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Abstract: Low-light images are obtained in dark environments or in environments where there is
insufficient light. Because of this, low-light images have low intensity values and dimmed features,
making it difficult to directly apply computer vision or image recognition software to them. Therefore,
to use computer vision processing on low-light images, an image improvement procedure is needed.
There have been many studies on how to enhance low-light images. However, some of the existing
methods create artifact and distortion effects in the resulting images. To improve low-light images,
their contrast should be stretched naturally according to their features. This paper proposes the use
of a low-light image enhancement method utilizing an image-adaptive mask that is composed of an
image-adaptive ellipse. As a result, the low-light regions of the image are stretched and the bright
regions are enhanced in a way that appears natural by an image-adaptive mask. Moreover, images
that have been enhanced using the proposed method are color balanced, as this method has a color
compensation effect due to the use of an image-adaptive mask. As a result, the improved image can
better reflect the image’s subject, such as a sunset, and appears natural. However, when low-light
images are stretched, the noise elements are also enhanced, causing part of the enhanced image to
look dim and hazy. To tackle this issue, this paper proposes the use of guided image filtering based
on using triple terms for the image-adaptive value. Images enhanced by the proposed method look
natural and are objectively superior to those enhanced via other state-of-the-art methods.

Keywords: low-light image enhancement; adaptive ellipse; image-adaptive mask

1. Introduction

Low-light images are obtained in environments where there is little light. Low-light
images have a low contrast. For this reason, low-light images have dim and dark features
and, as a result, contain limited image data. In various image processing areas, such as
computer vision and image recognition, low-light image enhancement is an important step
to obtaining an image’s diverse data. Low-light images are dark and have low contrast, but
bright regions also exist due to the light from a camera flash or natural light. As low-light
images have dark regions and bright regions simultaneously, they have diverse features,
and because these regions are distributed with neither symmetry nor asymmetry, enhancing
low-light images can be difficult. Thus, to enhance low-light images in a way that appears
natural, two processes are needed. One is the stretching of dark regions, and the other
is suppression by improving the bright regions. When enhancing a low-light image, if
the bright regions are not considered, then the enhanced image looks unnatural, as color
shifts, over-enhancement, and fogged effects might occur. Additionally, when an image is
stretched, the dark regions and colors should be distinguished from each other; if they are
not, the dark colors may change and become closer to white.

Research on low-light image enhancement is ongoing. Low-light images have certain
features. One of these is their low contrast. To improve the contrast in these images,
an image-processing; histogram equalization method is used. Histogram-based contrast
enhancement methods are used in various image processing areas [1–3]. To enhance low-
light images, Cheng et al. used histogram equalization [1]. This method uses multi-peak
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generalized histogram equalization (MPGHE) to enhance the contrast of an image to reflect
its local features [1]. However, the weak point of this method is that using a constant value
to enhance the image is not an image-adaptive measure. Abdullah-Al-Wadud et al. tried
to enhance low-light images using dynamic histogram equalization. This method uses a
partitioned histogram that is based on the local minima of an image, where each partition is
equalized [2]. Though this method can enhance low-light images, it uses a limited measure
to enhance the image and is limited regarding its use in image-adaptive enhancement. In
addition, there have been many studies on histogram-based low-light image enhancement
methods. Pizer et al. proposed sped-up adaptive histogram equalization (AHE), using
interpolation and weighted AHE to improve image quality and clipped AHE to remove
the noise caused by the overly enhanced contrast [3]. Ying et al. utilized the exposure
ratio map of a camera model to enhance low-light images [4]. The weak point of this
method is that it overenhances the blending area and is unable to distinguish dark areas
from dark colors [4]. Dai et al. proposed a low-light image enhancement method that uses
a fractional order mask to extract an illumination map and preserve the naturalness of
the original image, while gamma correction is used for illumination adjustment [5]. After
a denoising step is applied, the fusion framework is applied to enhance the image [5].
This method is able to enhance low-light images. However, this method uses a constant
measure to enhance low-light images; due to this, images’ features cannot be reflected
adaptively. Ying et al. proposed a dual-exposure fusion framework to enhance contrast and
lightness using illumination estimation [6]. The weak point of this method is that it not only
enhances the dark regions of an image but also the dark colors, causing the resulting image
to look unnatural. Additionally, this method uses a constant value to enhance low-light
images [6]. Ren et al. attempted to enhance low-light images using an illumination map
and a suppressed reflectance map to reduce the noise [7]. The main purpose of this method
is reducing the noise of enhanced low-light images. Although this method focuses on both
low-light image improvement and noise reduction by enhancing the noise components, it
enhances images using a constant value, which is a weak point of the method because it
is not able to reflect images’ features adaptively. Wang et al. proposed a low-light image
enhancement method that decomposes the reflectance and illumination of an image using
a bright-pass filter to maintain its natural appearance; to balance the detail and naturalness
of the illumination map, bi log transformation is used in this method [8]. Additionally, this
method uses a lightness order error measure to assess naturalness preservation objectively
to reflect the features of an image [8]. This method can enhance low-light images in a way
that appears natural. However, the weak point of this method is that it does not consider
the relation of illumination in various images adaptively. Guo et al. reported a method
to enhance low-light images using illumination map estimation. This method estimates
illumination using the maximum pixel value of each color channel [9]. This method can
enhance low-light images efficiently. However, its weak point is the creation of region
overflow. Especially in bright regions, the overflow effect can appear vividly. To enhance
low-light images, high dynamic range (HDR) methods (which merge various maps, such as
low- and high-exposure feature maps) have also been used [10,11]. Mertens et al. proposed
an exposure fusion method for enhancing low-light images. This method fuses a bracketed
exposure sequence with a high-quality image, skips the step where the HDR is computed
and avoids camera response curve calibration. The weak point of this method is that it
creates unnatural-looking regions in some images [10]. Battiato et al. introduced a low-light
image enhancement method using 8-bit depth images from differently exposed pictures to
capture both low- and high-light details via merging to produce a single map to describe
natural scenes [11]. Moreover, to enhance low-light images, various methods can be used,
such as conditioning the camera model and different image processing techniques. Ren
et al. tried to enhance low-light images using a camera response model [12], while Xu
et al. attempted to enhance low-light images using a generalized equalization model to
increase the contrast and white balance [13]. Although this method can improve low-light
images, the weak point of this method is its use of a constant value for enhancement and
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the fact that it is able not to reflect images’ conditions adaptively. Dong et al. suggested
a low-light image enhancement method inspired by hazy images with sky regions with
a high pixel value in all color channels and non-sky regions with a low pixel value in at
least one color channel. Using the features of hazy images, Dong et al. used a dehazing
algorithm [14–18] to enhance low-light images [19]. However, the images enhanced using
this method have artificial effects such as ringing, and the use of a constant value is another
weak point of this method. Hao et al. [20] proposed a low light image enhancement method
with semi-decoupled decomposition. This method enhances the low light image using
a retinex-based image decomposition method via an illumination layer, Gaussian total
variation model, and reflectance layer [20]. Although Hao et al.’s [20] method enhances
low light images naturally using the image’s features, the dark region and dark colors are
improved at the same time without distinguishing between them, and for this reason, there
is an overflow in the regions in some images.

Recently, machine learning-based low-light image enhancement methods have been
studied in detail. Tao et al. attempted to enhance low-light images using CNN and bright
channels prior to estimating the condition of night images [21]. Cai et al. suggested the use
of a multi-exposure image dataset to enhance low-light images and used a convolutional
neural network (CNN) to train the data. This method is useful for enhancing the contrast
of low-light images. However, its weak point is its creation of over-exposed regions [22].
Li et al. enhanced low-light images using an illumination map based on a CNN [23].
The weak point of this method is that when an image is enhanced, noisy regions are also
enhanced [23]. Lore et al. tried to enhance low-light images using a deep autoencoder [24].
However, its use of a constant measure is a weak point. Lv et al. attempted to enhance
low-light images using a multi-branch CNN. This method, which can distinguish between
the under-exposed regions and noisy parts of an image, can enhance low-light images
successfully. The weak point of this method is that it does not perform well with heavily
compressed images [25].

Many studies have attempted to enhance images using various masks. The mask
of an image can be used in various areas from image enhancement to image recognition.
Shukla et al. proposed a method to enhance images using adaptive fractional masks and
super-resolution [26]. This method uses fractional filters as an adaptive mask, projects onto
convex sets (POCS) using low-resolution frames, and applies the sped-up robust feature
(SURF) algorithm to match the low-resolution frames and reference frames [26]. Zhang et al.
improves image recognition using a mask that suppresses the background disturbance in
an image using a densely semantic enhancement module [27]. The mask of an image can
reflect the features of an image adaptively. As shown in previous studies, image masks can
be used in various image processing applications.

To enhance low-light images, various contrast enhancement methods can be used.
However, when low-light images are enhanced, the existing methods also enhance the
bright regions of the image. This leads to a ringing and blurring effect in the boundary or
edge regions of an image. Additionally, some methods do not distinguish between dark
regions and dark colors such as black; this results in the color black also being enhanced and
the resulting images looking unnatural due to the color shift. Thus, to enhance low-light
images in a way that appears natural, the bright and dark regions and the dark colors of
an image should be distinguished from each other. The aim of this paper is to determine
how to enhance low-light images in a way that appears natural using an image-adaptive
mask. The algorithm proposed in this paper is composed of two steps. The first step
stretches the dark regions of low-light images with an adaptive ellipse to reflect the image’s
features. This acts as an initial stretching of low-intensity components. The second step
applies an image-adaptive mask (IAM) using the initial stretched image to compensate
for the image’s color. Low-light images have an unnatural color, for example, appearing
reddish during sunsets. The existing low-light improvement methods can enhance the
image’s intensity regardless of its color balance. Therefore, images that are enhanced using
existing methods appear more reddish and seem unnatural. Therefore, this paper proposes
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an image-adaptive and color balancing method that uses an image-adaptive mask. The
images enhanced using the proposed method have a more natural color. This process
creates an adaptively enhanced image where bright regions are less enhanced by the image-
adaptive mask (IAM). The resulting enhanced image has hazy or dimmed features caused
by noise features that have also been enhanced. Because of this, to further refine the images
produced, a guided image filter [28] is used. The enhanced results achieved using the
proposed method are objectively and subjectively superior to the results obtained using
existing state-of-the-art methods.

2. Proposed Method

Images that are obtained in dim or dark conditions contain limited data and have a
low intensity value. The goal of low-light image enhancement is to improve an image’s
contrast to create a natural-looking image. Low-light images have various features, such
as bright and dark regions and dark colors. When enhancing low-light images, if there is
no consideration of the bright regions, the enhanced images will contain overflow regions
that are excessively bright. An existing image enhancement method, the white balancing
method (WB) [29], uses a reverse channel and a guided color channel. WB [29] is used
to enhance degraded underwater images. In general, the green channels of underwater
images are maintained well compared to red and blue channels. Based on this, the WB
method [29] uses green channels as guided channels. The equation for this is as follows:

Ic
WB(x) = Ic(x) + (m(Ig)−m(Ic)) ·(1− Ic(x))·Ig(x), (1)

where Ic(x) is the input image, Ig(x) is the green color channel, m(·) is the average value of
each color channel, c ∈ {r, g, b}, x is the location of pixels, and Ic

WB(x) is the white balanced
image. Using Equation (1), degraded underwater images can be enhanced. Underwater
images and low-light images have similar features, such as low contrast. However, the
difference between underwater images and low-light images is that low-light images have
no degraded color channels. Because low-light images have no well-maintained color
channels, there is no guided channel among the three color channels. Equation (1) consists
of three terms: the input (or original) part, reverse channels, and guided channels. The
main use of Equation (1) is for reversing and guiding images. By reversing the channels,
the attenuated color channels can be enhanced. Moreover, enhancing channels by reversing
them can suitably reflect the guided color channel and compensate for the attenuated
color channels.

Although underwater images and low-light images have similar features, because the
color channels of low-light images have low contrast, there is no guided color channel. To
enhance low-light images efficiently, a guided channel that reflects the image’s features
must be chosen. In image processing, gamma correction can be used to stretch the contrast
of an image. The gamma correction method is a basic stretching method that enhances the
contrast of a low-light image. The gamma-corrected images are completely dependent on
the gamma value. However, this method is not appropriate for naturally enhancing low-
light images. If the gamma value is lower, then the image is more stretched. Therefore, to
enhance low-light images naturally with the gamma correction method, an image-adaptive
measure is needed. If the image is dark, then the image’s average value is also low, and
vice versa. Therefore, the average value of an image can be used to indicate its features.
However, if the image’s average value is too low, then the stretched image will seem hazy
and some areas will be blocked by over-enhancement. The gamma correction method
is able to stretch images but does not reflect their feature sufficiently due to its use of
a constant gamma value. To enhance images in a way that appears natural, a suitable
gamma value and method must be chosen for each specific image. In general, circles have a
stretching feature, and the radius of the circle controls its extent. Therefore, if the radius is
suitable, then enhanced low-light images will look natural and have no overflow. Therefore,
to enhance low-light images, using the circle is a suitable method.
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This paper proposes two steps to enhance the quality of low-light images in a way
that appears natural. The first step is stretching dark regions using an adaptive ellipse.
Although a unit circle is able to stretch low-light images, if the radius is bigger than one,
the enhanced images will have an overflow region. To avoid this, this paper proposes the
use of an adaptive ellipse, and to reflect the image’s features, the reverse mean of the color
channel is applied as the radius. The stretching procedure used for low-light images based
on the adaptive ellipse can be described as:

Ic
IE(x) = bc ·

√(√
rc
)2
−
(

Ic(x)
ac −

√
rc
)2

, (2)

rc =
1

m(Ic)
, (3)

bc =
√

m(Ic), (4)

where ac and bc are the width and height of the ellipse, respectively, and rc is the radius of
the ellipse. The ellipse’s shape is controlled by the ac and bc values, and Ic

IE(x) is the initial
image stretched using the adaptive ellipse, which is used as a guided image to enhance the
low-light image. x is the location of the pixel, c ∈ {r, g, b}. The ellipse shape is determined
by the ac and bc values. ac indicates the width of the ellipse and is set to 1; the bc value
indicates the height of the ellipse. bc is the image’s average value, and it functions as a
scaling factor for the adaptive ellipse. rc is the inverse of the average value of the image,
and it is the radius. Ic(x) is the input image.

Using Equations (2)–(4), the stretched image has no overflow and appears natural.
Figure 1a shows the low-light input image, Figure 1b shows the image stretched using the
gamma correction method, and Figure 1c shows the image initially stretched using the
adaptive ellipse. As shown in Figure 1, the image stretched using gamma correction has
hazy features and features a color shift; however, the adaptive ellipse is able to stretch the
low-light images naturally and does not show overflow in either the low-intensity regions
or the bright-intensity regions. The stretching performance of Equations (2)–(4) is shown in
Figure 1.
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Figure 1. Comparative results of images stretched using gamma correction (gamma is the image’s av-
erage value) and adaptive ellipse: (a) input images; (b) images stretched using the gamma correction
method; (c) images stretched using the adaptive ellipse.

Sometimes, in excessive dark images, the stretched image still has a low level of
intensity. Therefore, this paper proposes the use of a second enhancement step based on
an image-adaptive mask (IAM) and reversed color channel. Excessively dark images have
a low intensity value that is close to zero. Therefore, to stretch these images, an IAM is
needed. An IAM is composed of reverse channels and the initially stretched image. If the
image is dark, its color channel will be dark, whereas its reverse channel will be bright.
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Though the image is dark, the bright regions caused by the flash of the camera are in the
reverse channel, and the bright region will have a value of zero. Because of this, the IAM is
able to enhance low-light images naturally in both the excessively low-intensity regions
and in the high-intensity regions. The IAM procedure can be described as:

Ic
M(x) = (1− Ic(x))·Ic

IE(x), (5)

where Ic
M(x) is the image-adaptive mask image, Ic

IE(x) is the initial stretched image, x is
the location of the pixel, and c ∈ {r, g, b}. Although the bright regions of low-light images
contain minority components, because these have neither symmetry nor asymmetry in their
distribution, the bright region will be controlled using the image-adaptive mask, Ic

M(x).
Using Equation (5), extremely dark images can be compensated for by the initial adaptive
image, Ic

IE(x), and reverse images.
Figure 2 shows the input image stretched using the adaptive ellipse and image-

adaptive mask (IAM). As shown in Figure 2, the image stretched using the adaptive ellipse
has higher contrast than the input image. The IAM shows the dark and bright regions (due
to lamp lightness) and is able to maintain the stretched region using an adaptive ellipse
(the white dotted circle indicates the variation of light area). By this point, because the
bright region turns dark, as shown in Figure 2, it prohibits the over-enhancement of parts
of images.
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However, these regions can overflow when the IAM and input images are directly
in the bright region. Thus, the adaptive combination procedure is needed. The combined
procedure using the input image and the IAM consists of summing the measurements. The
combination step can be described as:

Ic
E(x) = δ0·Ic(x) + δc·Ic

M(x), (6)

δ0 =

√
∑c max

c
(Ic(x))

3
, (7)

δc =
m
(

Ic
M
)

m(Ic)
, (8)

where Ic
E(x) is the enhanced image, δ0 is the squared root mean value of the maximum

value of the color channels, and δc is the ratio between the mean value of the masked
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image and the mean value of the input image. Using Equation (6), low-light images can be
enhanced in a way that appears natural, maintains the features of the original image, and
reflects the image’s features using an image-adaptive mask through the image adaption
ratio, δ0, δc. Though low-light images have a low intensity value, the maximum intensity
values of the color channels are not zero due to the light source. Therefore, to control the
channel’s intensity value, the mean value of the adaptive channel’s maximum pure mean
value is used; it can be applied to an input image using Equation (7). Moreover, to apply
the IAM image adaptively, this paper uses the ratio of the input and IAM images as an
adaptive measure, δc. If the input image is darker, the mask image will be brighter, and,
as a result, the δc will be bigger, and vice versa. Equations (5) and (6) are similar to the
WB method [29]. The difference is that the WB method [29] uses one channel to improve
the image. However, the color channels of low-light images are uniform and have a low
level of intensity. Therefore, to enhance low-light images, high-intensity color channels are
needed. Therefore, this paper improves low-light images using adaptive ellipse through
guiding images such as mask images. Moreover, overflow can be prevented using an
image-adaptive measure. This is described as:

Ic
A(x) = δc

A·Ic
E(x), (9)

δc
A =

1
max

c
(Ic

E(x))
, (10)

where Ic
A(x) is an image that has been subjected to the adaptive measure δc

A. If the channel
overflows, the maximum value will be above one. Therefore, the maximum value of the
enhanced image’s color channel will be reversed to adjust the intensity of each color channel.
Using Equations (9) and (10), the enhanced image will look natural and no overflow will
be present.

Figure 3 shows the (a) input images; (b) initial stretched images; (c) IAM images;
(d) images enhanced without IAM, which contain overflow regions; and (e) images en-
hanced with IAM, which have no overflow regions.
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As shown in Figure 3, the proposed method can achieve a suitable performance in
enhancing low-light images. In particular, in the enhanced image shown in the fifth column,
the proposed method enhances both the image’s intensity value and color components in a
way that seems natural.

When a low-light image is enhanced, the image’s noise components will also be
increased, resulting in the enhanced image looking dim and hazy. Therefore, to obtain
refined images, this paper uses a guided image filter [28], which can be described as:

Ic
G(x) = GF{Ic

A(x), K, EPS }, (11)

Ic
GE(x) = (Ic

A(x)− Ic
G(x))·αc + Ic

G(x), (12)

where GF{.} is the guided filter, K is the kernel size that is set to 2, and the EPS is set
to 0.42. Ic

G(x) is the guided image, Ic
GE(x) is the image that has been enhanced using the

guided filter, and αc is the enhancement measure used. Using Equations (11) and (12), the
improved hazy particles can be suppressed and the enhanced image will appear natural
and clear. When low-light images are enhanced, because the noise components are also
increased, an image-adaptive enhancing measure is needed to obtain an enhanced image
that appears natural, and this is represented as αc. To obtain this measure, this paper uses a
combination of triple ratio, as with αc

r . The first is the ratio of the enhanced image and the
input image. If the image is enhanced further, the noise components will also be enhanced
further. The second ratio is the IAM and the input image. The IAM also relatively enhances
the input image. The third ratio is the initial enhanced image and the input image. The
three terms are combined with the squared sum as shown below:

αc
r =

√
m
(

Ic
A
)

m(Ic)
+

m
(

Ic
M
)

m(Ic)
+

m
(

Ic
IE
)

m(Ic)
. (13)

αc =
αc

r + α0

2
. (14)

where αc is the image-adaptive measure; αc
r is the image-adaptive ratio; and α0 is the

initial value, which is set to 5. Using Equations (11)–(14), the enhanced low-light image
can be refined adaptively. The low-light image is enhanced in a way that appears natural
with regard to both its low intensity and haze particles. Moreover, the image’s color can
also be balanced by the proposed method. Therefore, the proposed method has a good
performance for both low-light image enhancement and image color balancing.

3. Results and Discussion

Low-light images are obtained under circumstances where there is insufficient light
and appear dim and dark. To enhance these images, this paper uses IAM. To evaluate the
performance of the proposed method subjectively and objectively, seven state-of-the-art
methods (low-light image enhancement using illumination map estimation (LIME) [9],
low-light image enhancement using the camera response model (LECARM) [12], weakly
illuminated image enhancement using a convolutional neural network (LLINet) [23], the
naturalness preserved enhancement algorithm (NPE) [8], and low-light image enhancement
using the dehazing algorithm (LVED) [19], low light image enhancement with semi decou-
pled decomposition (LISD) [20], and bio inspired multi exposure fusion framework [6]),
and seven databases (LIME [9], NPE [8], NPE ex1 [8], NPE ex2 [8], NPE ex3 [8], MEF [6],
and Exdark [30]) are used under various circumstances. The LIME dataset is used in [9],
and it contains 10 low-light images [6,9]. The NPE dataset is used in [8], and it contains
eight images [6,8]. The NPE external datasets, NPE ex1, NPE ex2, and NPE ex3, contain
low-light scenes captured during cloudy days or at night [6,8]. The MEF dataset has
17 images [6], and the exclusively dark (Exdark) dataset [30] has 7363 images. In this paper,
to compare the existing methods with the proposed method, we select 1200 images from the
Exdark dataset [30]. To evaluate the results objectively, various measures are used. Table 1
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shows the descriptions of various datasets [6,8,9,30]. As shown in Table 1, to compare the
proposed method with the existing methods, images obtained under various conditions are
used. In particular, because the ExDark dataset [30] has 7363 images across 12 categories,
this paper chooses 1200 images by selecting 100 images from each of the 12 categories.

Table 1. Descriptions of dataset [6,8,9,30].

Datasets Descriptions

MEF [6] 17 real-world images, including indoor and outdoor views
LIME [9] 10 natural low-light images
NPE [8] 85 low-light images with four categories; NPE, NPE ex1, NPE ex2, and NPE ex3

ExDark [30]
12 categories, 7363 images

This paper uses 1200 images; 100 images were selected from each of the
12 categories

1. Subjective Comparison

In this research, we created a low-light image enhancement method that uses an
image-adaptive mask and guided image filter [28]. The proposed method demonstrated
a good performance in enhancing low-light images. This section shows a subjective
performance comparison of the proposed method with existing state-of-the-art methods
such as BIMEF [6], LVED [19], LIME [9], LECARM [12], LLINet [23], and NPE [8], LISD [20]
through Figures 4–13. Each Figure shows three low-light images used as inputs before the
images are enhanced using the state-of-the-art methods and the proposed methods are
compared. The numbers with white color in Figures 4–13 refer to the index of the image
number in order.

Figures 4–6 show the experimental results obtained using the LIME [9], NPE [8], and
MEF [6] databases. The LVED method [19] over-enhanced the images, and an artifact effect
can be observed in the sharp edge region. The LIME method [9] produced images that
appear unnatural due to over-enhancement: the river region is over-enhanced, as is the area
reflected by the lamp light. The LISD method [20] enhances the low light image without
over-enhancement area and distortion. The NPE method [8] enhanced the low-light images
unnaturally, especially in the sharp edge regions, and in the light-reflected areas of the
river, a ringing effect occurred. Additionally, the colors in the lamp-lit regions look dimmer.
The LECARM method [12] enhanced the low-light images naturally, and no color shift
occur. The LLINet method [23] enhanced the low-light images in a way that appeared
unnatural in some regions of the image, such as in bright and boundary regions; in other
words, a ringing effect occurred in the edge regions. However, no color shift occurs. The
proposed method enhanced the low-light images naturally in both the edge regions and
the reflectance areas. Moreover, in some cases, the proposed method reflected the image’s
features well, such as its color. While the low-light images were enhanced, the proposed
method, which balanced the images’ color channels well, produced images that looked
natural and had natural colors.

Figures 7–9 show the results obtained using the existing methods and the proposed
method based on images from the LIME [9], NPE [8], MEF [6], and Exdark [30] databases.
The LVED method [19] showed an artifact effect in sharp edge regions. The LIME method [9]
was able to make the pictures look natural. However, this method leads to over-enhancement.
The LISD method [20] enhances the low light image but, the dark area does not improve
efficiency as it does with a light house. The NPE method [8] is able to enhance low-light
images naturally in both dark and bright areas. The LECARM method [12] is able to
enhance low-light images in a way that appears natural. The LLINet method [23] enhances
low-light images in a way that appears unnatural, struggling to deal with bright regions.
The proposed method is able to enhance low-light images in a way that appears natural,
especially in edge regions, dark regions, and bright areas.
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Figures 10–13 show the results obtained using the existing methods and the proposed
method based on images from the Exdark [30] database. The LVED method [19] over-
enhanced the images and created an artifact effect in sharp edge regions. In particular,
the edge lines of the building look unnatural due to over-enhancement. Additionally, a
ringing effect occurred in the boundary regions. The LIME method [9] produced images
that appeared unnatural due to over-enhancement. In particular, a ringing effect occurred
around the boundaries of the buildings and the leaf regions were too bright. The LISD
method [20] enhances the low light image without distortion. The LISD method [20]
enhances the low light image but, the dark area is not improved sufficiently. The NPE
method [8] enhanced low-light images in a way that appeared unnatural. For example,
the ringing effect occurred around the boundary region of the building and there was a
blocked area in the sky due to over-enhancement. The LECARM method [12] was able
to enhance low-light images in a way that appeared natural, and no color shift occurred.
The LLINet method [23] enhanced the low-light images in a way that appeared unnatural,
especially in boundary regions. In other words, a ringing effect was visible in edge regions.
The proposed method was able to enhance low-light images naturally in both the edge
regions and in bright areas.

As shown in Figures 4–13, the enhanced image using some methods showed a ringing
effect that occurred due to over-enhancement between the boundary area and the dark
region. Meanwhile the proposed method was able to improve the low-light images without
causing a ringing effect. Additionally, the proposed method was able to reflect aspects of
the images such as time, light conditions, and reflection.

Although low-light images are taken in dark conditions, the environment of each
image has unique features. Therefore, to enhance low-light images in a way that appears
natural, the images’ features should be reflected. However, the existing methods only
improve the intensity of the image, creating images that appear unnatural. Meanwhile, the
proposed method improves low-light images by maintaining their features as with sunsets,
which have a reddish color and specific time. If the sunset is starting, then the image is
lightly reddish. Furthermore, if the sunset has climaxed, the image is mostly reddish and
dark. This paper reflects the image’s time naturally. Therefore, the performance of the
proposed method is superior to that of state-of-the-art methods.

2. Objective Comparison

A subjective comparison of enhanced low-light images obtained using the proposed
method and existing state-of-the-art methods is shown in Figures 4–13. The performance
of the proposed method is subjectively superior to that of the state-of-the-art methods.
Because obtaining the ground truth in low-light images is not easy, no reference measure
can be used to assess the enhancement of low-light images. To compare the performance of
the proposed method and the existing method objectively, we used three measures: the
contrast enhancement-based image quality (CEIQ) [31] measure, the underwater image
quality measure (UIQM) [32], and the natural image quality evaluator (NIQE) [33]. The
CEIQ [31] and UIQM [32] were used in any no reference image quality assessment. The
NIQE [33] measure was used for low-light images that had been enhanced. The UIQM [32]
is able to reflect the contrast, colorfulness, and sharpness of an image. Low-light images
are dark and show an orange color shift due to light conditions similar to those seen in
underwater images. Therefore, the UIQM [32] is a suitable measure with which to assess
low-light images.

Table 2 provides descriptions of various metrics that can be used for objective compar-
isons. As shown in Table 2, the metrics had any no references because obtaining reference
low-light images in the real world is difficult. Each metric reflects the image’s colorfulness,
sharpness, and contrast. The lower the NIQE score [33] is, the better the image is enhanced
and the higher the quality. If the CEIQ [31] and UIQM [32] scores are high, this indicates
that the improved image is of good quality.
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Table 2. Description of metrics [31–33].

Metrics Description Reference Performance

NIQE [33]

Natural image quality
evaluator; assessment of

natural scene static model
using multivariate

Gaussian model (MGM)

No reference The lower the better

CEIQ [31]
Contrast-enhancement-

based image quality
assessment

No reference The higher the better

UIQM [32]

Underwater image quality
measure; assesses the
image’s colorfulness,

sharpness, and contrast

No reference The higher the better

Tables 3–11 show the values obtained for the CEIQ [31] and UIQM [32] measurements
shown in Figures 4–13, representing all datasets. Tables 3–5 show the CEIQ [31] measure-
ments provided in Figures 4–13. If the image is enhanced well, then the CEIQ [31] will
have a high score.

Table 3. Comparison of the CEIQ [31] score obtained in Figures 4–7, in order (the higher the score is,
the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

1 3.301 3.495 3.207 2.770 3.428 3.173 3.451 3.532
2 3.370 3.625 3.357 2.975 3.480 3.324 3.200 3.684
3 2.933 3.331 3.116 2.857 3.131 3.195 3.271 3.506
4 3.398 3.494 3.299 3.156 3.381 3.409 3.499 3.665
5 3.409 3.459 3.523 3.496 3.466 3.540 3.598 3.410
6 3.365 3.463 3.342 3.117 3.306 3.392 3.481 3.552
7 3.382 3.542 3.259 3.196 3.405 3.427 3.358 3.532
8 3.505 3.682 3.486 3.287 3.629 3.575 3.469 3.599
9 3.530 3.619 3.489 3.369 3.517 3.579 3.528 3.640
10 3.667 3.661 3.646 3.578 3.681 3.724 3.646 3.616

AVG 3.386 3.537 3.372 3.180 3.442 3.434 3.450 3.574

Table 4. Comparison of the CEIQ [31] score obtained for images shown in Figures 7–10, in order (the
higher the score is, the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

11 2.970 3.090 2.563 2.967 2.691 2.848 2.604 3.006
12 3.189 3.488 3.227 2.946 3.301 3.360 3.129 3.543
13 3.401 3.481 3.474 3.371 3.486 3.532 3.350 3.477
14 3.235 3.233 3.359 3.399 3.248 3.316 3.125 3.229
15 3.235 3.390 3.425 3.287 3.395 3.515 3.432 3.545
16 3.356 3.655 3.179 3.157 3.467 3.180 2.994 3.593
17 3.660 3.497 3.502 3.467 3.588 3.591 3.610 3.600
18 2.680 3.431 2.923 3.195 2.989 3.018 2.987 3.352
19 3.472 3.654 3.371 3.216 3.641 3.507 3.099 3.587
20 3.080 3.361 2.923 2.685 2.967 2.895 2.750 3.334

AVG 3.228 3.428 3.195 3.169 3.277 3.276 3.108 3.427



Symmetry 2022, 14, 1165 22 of 31

Table 5. Comparison of the CEIQ [31] scores obtained for images shown in Figures 10–13, in order
(the higher the score is, the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

21 3.517 3.656 3.530 3.317 3.618 3.542 3.273 3.580
22 3.164 3.392 3.225 2.812 3.268 3.187 3.056 3.637
23 3.249 3.497 3.320 2.895 3.400 3.294 3.019 3.614
24 3.440 3.647 3.275 3.072 3.510 3.373 3.330 3.560
25 3.306 3.452 3.324 3.027 3.344 3.407 3.223 3.567
26 3.445 3.714 3.373 3.269 3.600 3.553 3.686 3.628
27 3.335 3.587 3.345 2.999 3.497 3.322 3.116 3.657
28 3.388 3.653 3.434 2.977 3.524 3.353 3.198 3.656
29 3.484 3.652 3.420 3.230 3.526 3.512 3.548 3.606
30 3.368 3.537 3.323 3.142 3.418 3.408 3.232 3.670

AVG 3.370 3.579 3.357 3.074 3.471 3.395 3.268 3.618

Table 6. Comparison of the UIQM [32] scores obtained for images shown in Figures 4–7, in order (the
higher the score is, the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

1 1.664 1.632 1.394 1.516 1.560 1.286 1.547 2.067
2 1.647 1.629 1.521 1.636 1.627 1.647 1.642 1.737
3 1.719 1.725 1.498 1.631 1.664 1.600 1.644 1.970
4 1.550 1.525 1.336 1.473 1.450 1.348 1.500 1.775
5 1.291 1.261 1.109 1.199 1.196 1.164 1.228 1.506
6 1.594 1.583 1.330 1.502 1.511 1.457 1.495 1.849
7 1.649 1.629 1.546 1.627 1.619 1.630 1.590 1.915
8 1.679 1.654 1.733 1.761 1.697 1.762 1.751 1.435
9 1.754 1.756 1.575 1.710 1.720 1.701 1.647 1.920
10 1.482 1.458 1.412 1.432 1.454 1.500 1.452 1.523

AVG 1.603 1.585 1.445 1.549 1.550 1.510 1.550 1.770

Table 7. Comparison of the UIQM [32] scores obtained for images shown in Figures 7–10, in order
(the higher the score is, the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

11 1.092 0.928 0.662 1.058 0.725 0.706 0.907 1.037
12 1.782 1.750 1.575 1.652 1.669 1.722 1.684 1.859
13 1.493 1.333 1.166 1.279 1.262 1.347 1.320 1.583
14 1.389 1.369 1.216 1.297 1.319 1.282 1.293 1.654
15 1.488 1.463 1.164 1.350 1.355 1.198 1.365 1.838
16 1.845 1.846 1.674 1.797 1.826 1.703 1.834 1.782
17 1.869 1.707 1.702 1.777 1.757 1.754 1.767 1.562
18 1.863 1.949 1.445 1.787 1.736 1.378 1.699 2.092
19 1.909 1.890 1.858 1.888 1.889 1.932 1.972 1.631
20 2.076 2.010 1.743 1.883 1.963 1.772 1.978 1.967

AVG 1.681 1.625 1.421 1.577 1.550 1.479 1.582 1.701
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Table 8. Comparison of the UIQM [32] score obtained for images shown in Figures 10–13, in order
(the higher the score is, the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

21 1.795 1.869 1.587 1.691 1.776 1.857 1.717 1.871
22 2.004 1.940 1.752 1.882 1.888 2.043 1.995 1.771
23 1.816 1.757 1.575 1.725 1.722 1.742 1.788 1.937
24 1.824 1.793 1.593 1.745 1.729 1.732 1.751 1.899
25 1.752 1.683 1.482 1.645 1.620 1.577 1.595 1.925
26 1.489 1.498 1.214 1.396 1.367 1.247 1.513 1.827
27 1.902 1.924 1.692 1.860 1.873 1.874 1.869 1.869
28 1.993 2.016 1.747 1.920 1.965 2.036 1.970 1.822
29 1.858 1.876 1.698 1.808 1.797 1.828 1.827 1.862
30 1.698 1.681 1.589 1.649 1.652 1.661 1.616 1.781

AVG 1.813 1.804 1.593 1.732 1.739 1.760 1.764 1.856

Table 9. Comparison of the CEIQ [31] and UIQM [32] scores obtained for images shown in Figures 4–13
[6,8,9,30] (the higher the score is, the better the enhanced image is).

LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

CEIQ [31] 3.328 3.515 3.308 3.141 3.397 3.368 3.275 3.539
UIQM [32] 1.699 1.671 1.486 1.619 1.613 1.583 1.632 1.776

Table 10. Comparison of the CEIQ [31] scores (datasets [6,8,9,30]) (the higher the score is, the better
the enhanced image is).

LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

LIME [9] 3.208 3.483 3.143 3.031 3.229 3.150 3.229 3.402
NPE [8] 3.484 3.485 3.480 3.457 3.476 3.488 3.450 3.502

NPE ex1 [8] 3.307 3.345 3.268 3.283 3.285 3.338 3.298 3.388
NPE ex2 [8] 3.475 3.482 3.417 3.402 3.461 3.472 3.431 3.481
NPE ex3 [8] 3.401 3.427 3.331 3.310 3.390 3.386 3.386 3.408

MEF [6] 3.282 3.441 3.109 3.183 3.190 3.152 3.333 3.364
Exdark [30] 3.119 3.321 3.038 2.972 3.084 3.052 3.037 3.289

Table 11. Comparison of the UIQM [32] scores (datasets [6,8,9,30]) (the higher the score is, the better
the enhanced image is).

LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

LIME [9] 1.625 1.595 1.443 1.552 1.558 1.507 1.572 1.706
NPE [8] 1.457 1.444 1.319 1.37 1.392 1.401 1.409 1.653

NPE ex1 [8] 1.482 1.439 1.343 1.430 1.394 1.388 1.439 1.530
NPE ex2 [8] 1.454 1.415 1.280 1.377 1.354 1.352 1.378 1.578
NPE ex3 [8] 1.600 1.526 1.460 1.510 1.504 1.516 1.552 1.618

MEF [6] 1.559 1.522 1.354 1.459 1.475 1.341 1.451 1.727
Exdark [30] 1.677 1.626 1.488 1.576 1.615 1.577 1.595 1.689

Table 3 shows a comparison of the CEIQ [31] scores obtained for the existing methods
and for the proposed method for the images shown in Figures 4–7 in order. A higher
CEIQ [31] score indicates that the enhanced image is better. The LIME method [9] obtained
the brightest images among all the existing methods for the images shown in Figures 4–7;
its CEIQ [31] score was therefore high because the CEIQ measure indicates the contrast of
an image. The LISD method [20] has a lower CEIQ score than the LIME method [9] in some
images because the CEIQ measure reflects the image’s contrast. The NPE and LECARM
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methods [8,12] produced images that were less bright than those produced using the LIME
method [9] and obtained lower CEIQ [31] scores than the LIME method [9] because the
contrast of their enhanced images was lower than that of images enhanced using the LIME
method [9]. The proposed method produced enhanced images that appeared natural, and
its CEIQ [31] score was higher than those obtained by the existing methods.

Table 4 shows the comparison of the CEIQ [31] scores obtained by the existing methods
and the proposed method for the images shown in Figures 7–10 in order. The LIME
method [9] obtained the brightest images among the existing methods, and its CEIQ [31]
score was higher than the score obtained by the other methods because the CEIQ measure
reflects the contrast of an image. The LVED method [19] led to an artifact effect in the
edge regions, and this method achieved a the lower CEIQ [31] score than the LIME [9]
method did because the contrast of the images enhanced using the LVED method [19] was
lower than that of the images enhanced using the LIME method [9]. The enhanced image
using the LISD method [20] has a lower CEIQ score than the LIME method [9] because the
enhanced image using the LIME method [9] has an overflowed area and these are bright.
The enhanced image using the NPE method [8] has lower CEIQ score than LECARM
method [12]. Though the LECARM method [12] enhanced the images better than the NPE
method did [8], the CEIQ [31] score obtained by the LECARM method [12] was higher
than that obtained by the NPE method [8]. Because the LLINet method [23] produced
over-enhanced regions, its CEIQ [31] score was lower than that of the NPE method [8]. The
images that were enhanced using the proposed method showed natural-looking dark and
bright regions, and its CEIQ [31] score was also higher than that of the LVED [19] method,
as the CEIQ score reflects the contrast of an image.

Table 5 shows the CEIQ [31] scores obtained using the existing methods and the
proposed method for the images shown in Figures 10–13 in order. The LVED method [19]
led to a ringing effect in edge regions, and its CEIQ [31] score was lower than that of
the LIME [9] method because the images enhanced using the LIME method [9] were
brighter than those enhanced using the LVED method [19]. Though the LIME method [9]
produced over-enhanced regions and a ringing effect, its CEIQ [31] score was higher than
that of the NPE method [8] in some images because the CEIQ score reflects the contrast
of an image. The NPE method [8] showed the lowest CEIQ [31] value among all of the
compared methods for some images. The LISD method [20] has a higher CEIQ score than
the NPE method [8] because the CEIQ measure reflects the image’s contrast. The LECARM
method [12] received a lower CEIQ [31] value than the LIME method [9]. The LLINet
method [23] showed a ringing effect in boundary regions, but its CEIQ [31] score was
higher than that of the NPE [8] method because the CEIQ score reflects the contrast of an
image. Though the proposed method does not produce a ringing effect, its CEIQ [31] score
was lower than that of the LIME [9] method for some images because the CEIQ reflects the
contrast of an image. As shown by the CEIQ [31] scores, in some cases, even though no
ringing effect was observed and the image was enhanced in a way that appeared natural,
the CEIQ [31] score may not be the highest. The CEIQ [31] score is not a perfect measure
for assessing enhanced low-light images because the CEIQ only reflects the contrast of
an image.

Tables 6–8 show the UIQM [32] scores obtained for images shown in Figures 4–13. The
images were enhanced well, and the UIQM scores were high.

Table 6 shows the UIQM [32] scores obtained for images shown in Figures 4–7 in order.
The LVED method [19] produced a higher UIQM score than the other existing methods,
even though in some enhanced images a ringing effect was visible. This is because the
UIQM score reflects the sharpness, contrast, and colorfulness of an image. The LISD
method [20] has a lower UIQM score than the LECARM method [12] because the UIQM
measure reflects the image’s contrast, sharpness, and colorfulness. The LIME [9] method
produced a lower UIQM [32] score than the LVED method [19], even though the images that
were enhanced using this method were the brightest subjectively. This is because the UIQM
score reflects the contrast, sharpness, and colorfulness of an image. The BIMEF [6] method
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received a lower UIQM [32] score than the LVED method [19], even though the enhanced
images showed less of a ringing effect than those enhanced using the LVED method [19].
This is because the UIQM score reflects the contrast, sharpness, and colorfulness of an
image. The NPE [8] method received a lower UIQM [32] score than the LVED method [19]
because the UIQM measure consists of the image’s sharpness, contrast, and colorfulness.
The LECARM [12] method has a higher UIQM [32] score than the BIMEF [6] method. The
LLINet [23] method has a lower UIQM [32] score than the LVED method [19] because the
UIQM score reflects the image’s contrast, colorfulness, and sharpness. Meanwhile, the
proposed method has a higher UIQM [32] score than the other methods because the UIQM
score consists of the image’s colorfulness, sharpness, and contrast.

Table 7 shows the UIQM [32] scores for Figures 7–10 in order. The LVED method [19]
has a higher UIQM [32] score than the other methods, though the images that were using
this method have a visible ringing effect because the UIQM score measures an image’s
sharpness, colorfulness, and contrast. The LISD method [20] has a lower UIQM score
than LLINet [23] because the UIQM score reflects the image’s contrast, colorfulness, and
sharpness. The LIME [9] method has a higher UIQM [32] score than the BIMEF [6] method
even though some of the images that were enhanced using this method look unnatural.
The BIMEF [6] method has a lower UIQM [32] score than the other methods. The NPE [8]
method has a lower UIQM [32] score than the LIME [9] method. The LECARM [12] method
has a lower UIQM [32] score than the LVED method [19] because the UIQM score reflects
the image’s contrast, sharpness, and colorfulness. The LLINet [23] method has a lower
UIQM [32] score than the LVED [19] and LIME [9] methods. The images that were enhanced
using the proposed method have a higher UIQM [32] score than those enhanced using
the other methods because the UIQM measure composes the image’s sharpness, contrast,
and colorfulness.

Table 8 shows the UIQM [32] scores of Figures 10–13 in order. The LVED method [19]
has a higher UIQM [32] score than the other methods even though the images that were
enhanced using this method have a visible ringing effect because the UIQM score reflects
the image’s colorfulness, contrast, and sharpness. The LISD method [20] has a higher
UIQM score than the LECARM method [12] because the UIQM score reflects the image’s
colorfulness, sharpness, and contrast. The LIME [9] method has a lower UIQM [32] score
than the LVED method [19]. The BIMEF [6] method has a lower UIQM [32] score than the
LIME [9] method even though the images that were enhanced using the LIME [9] method
look more unnatural than those obtained using the BIMEF [6] method because the UIQM
score composes image’s sharpness, contrast, and colorfulness. The NPE [8] method has
a lower UIQM [32] score than the LIME [9] method. The LECARM [12] method has a
lower UIQM [32] score than the LVED [19] and LIME [9] methods. The LLINet [23] method
has a higher UIQM [32] score than that of the LECARM [12] method. The images that
were enhanced using the proposed method have higher UIQM [32] scores than the other
methods because the UIQM score reflects the image’s contrast, sharpness, and colorfulness.

Table 9 shows the average CEIQ [31] and UIQM [32] scores for Figures 4–13. The LVED
method [19] has a lower CEIQ [31] score than the LIME [9] method due to the resulting
images looking unnatural, as shown in Figures 4–13. The LIME method [9] has the brightest
enhanced results, and its CEIQ [31] score is higher than that of the LVED method [19]. The
NPE method [8] has a lower CEIQ [31] score than the LIME [9] and LVED [19] methods. The
LISD method [20] has a lower CEIQ score than the LECARM method [12]. The LECARM
method [12] has a lower CEIQ [31] score than the LIME method [9] in some images,
even though the images that were obtained showed better enhancement results than the
other methods. The LLINet method [23] has a lower CEIQ [31] score than the LIME [9]
and LVED [19] methods in some images, and the resulting images show over-enhanced
regions. The proposed method has a higher CEIQ [31] score than that of the other methods.
The LVED method [19] has a higher UIQM [32] score than the other methods. The LIME
method [9] has a lower UIQM [32] score than the LVED method [19]. The BIMEF method [6]
has a lower UIQM [32] score than the LIME method [9]. The NPE method [8] has a higher
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UIQM [32] score than the BIMEF [6] method. The LECARM method [12] has a lower
UIQM [32] score than the NPE method [8]. The LLINet method [23] has a higher UIQM [32]
score than the LECARM method [12]. The proposed method has a higher UIQM [32] score
than the other methods.

Tables 10 and 11 show the CEIQ [31] and UIQM [32] scores for all of the databases:
LIME [9], NPE (including NPE, NPE ex1, NPE ex2, and NPE ex3) [8], MEF [6], and
Exdark [30].

Table 10 shows the CEIQ [31] scores for all of the methods. The LIME method [9]
obtained a higher CEIQ [31] score than the other methods for the LIME, NPE ex2, NPE ex3,
MEF, and Exdark datasets [6,8,9,30]. The proposed method obtained a higher CEIQ [31]
score on the NPE, NPE ex1, and NPE ex3 datasets [8].

Table 11 shows the UIQM [32] scores obtained for each of the methods. The LVED
method [19] obtained a higher score than the other methods on the LIME [9], NPE ex1, ex2,
and ex3, Exdark datasets [8,30]. The proposed method obtained a higher UIQM [32] score
than the other methods on the LIME, NPE, NPE ex1, NPE ex2, NPE ex3, MEF, and Exdark
datasets [6,8,9,30].

From Figures 4–13 and Tables 3–11, it can be seen that even though the CEIQ [31] scores
and UIQM [32] scores had high values, the enhanced images look unnatural. As shown
in the results, the CEIQ [31] and UIQM [32] measures cannot correctly assess enhanced
low-light images.

Table 12 shows the NIQE scores [33] obtained for the images shown in Figures 4–7
in order. The NIQE score indicates how natural an image appears. If the image has
been enhanced well, the NIQE score will be low, and vice versa. The LVED method [19]
obtained a higher NIQE score than the LIME method [9] for some images. The images
enhanced using the LVED method [19] had artificial effects; due to this, the images seemed
unnatural, and thus the NIQE score was high. The LISD method [20] has a lower NIQE
score than the LLINet method [23] because some of the enhanced images using the LLINet
method [23] have a ringing effect and area of distortion. The LIME method [9] obtained a
lower NIQE score than the LVED [19] method, even though it created overflow regions. The
BIMEF [6] method obtained a higher NIQE score than the LVED [19] and LIME [9] methods,
even though the images enhanced using the BIMEF method [6] contained no overflow
regions. The NPE method [8] obtained a lower NIQE score than the BIMEF method [6].
The LECARM method [12] obtained a higher NIQE score than the LVED method [19]
and the LIME method [9], even though the images enhanced using this method had no
overflow regions. The LLINet method [23] obtained a higher NIQE score than the LECARM
method [12]. Because the images enhanced using the LLINet method [23] featured a ringing
effect in bright regions, the NIQE score was higher than that of the LECARM method [12].
The proposed method obtained a lower NIQE score than the other methods. As shown in
Table 12, the NIQE score indicates how natural an image appears based on its clearness,
sharpness, and contrast.

Table 13 shows the NIQE [33] scores obtained for the images shown in Figures 7–10
in order. The LVED method [19] obtained a lower NIQE score than the LIME method [9]
though the images enhanced using this method [19] having artificial effects. The LIME
method [9] obtained a lower NIQE score than the BIMEF method [6], even though the
images enhanced using the LIME method [9] had overflow regions. The BIMEF method [6]
obtained a higher NIQE score than the NPE method [8]. The NPE method [8] obtained
a higher NIQE score than the LECARM method [12]. The LISD method [20] has a lower
NIQE score than the LLINet method [23] because the enhanced image using the LLINet
method [23] has an artificial effect. The LLINet method [23] obtained a higher NIQE score
than the LECARM method [12] because the images enhanced using the LLINet method [23]
had a ringing effect. The proposed method obtained a lower NIQE score than the other
methods. As shown in Table 13, the NIQE score mainly reflects the brightness, sharpness,
and contrast of an image.
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Table 14 shows the NIQE scores [33] obtained for images shown in Figures 10–13 in
order. The LVED method [19] obtained a lower NIQE score than the LIME method [9]
because some of the images enhanced using the LVED method [19] had artificial effects.
The LIME method [9] obtained a lower NIQE score than the BIMEF [6] method, even
though the images enhanced using the LIME method [9] had overflow regions. The BIMEF
method [6] obtained a higher NIQE score than the NPE method [8]. The LISD method [20]
has a higher NIQE score than the LIME method, though the enhanced image using the
LISD method [20] has no overflow region. Therefore, the NIQE score is not an absolute
measure, but is a referenceable measure. The LECARM method [12] obtained a lower NIQE
score than LLINet [23] because the images enhanced using the LLINet method [23] had a
ringing effect. The proposed method obtained a lower NIQE score than the other methods.
As shown in Table 14, the NIQE shows how natural an image appears based on its contrast,
sharpness, and colorfulness.

Table 12. The comparison of the NIQE [33] score on Figures 4–7 in order. (The lower the score, the
better the enhanced image.).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

1 17.217 17.530 17.951 18.047 17.826 17.601 18.098 16.540
2 17.329 17.481 18.663 18.439 17.823 19.112 18.530 17.282
3 18.100 18.873 19.902 18.828 18.940 20.624 19.050 17.677
4 16.864 16.389 17.178 17.237 16.719 17.061 16.800 15.530
5 17.541 17.152 18.646 18.157 18.078 18.906 18.052 16.495
6 18.861 19.436 19.867 19.519 19.789 19.623 19.963 17.663
7 15.951 15.797 17.552 17.350 16.654 16.616 17.970 15.593
8 17.090 16.320 17.613 17.886 16.823 16.769 17.429 16.102
9 16.745 15.939 17.838 17.595 16.861 17.471 18.307 16.563
10 16.957 17.695 20.402 18.800 18.852 19.742 19.426 16.595

AVG 17.266 17.261 18.561 18.186 17.837 18.352 18.363 16.604

Table 13. The comparison of the NIQE [33] scores of Figures 7–10 in order. (The lower the score, the
better the enhanced image.).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

11 17.943 18.196 18.606 18.307 18.451 18.930 18.633 17.709
12 18.145 17.742 18.775 18.995 18.594 18.729 18.958 16.913
13 17.232 17.687 18.573 18.835 18.095 18.390 18.605 17.032
14 16.949 16.701 17.782 17.704 17.380 17.530 17.707 16.189
15 18.393 20.106 19.600 18.622 19.893 20.584 20.100 17.198
16 17.596 18.223 20.605 19.417 19.633 20.101 19.828 17.716
17 17.663 17.123 17.903 18.260 17.343 16.960 17.695 16.525
18 18.557 18.732 18.932 18.685 18.739 20.001 18.669 18.149
19 17.952 17.257 19.801 19.812 17.844 18.214 20.216 16.631
20 18.411 18.318 19.307 18.347 18.660 19.258 19.431 17.553

AVG 17.884 18.009 18.988 18.698 18.463 18.870 18.984 17.162
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Table 14. Comparison of the NIQE [33] scores for images shown in Figures 10–13, in order (the lower
the score is, the better the enhanced image is).

Image # LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

21 19.206 17.498 19.462 20.967 18.113 19.799 22.290 16.056
22 19.012 18.954 21.762 20.841 19.865 21.702 21.769 18.480
23 19.784 18.141 20.313 21.612 19.499 20.177 20.982 16.215
24 17.199 16.945 18.071 18.353 17.279 17.845 18.251 16.752
25 17.751 17.544 17.393 18.076 17.898 17.395 17.842 16.596
26 19.446 20.408 21.798 19.285 21.040 22.646 20.126 18.970
27 18.539 18.128 19.085 19.213 18.529 19.507 19.583 16.889
28 17.951 18.057 19.654 19.456 18.637 19.280 19.683 16.374
29 17.574 17.397 18.706 18.837 18.075 18.208 19.166 16.160
30 18.324 18.415 19.518 19.335 18.816 18.939 20.200 16.682

AVG 18.479 18.149 19.576 19.598 18.775 19.550 19.989 16.917

Table 15 shows the average NIQE score [33] obtained for images shown in Figures 4–13.
The LVED method [19] obtained a higher NIQE score than the LIME method [9] because the
images enhanced using the LVED method [19] had artificial effects. The LIME method [9]
obtained a lower NIQE score than the BIMEF method [6], even though the images enhanced
using the LIME method [9] had overflow regions. The BIMEF method [6] obtained a higher
NIQE score than the LVED method [19], even though the images enhanced using the LVED
method had artificial effects. The LISD method [20] has a lower NIQE score than the LLINet
method [23]. The NPE method [8] obtained a lower NIQE score than the BIMEF method [6].
The LECARM method [12] obtained a lower NIQE score than the NPE method [8]. The
LLINet method [23] obtained a higher NIQE score than the LECARM method [12] because
the images enhanced using the LLINet method [23] showed a ringing effect. The proposed
method obtained a lower NIQE score than the other methods because the images enhanced
using this method had no overflow region or artificial effects. As shown in Table 15, the
NIQE score reflects the sharpness, contrast, and colorfulness of an enhanced image.

Table 15. Comparison of the average NIQE [33] scores obtained for images shown in Figures 4–13
[6,8,9,30] (the lower the score is, the better the enhanced image is).

LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

NIQE [33] 17.876 17.806 19.042 18.827 18.358 18.924 19.112 16.894

Table 16 shows the average NIQE scores [33] obtained for all datasets [6,8,9,30]. The
LVED method [19] obtained a higher average NIQE score than the LIME method [9] in
LIME [9], NPE ex1, ex2, ex3 [8], and Exdark [30] datasets because the images enhanced
using the LVED method [19] had an artificial effect. The LIME method [9] obtained a lower
NIQE score than the BIMEF method [6] because the images enhanced using the LIME
method [9] had a high contrast. The NPE method [8] obtained a lower NIQE than the
BIMEF method [6]. The LECARM method [12] obtained a lower NIQE score than the NPE
method [8] in LIME [9], NPE ex1, ex2, ex3 [8], and Exdark [30] datasets because the images
enhanced using the LECARM method [12] had a high contrast. The LLINet method [23]
obtained a higher NIQE score than the LECARM method [12] in LIME [9], NPE ex1, ex2,
ex3 [8], MEF [6], and Exdark [30] datasets because the images enhanced using the LLINet
method [23] had a ringing effect and artificial effect. The proposed method obtained a
lower NIQE score than the other methods because the images enhanced using the proposed
method had no ringing effect, artificial effect, or high contrast.
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Table 16. Comparison of the average NIQE [33] scores (datasets [6,8,9,30]) (the lower the score is, the
better the enhanced image is).

LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

LIME [9] 18.017 17.907 18.996 18.678 18.599 19.023 18.880 17.770
NPE [8] 19.019 20.381 20.617 20.122 21.451 19.929 20.318 17.531

NPE ex1 [8] 17.618 17.467 18.479 18.232 18.124 19.881 18.335 17.042
NPE ex2 [8] 17.474 17.341 18.648 18.330 18.111 18.659 18.538 16.928
NPE ex3 [8] 17.545 17.352 18.314 18.274 17.894 17.637 18.312 16.835

MEF [6] 18.577 19.016 20.352 19.408 19.861 20.915 19.990 18.224
Exdark [30] 17.725 17.517 19.147 18.668 18.578 19.518 19.244 17.629

As shown in Table 16, to enhance low-light images efficiently, the image’s contrast
and artificial effect are considered. Moreover, the strength of the proposed method over
the machine learning-based method as with LLINet [23] is that the proposed method has a
color balancing procedure. Most low-light images have imbalanced color channels due to
the color of the ramp light. Therefore, to enhance the low-light image naturally, balancing
of the color channel is needed while reflecting the image’s features. However, the LLINet
method [23] has neither a color balancing step nor adaptively reflects various images’
features, and as a result, the enhanced image using the LLINet method [23] has a distortion
effect and an overflow in certain regions. Therefore, the proposed method is superior to the
LLINet method [23], both objectively and subjectively.

Table 17 shows the comparison of the computation power between the existing meth-
ods and the proposed method. The system environment used was Windows 10, Intel®

core™ i7-8700 CPU @3.20 GHz, 32.0 GB RAM. Although the BIMEF [6], LECARM [12], and
LIME [9] methods have short computational times, the enhanced images have degraded
features such as color shifts and a ringing effect.

Table 17. The comparison of the computing power (s).

Image Size LVED [19] LIME [9] BIMEF [6] NPE [8] LECARM [12] LISD [20] LLINet [23] PM

500 × 375 0.214 0.069 0.081 5.204 0.086 2.494 1.792 0.187
2000 × 5000 3.106 1.142 1.159 79.575 1.376 43.094 26.717 3.1872

As shown in Figures 4–13 and Tables 3–16, the enhanced low light image using the
proposed method is superior both subjectively and objectively. The strength of the proposed
method is that the enhanced image seems to naturally reflect the image’s time, such as
with sunsets. The sunset image has a reddish color, and the enhanced image using existing
methods has more of a reddish color than the input image, and it is not enhanced naturally.
To enhance the low-light image naturally, the image’s real color components should be
reflected, not just emphasizing the intensity value. Therefore, the naturally enhanced
low-light image would seem to be a color-balanced image following the increase in the
intensity value. The enhanced image using the proposed method seems to be a natural
color, reflecting the image’s time. This is the main strength of the proposed method.

4. Conclusions

This paper proposes the use of a low-light image enhancement method based on an
image-adaptive mask. To enhance a low-light image adaptively, the image was stretched
by means of an adaptive ellipse using the image’s average value, which acts as a scaling
factor. The stretched image has enhanced features, but the high-intensity regions are also
enhanced and can be too bright. To compensate for this effect, an IAM was used. By
applying this, both the low- and high-intensity parts of the image were enhanced in a way
that appeared natural. Moreover, the proposed method can achieve color compensation,
and due to this, the enhanced images will have a natural color as this method does not just
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increase the intensity value. Even though the low-light images were enhanced, the noise
components were also increased; therefore, in this paper, we used an image-guided filter to
naturally improve the images. These enhanced low-light images had natural features as
well as both dark and bright regions. The strength of the proposed method is that it is able
to correct the color of images. For example, in the case of images of sunsets, where images
are only enhanced with regard to their intensity, the enhanced image will seem reddish
and unnatural. However, the proposed method enhances low-light images considering
both their intensity value and color channel compensation, meaning that the enhanced
image appears natural. Additionally, to compare the proposed method subjectively and
objectively, existing state-of-the-art methods and various measures were used. To assess
the performance of the proposed method in various circumstances, seven databases were
used. The proposed method showed a competitive performance in terms of its ability to
enhance low-light images, as can be observed in the comparison results. The improvement
of low-light images is a tough task because the dark regions and bright regions of the
image show neither a symmetrical distribution nor an asymmetrical distribution. Therefore,
the proposed low-light image enhancement method using an image-adaptive mask can
contribute to the fields of computer vision and image recognition. However, the proposed
method has limitations in severely dark images, as in some circumstances where the
intensity values of all color channels are close to zero, the proposed method is not able to
enhance the image sufficiently.

As shown in the results, to enhance low-light images in a way that appears natural,
not only the image’s intensity but also the colors of the image, such as its dark colors and
bright colors, should receive significant consideration. This will be the theme of future
work based on this paper.
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LECARM Low-light image enhancement using camera response model
LISD Low light image enhancement using semi decoupled decomposition
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