,
all other coefficients are positive parameters that do not depend on the ρjk. Given the
fact that multi-user interference is present, the SINRDL

jk is expressed according to the
concave fractional signal-to-interference-plus-noise ratio (SINR) in the useful power, which
is coupled, that is, each UE’s SINR depends on all UEs’ transmit power.

3. Power Consumption Model and Energy Efficiency

The EE of a cellular network is the number of bits that can be reliably transmitted per
unit of energy [17]. Energy efficiency is the ratio of throughput and energy consumption.

3.1. Power Consumption Model

Tractable but less realistic models may instead reach a misleading conclusion about
EE [20]. Herein, we introduce a power consumption model that quantifies the circuit
power incurred by signal processing, backhaul signaling, encoding, and decoding. It can
be quantified as



Symmetry 2022, 14, 1145 7 of 16

Ptotal = ETP + CP ; ETP = 1
µBS

τd
τc

K
∑

k=1
ρjk + Kp

τp

µUEτc

CP = ζ · Caverage + aM2 + bM + c

a =
3KB

τcLBS
; ζ = PCOD + PDEC + PBT

b =
3KBτp

τcLBS
+ PBS +

3BK(τu + τd)

τcLBS
+

4KB
τcLBS

c = PFIX + PLO + KPUE +
7BK

τcLBS

Caverage = E
{

B
L
∑

l=1

K
∑

k=1
SEDL

lk

}

(14)

where µUE and µBS are the power amplifier efficiencies of UE and BS, respectively, and
p is the power for uplink (UL) pilot transmission. For more details, please refer to the
monograph [17], for the sake of space constraints. Notice that the power model is derived
concerning the MMSE estimator and MR signal schemes adopted. The parameters are
explained in the simulation parameter setting.

3.2. Downlink Energy Efficiency

Global energy efficiency (GEE) as the optimization objective we adopt herein, which
sticks to the physical meaning of energy efficiency, is a ratio of throughput and energy
consumption. The GEE optimization follows from substantial insight into the above. Subse-
quently, we put forward the optimization problem, which is mathematically formulated as:

max
ρ∈P

EE =
Caverage

Kpτp

µUEτc
+

τdPmax

µBSτc
+ ζ · Caverage + aM2 + bM + c

=
f (ρ)
g(ρ)

s.t.
K
∑

k=1
ρlk = Pmax, l = 1, 2 · · · L

ρlk ≥ 0, l = 1, 2 · · · L; k = 1, 2 · · ·K

(15)

P is the set of all feasible transmit power solutions that satisfy the given constraints
on the BS of each cell, where ρ = [ρ1, ρ2, . . . , ρL] refers to the optimization variable. Before
delving into the EE analysis, from intuition, it can be grasped that the numerator is not
jointly concave in ρ, nor for the denominator, which means it requires exponential complex-
ity or is even more intractable. For analytical simplicity, we tackle energy-efficient power
allocation optimization by keeping the M fixed. As we have observed, no computationally
efficient algorithm exists to solve a problem that is not jointly concave in ρ = [ρ1, ρ2, . . . , ρL],
where ρl = [ρl1, ρl2, . . . , ρlK]

T , l = 1, 2, . . . , L. To date, determining the global solutions of
energy-efficient power allocation in interference-limited scenarios is still an open problem.
There is a performance–complexity tradeoff from the analysis above. It is tricky to obtain a
global optimum dealing with a generic optimization.

4. Dinkelbach-Like Power Allocation

In what follows, we propose a suboptimal algorithm based on Dinkelbach’s algorithm
called the Dinkelbach-like algorithm to optimize EE in the setup scenario with lower
computational complexity. As we can see, the optimization problem belongs to nonconcave
programming problems and requires high computational complexity to obtain an optimum.
Motivated by Dinkelbach’s algorithm, we transform the EE problem in a fractional form into
a subtractive optimization form called the auxiliary sub-problem employing Dinkelbach’s
algorithm. To solve globally the auxiliary sub-problem given a parameter in each iteration
of Dinkelbach’s algorithm entails unaffordable complexity as it is not a concave problem,
which prevents the application of the formal Dinkelbach’s algorithm. To this end, we
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relax the sub-problem to a concave problem by initializing the interference and omitting
the dynamic power term about throughput, subsequently iteratively solving the KKT
conditions by bisection search.

4.1. Transformation of EE Optimization Problem

Dinkelbach’s algorithm belongs to the class of parametric algorithms [21], whose basic
idea is to tackle a concave-convex fractional problem (CCFP) by solving a sequence of
easier problems that converges to the global solution of the CCFP [22]. Unfortunately, the
objective of the EE optimization problem is a generic fractional problem instead. Similarly,
we transform the EE optimization problem via Dinkelbach’s algorithm, expressed as

F(λ) = max
ρ∈P
{ f (ρ)− λg(ρ)} (16)

Then, the global optimum can be obtained using Algorithm 1. Unfortunately, the
maximization of the sub-problem is solved globally at the price of high computational
complexity, even more impossible to solve. It is critical to tackle the sub-problem properly
with affordable complexity.

Algorithm 1. Dinkelbach’s algorithm

Input: ε > 0, n = 0, λn = 0
Output: x∗

1: while F(λn) > ε do
2 : x∗ ← argmax

x∈S
{ f (x)− λng(x)}

3 : F(λn)← f (x∗)− λng(x∗)
4 : λn+1 ←

f (x∗)
g(x∗)

5 : n← n + 1
6: end while

4.2. Solution of Auxiliary Sub-Problem

As we can see, Dinkelbach’s algorithm requires solving globally the auxiliary sub-
problem in step 2 given a parameter λ value. Herein, we obtain an auxiliary sub-problem
expressed as

max
ρ∈P

F(λ) = Caverage − λ

(
Kpτp

µUEτc
+

τdPmax

µBSτc
+ ζ · Caverage + aM2 + bM + c

)
s.t.

K
∑

k=1
ρjk = Pmax, j = 1, 2 · · · L

ρjk ≥ 0, j = 1, 2 · · · L; k = 1, 2 · · ·K

(17)

As aforementioned, the first term of the objective is non-jointly concave in ρ, so the
second is also naturally nonconcave due to the presence of Coverage, which means it
does not enjoy the convexity that enables solving globally with limited complexity. Hence,
we propose a low-complexity algorithm at the price of obtaining a sub-optimum of (17)
called the primal auxiliary sub-problem. The concave approximation is obtained after
specific pretreatment to (17), and then we can iteratively solve the KKT conditions of the
former globally. As a consequence, the global optimum guarantees the convergence of the
proposed algorithm and is an approximate solution to (17).

4.2.1. Initialization of the Sub-Problem

The difficulty lies in the fact that the first term is not jointly concave, due to the presence
of interference and the second term couples the first term. To this end, an approximation
more tractable can be obtained through initializing the SINR-like term in equal power
allocation, given by
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max
ρ∈P

K
∑

k=1

τd
τc

Blog2

(
1 + ρjkψjk

)
− λ

(
τd

µBSτc

K
∑

k=1
ρjk +

Kpτp

µUEτc
+ aM2 + bM + c

)
s.t.

K
∑

k=1
ρjk = Pmax, j = 1, 2 · · · L

ρjk ≥ 0, j = 1, 2 · · · L; k = 1, 2 · · ·K

(18)

After specific pretreatment, ψjk is

ψjk =
ajk

L
∑

l=1

K
∑

i=1
ρliblijk + δ2

DL

, ρjk = Pmax/K, ∀j, k (19)

Considering the multi-cell MIMO system is symmetric, we decompose the coupled
L cells into L individual cells as each link depends only on the transmit power of its own
cell after the initialization operation. In the meanwhile, the power consumption omits
the dynamic counterpart related to Coverage, which is a valid approximation followed by
neglecting small terms as explained in the next section. It can be observed that a concave
problem holds provided the nonnegativity of λ, which is ensured due to the nonnegativity
of the numerator and the positivity of the denominator.

4.2.2. Acquisition of KKT Conditions

The global optimum follows from the convexity’s optimality condition, which guar-
antees the convergence of the Dinkelbach-like algorithm. If and only if each auxiliary
sub-problem is solved globally, the generalized Dinkelbach’s algorithm converges to the
global solution of the fractional problem [21]. Herein, (18) could be solved globally utilizing
any convex programming algorithm. Denoting the Lagrange multipliers for constraints by
v and µk, the Lagrangian function of (15) is written as

L(ρ, v, µ) = −
K
∑

k=1

τd
τc

Blog2

(
1 + ρjkψjk

)
+λ

(
τd

µBSτc

K
∑

k=1
ρjk +

Kpτp

µUEτc
+ aM2 + bM + c

)
+ v
(

K
∑

k=1
ρjk − Pmax

)
− µk

K
∑

k=1
ρjk

(20)

In addition, the KKT conditions of (18) are expressed as

τd
τc

B
ψjk(

1 + ρjkψjk

)
ln 2
− λ

τd
µBSτc

− v + µk = 0 (21a)

µk ≥ 0, ∀k = 1, 2, . . . , K (21b)

− ρjk ≤ 0, ∀k = 1, 2, . . . , K; (21c)

K

∑
k=1

ρjk = Pmax (21d)

µkρjk = 0, k = 1, 2, . . . , K (21e)

where (21a) is the Lagrangian stationarity conditions, (21b) is the nonnegativity of the
multipliers, (21c) and (21d) are the problem constraints, while (21e) is the complementary
slackness condition. Any solution of (21) is also a global solution of (17) given its convexity.
To solve the KKT system (21) directly is difficult, so an iterative algorithm can be developed
by starting from a feasible transmit power vector and iteratively updating the transmit
powers by (22), the updating equation, given by
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ρjk = max

{
0,

τd/τc · B
(λτd/µBSτc + v) ln 2

− 1
ψjk

}
K
∑

k=1
ρjk = Pmax

(22)

This can be efficiently solved by Algorithm 2 on the multiplier v. The resulting formal
procedure can be stated as follows:

Algorithm 2. Bisection for sub-problem

Input: ε λ Pmax itermax vl
Output: ρ

1: Initialize: v← vl compute ρ according to equation (22)
2: while ∑K

k=1 ρjk > Pmax do
3: v← v× 1.001 compute ρ according to equation (22)
4: end while
5: vm ← (vl + v)/2 compute ρ according to equation (22)
6: while ∑K

k=1 ρjk < Pmax + ε || ∑K
k=1 ρjk > Pmax + ε do

7: if iter > itermax then
8: break
9: end if
10: if ∑K

k=1 ρjk ≤ Pmax then
11: v← vm
12: else
13: vl ← vm
14: end if
15: vm ← (vl + v)/2 ; compute ρ according to equation (22); iter← iter + 1
16: end while
17: return ρ

4.3. Iteration of the Parameter

In the end, we generalize Dinkelbach’s algorithm to obtain a suboptimum of the
original EE optimization (15) with affordable complexity after approximating the sub-
problem. The Dinkelbach-like algorithm can be stated as in Algorithm 3.

Algorithm 3. Dinkelbach-like algorithm for power allocation

Input: ε itermax λn
Output: ρ

1: initialize: F ← 1
2: while F > ε&&iter < itermax do
3: x∗ ← solve the sub-problem according to algorithm 2
4: F ← f (ρ∗)− λg(ρ∗)
5: λ← f (ρ∗)

g(ρ∗)
6: iter ← iter + 1
7: end while

5. Simulation Results and Discussion

To exemplify the performance metrics of a symmetric multi-cell massive MIMO system
composed of four square cells, the system parameters of Monte Carlo simulations are
detailed below in Table 1. MATLAB R2018b is used for simulation. Unless otherwise
specified, we use the Value set 1 by default for simulations. To verify the rationality and
superiority of the algorithm proposed in this paper, several classical power distribution
algorithms are selected as references for comparison. The max-min fairness scheme makes
UE operate at the same SE level, which sacrifices a certain spectrum efficiency in exchange
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for maximum user fairness, as a user fairness benchmark. The maximum product SINR
algorithm denoting maxprod based on the interior point method aims at maximizing the
product of the SINR.

Table 1. System parameters of the simulation setup.

Parameter Value Set 1 Value Set 2

Number of cells L = 4 L = 4
Number of UEs per cell K = 10 K = 10

Number of Antennas M = [10,200] M = [10,200]
Channel gain at 1 km Υ = −148.1 dB Υ = −148.1 dB

Pathloss exponent α = 3.76 α = 3.76
Bandwidth B = 20 MHz B = 20 MHz

Samples per coherence block τc = 200 τc = 200
Receiver noise power −94 dBm −94 dBm

Fixed power: Pfix = 10 W Pfix = 5 W
Power per UE PUE = 0.2 W PUE = 0.1 W

Power for backhaul traffic PBH = 0.25 W/(Gbit/s) PBH = 0.025 W/(Gbit/s)
Power for data encoding PCOD = 0.1 W(Gbit/s) PCOD = 0.01 W(Gbit/s)
Power for data decoding PDEC = 0.8 W(Gbit/s) PDEC = 0.8 W(Gbit/s)

BS computation efficiency LBS = 75 Gflops/W LBS = 750 Gflops/W
Power for BS antennas PBS = 0.4 W PBS = 0.2 W

DL transmit power constraint Pmax = 1 W Pmax = 1 W
UL transmit power p = 0.1 W p = 0.1 W

5.1. Simulation Parameters
5.2. Analysis of Simulation Results

To illustrate the power consumption model impact on EE, four widely used power
models are compared including model 1 [10], model 2 [9], model 3 [23], and model 4 we
adopt. As model 1 only takes radio frequency (RF) chains into account, model 2 includes the
power consumption of UEs. The difference between model 3 and model 2 is the presence of
dynamic power about throughput. Finally, model 4 embraces the computation complexity
power at the BS side based on model 3, consequently being more realistic.

Figure 4 illustrates the different power consumption models’ behavior in the massive
MIMO given fixed transmit power Pmax = 1 W. In Figure 4a, the total power is nearly linear
to M, which implies that array gain comes at the cost of RF chain hardware deployment
and the corresponding power consumption proportional to M. Model 2 and model 3
almost coincide with each other, which means the dynamic power related to throughput
is negligible compared to other contributions, consequently verifying the validation of
the approximation in the aforementioned. Alternatively, the gap coherently widens from
others in the sense that the increasing M incurs a high-dimensional matrix. In Figure 4b,
the general trends for different power models are roughly the same as a unimodal function
of antenna numbers, which is in line with that fact that the SE will grow with M without
bound, while EE shrinking instead. Exploiting the fact that the difference between model
1 and model 2 vanishes when M is large, the omission of the dynamic power term does
not change the unimodal property and still obtains a sub-optimum nearly tight to the
optimum. The simulation result intuitively justifies that the dynamic power can be omitted
for analytical simplicity.

Figure 5 shows the corresponding EE with different power allocation schemes. The
simulation result manifests that the proposed algorithm outperforms all reference schemes
and provides the highest EE, followed by maxprod, and then equal power allocation
irrespective of the value of M. The bottom curve is obtained from max-min power allo-
cation, which is almost flat after the peak as fairness in SE compensates for the vast loss
of EE. Quantitatively speaking, the performance gap is substantial for M = 40 around
3.75 Mbits/Joule/cell between the proposed and maxprod scheme. The use of the pro-
posed algorithm increases EE performance by 10–30% over the reference schemes in the
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interval M = [10,100]. Then, the performance gap between curves continues to narrow after
peaks. The essence of this result is that the negative impact incurred by equipping excessive
antennas dominates over the gain from power allocation intended for EE optimization
due to the fact that a modest logarithmic SE gain already could not compensate for the
corresponding antenna energy consumption. It is worth mentioning during the simulation
that the maxprod algorithm is of a high cost of computation, which underperforms the
proposal in spite, indicating fully the superiority of the Dinkelbach-like algorithm.
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The curves in Figure 6 represent the average sum SEs. Compared to the EE case,
when M increases, the array gain causes SE to grow monotonically without boundary. The
top curve is still obtained from the proposed algorithm, which means performing well in
both EE and average sum SE. In the meanwhile, the gain gap between the maxprod and
the proposal narrows gradually. Fortunately, the proposal still outperforms slightly up
to 1–20%. The interpretation is that the favorable propagation achieved by having many
BS antennas makes the noncoherent interference between each pair of UEs sufficiently
small, while the Dinkelbach-like algorithm detrimentally enjoys such a benefit as a result
of initialization of interference. In other words, some saturation effect appears and the
marginal gain in average sum SE of the Dinkelbach-like algorithm gradually diminishes
when M goes to infinity. In fact, the energy-efficient massive MIMO will not equip such
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infinite antennas regardless of the consideration of physical constraints or the conclusion
followed from above.
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The general observation from Figure 7 is that the cumulative distribution function
(CDF) curve with the proposal is mostly to the maxprod power allocation curve, which, in
turn, is to the right of the equal scheme, and then the max-min fairness. In what follows,
most UEs will, statistically speaking, achieve better performance with the proposal than
with the other schemes. In addition, Figure 7 demonstrates implicitly the performance
matrix loss of fairness as compared to the max-min scheme as the fairness baseline. It
should be observed that 9% and 18% of UEs perform less well than the corresponding
schemes at the tails of the CDF curves. However, we only sacrifice a few percentages of
UEs with poor channels in turn to the gain in EE and sum SE, even if there are as many as
18% UEs. It is cost-efficient as far as EE optimization is considered, and most UEs are better
off statistically.
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Figure 8 is obtained with two value sets of simulation parameters in Table 1. As
we see, the other is set by scaling the hardware’s power consumption by a factor of
2 wherein computational efficiencies are improved and more energy-efficient transceiver
chains are used, which are expected to improve in the future. Intuitively, the general trends
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for both value sets are the same. Still, the improved hardware system overwhelms the
power allocation schemes absolutely, identifying directly a way to improve EE essentially.
It indicates that we can either offload data traffic or improve the computation hardware to
accelerate the speed of computation at the BS side, as well as exploit more energy-efficient
transmit chains. In addition, the power allocation scheme we proposed prevails over the
rest irrespective of system parameters. In other words, the proposed algorithm can be
extended to be used in future, more efficient systems and performs well off.
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5.3. Computation Complexity Analysis

The solution process is to solve a sequence of auxiliary problems, indexed by the
parameter λ. Hence, the overall computational complexity counts on the complexity of
each individual subproblem and the outer loop convergence about updating parameter
λ, which is confirmed to exhibit at least a two-order convergence rate. Therefore, the
subproblem’s computational complexity dominates the overall computational complexity.
Usually, the floating-point operation (flop) indicates the computational complexity. A
real addition, multiplication, or division is counted as one flop [24]. In the algorithm, the
pretreatment requires about 2LK+2 flops. In addition, one execution of steps in Algorithm
2 takes approximately t3 = (13LK + 1)t1 + (7LK + 3)t2 flops assuming t1 and t2 are the
iteration times of two while-loops. Consequently, the overall complexity approximates
2LK + 2 + t3t4 = O

(
t2(13LK + 1) + 2LK

)
, namely low polynomial complexity thanks to

the super-linear convergence rate, where t = max(t3, t4) and t4 is the iteration times for
the parameter. In contrast, if the objective is nonconcave, then the complexity required
for global optimal resource allocation is, in general, exponential. Moreover, the max-
min fairness solves linear feasibility subproblems in the bisection search, which requires
O(t2(2LK + 4)LK + LK + 1), while the maxprod solves geometric programs based on the
interior point method, which requires polynomial executions and each execution entraining
O((2LK + 3)LK + LK) flops. Obviously, the proposed algorithm pays off in terms of EE
and is more computationally efficient than the maxprod.

6. Conclusions

For the multi-cell multi-user massive MIMO downlink energy efficiency optimization
in an interference-limited scenario, we propose a sub-optimal Dinkelbach-like algorithm
with limited complexity under the constraint of maximum transmit power. To make
the scheme more practical, we adopt the more realistic power consumption model and
fully consider the impact of dynamic power terms. The simulation results confirm the
rationality of the proposed algorithm, which can jointly increase EE and the average sum
of SE with lower complexity, and meanwhile obtain satisfactory performance in SE fairness.
Hence, it is a candidate as a computationally efficient method adapted for the low-latency
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requirement of the sixth-generation communication, as the proposed algorithm strikes a
good balance between performance and complexity.

As we can see, SE grows with antenna number without bound. However, equip-
ping excessive antennas not only brings extra power consumption but also increases the
complexity of system design. Hence, in future work, it is optional to consider the joint
optimization of antenna selection and power allocation to promote energy conservation
at the marginal loss of SE. In addition, if we want to reach a higher SE and EE in massive
MIMO, the simulation result shows that it is wise to search for more energy-efficient trans-
mit chains. Noticeably, power allocation is irreplaceable as a method that improves EE and
SE through the rational allocation of resources within a limited resource budget. Therefore,
power allocation is of significant consideration in energy-efficient optimization whatever
the optimized system design is in future work.
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