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Abstract: Surrogate-model-assisted uncertainty treatment practices have been the subject of increas-
ing attention and investigations in recent decades for many symmetrical engineering systems. This
paper delivers a review of surrogate modeling methods in both uncertainty quantification and prop-
agation scenarios. To this end, the mathematical models for uncertainty quantification are firstly
reviewed, and theories and advances on probabilistic, non-probabilistic and hybrid ones are dis-
cussed. Subsequently, numerical methods for uncertainty propagation are broadly reviewed under
different computational strategies. Thirdly, several popular single surrogate models and novel hybrid
techniques are reviewed, together with some general criteria for accuracy evaluation. In addition,
sample generation techniques to improve the accuracy of surrogate models are discussed for both
static sampling and its adaptive version. Finally, closing remarks are provided and future prospects
are suggested.

Keywords: uncertainty quantification; uncertainty propagation; surrogate modeling; sampling
strategy; symmetrical engineering systems

1. Introduction

Practical engineering structures are inevitably rife with diverse types of uncertainties
related to model assumption, material property, loads, boundary conditions, etc. In general,
these uncertainties can be classified into two categories: aleatory uncertainty and epistemic
uncertainty [1]. In this context, aleatory uncertainty reveals the inherent variation in the
system and is irreducible but can be described by a probability distribution. However,
epistemic uncertainty reflects a lack of knowledge of the system and is reducible if more
information is procured. Tackling these uncertainties in an effective manner has become a
critical consideration for both practitioners and academicians.

Uncertainty quantification is a route of the quantitative representation of and reduction
in uncertainties in both simulation and practical applications. With the perquisite of
sufficient samples, the probabilistic model has always been the most popular scheme
to tackle the aleatory uncertainty [2,3]. For those scenarios with scarce samples, various
representative non-probabilistic theories have been developed for the treatment of epistemic
uncertainty, including fuzzy theory, interval theory, convex models, evidence theory, and
so on [4]. Apart from the traditional schemes, several recent studies have also suggested a
more applicable hybrid framework to tackle coexisting uncertainties in engineering systems
with increasing complexity [5–7].

As another important issue in uncertainty treatment, uncertainty propagation focuses
on characterizing the impact of fluctuations in the input parameters on system responses.
Compared with the probability distribution function, some easy-to-procure indicators, e.g.,
the statistical moments of response, are more applicable in engineering practices [8]. To
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this end, various numerical methods have flourished and have been successfully applied in
structural stochastic response analysis, reliability analysis, robust design, multidisciplinary
optimization, etc. [9–11]. As the complexity of simulation models grows, however, the
corresponding computational cost of these conventional numerical methods becomes
increasingly unaffordable.

To alleviate the computing burden, the surrogate model (also known as the meta-
model) has been an attractive alternative, wherein a cheap-to-run approximation model
is constructed to replace the original time-consuming high-fidelity simulation. Until now,
various surrogate models and auxiliary optimization algorithms have been developed to
deliver better predictions [12,13]. In addition to pursuing a more accurate surrogate model,
selecting appropriate samples is another way to help enhance the prediction accuracy, and
thus the literature on sampling strategies of the surrogate model has also seen a rapid
increase in recent decades [14].

This paper aims to provide a general review of the advances in both uncertainty
treatment and the surrogate model in the past two decades. The remainder of this paper
is organized as follows. Firstly, mathematical models for uncertainty quantification, in-
cluding probabilistic, non-probabilistic and hybrid ones, are discussed in Section 2. In
Section 3, numerical methods are divided into four categories to address their differences
in uncertainty propagation. Section 4 presents several popular surrogate models and their
hybrid strategies successively, together with a range of commonly used criteria for accuracy
evaluation. For sampling strategies in surrogate modeling, Section 5 discusses the one-shot
and sequential ones, respectively. Finally, Section 6 closes the paper by encapsulating the
main points and concluding remarks.

2. Mathematical Models in Uncertainty Quantification

In this section, various uncertainty modeling techniques, including probabilistic, non-
probabilistic and hybrid methods, are reviewed with a focus on their recent advances.
Since probabilistic methods have been well studied and applied in engineering scenar-
ios, the invariant/time-variant/space-variant characteristics of random parameters are
summarized and discussed in this section. As a series of attractive tools in measuring the
uncertainties with insufficient information, existing non-probabilistic methods are subse-
quently discussed, together with their fundamentals. Finally, hybrid strategies concerning
multiple uncertain modeling techniques are classified with a closing review.

2.1. Probabilistic Models

Under the probabilistic framework, as shown in Figure 1, the statistical character-
istic of uncertain parameters can be described by random variables, stochastic process
or random fields [15]. The probability density functions (PDF) with different colors in
Figure 1a illustrate the impact of Gaussian distribution parameters on random variables.
Considering the time-/space-varying characteristics of the random variable, stochastic
process and random fields are displayed in Figure 1b and 1c, respectively. According to the
probability theory, a random variable X defined on the probability triple (Ω,F, P) maps a
random event θ ∈ Ω to real value in Rn [15]. For brevity but without loss of generality, a
collection of random variables {H : H(θ, w) = Xw(θ), w ∈ Rn} can be exploited to repre-
sent the stochastic process or random field, where w is the index indicating time or position,
respectively.

For many random parameters measured in engineering practices, such as geometry
size, material properties and loads applied to structures, there are inevitably small fluctu-
ations in their observed values. When sufficient samples are provided, the accurate PDF
of these random variables can be easily procured to quantify their uncertainties. There
are a variety of probability distributions widely adopted in engineering practices, includ-
ing Gaussian, Poisson, and Weibull distributions [16–19]. For multidimensional random
variables, the easy-to-procure incomplete information such as statistical moments and
marginal probability distributions, instead of the precise joint probability distribution, is
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often exploited to measure the randomness of parameters. To obtain the above statisti-
cal information, many probabilistic methods have been widely adopted, such as Nataf
transformation and the Copula function [20,21]. Based on data-driven strategies, emerging
machine learning-aided techniques also provide an attractive alternative for uncertainty
quantification [22,23]. As an extension of deterministic finite element method (FEM), the
stochastic FEM has been regarded as a powerful approach when solving the problems with
random properties [24].
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Due to the changing environmental factors, the uncertainty of parameters often has
time-varying characteristic in many practical problems, such as the aerodynamic heat on
hypersonic vehicles and wind excitations of buildings [25,26]. In this context, the stochastic
process model can be employed to conduct uncertainty modeling for these time-varying
parameters. To approximate the stochastic process, many methods have been developed
to simulate Gaussian or non-Gaussian and stationary or non-stationary processes [27,28].
The Markov process, which describes the transitions between a sequence of states, plays an
increasingly important role in system survival/failure behavior evaluation [29]. In addition,
recent investigations have shown the potential of data-driven methods in simulating the
statistical properties of stochastic processes [30].

In addition to the above two descriptions, some researchers have also noticed that
many parameters vary with spatial locations in practical cases, such as the mechanical
properties of geotechnical materials and composite structures [31,32]. In this context,
this spatially distributed uncertainty can be statistically described by means of random
fields. To simulate the spatial-varying uncertainty, various random field discretization
techniques have been applied in geotechnical engineering and structural vibration analysis,
such as local average subdivision, turning-band methods, and Karhunen–Loève (KL)
expansion [31,33–35]. The stochastic spectral element method (SEM) has also been proven
to be a powerful approach to tackle the spatial uncertainty in dynamic systems [36–38].
The success of machine learning techniques is also spreading their application to random
fields [39].

2.2. Non-Probabilistic Models

Probabilistic approaches have offered a stable framework for uncertainty analysis,
with the premise that sufficient experimental samples are available to construct the precise
probability distribution of uncertain parameters. However, the experimental conditions
or costs of many practical engineering problems often restrict the acquisition of adequate
data, which further leads to the inapplicability of the probabilistic method [40,41]. To
procure more credible results for engineering problems with insufficient data, many non-
probabilistic methods have flourished in recent decades, providing an attractive framework
for uncertainty analysis.

Fuzzy set theory. In a large number of real-world problems, the relationship between
elements and sets is sometimes vague, and it is difficult to give a crisp partition. Con-
ventional set theory exploits the binary {0, 1} to describe the degree of an element x with
respect to the set A. In contrast, fuzzy set theory leverages a real number µA f (x) in the
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closed interval [0, 1] to quantitatively measure this affiliation degree more precisely. On
this basis, the fuzzy set A f can be defined as

A f =
{(

x, µA f (x)
)∣∣x ∈ A, µA f (x) ∈ [0, 1]

}
(1)

where the superscript ‘ f ’ is the symbol of fuzzy set; the reference set A is called the
universe of discourse; the real-valued function µA f is called a membership function; µA f (x)
represents the membership degree of element x to the fuzzy set A f . The techniques used to
generate the membership function have received extensive investigations, and there are
many widely used membership functions such as Gaussian, triangular and trapezoidal
functions [42]. In addition to the conventional fuzzy sets, many extended fuzzy sets such
as intuitionistic and hesitant ones have emerged in recent decades [43,44]. Considering the
time-variant properties in some fuzzy variables, many scholars have also begun to focus on
the time-dependent fuzzy uncertainty [45,46]. With its high degree of maturity, fuzzy set
theory has been extensively applied in structural response analysis, reliability assessment,
parameter identification, etc. [45,47,48].

Interval theory. In many engineering problems, the values of external loads or material
properties often fluctuate within a certain range. With interval theory, these uncertain-but-
bounded parameters can be described as follows

xI = (xI
i )m = ([xi, xi])m = (xc

i + ∆xc
i )m i = 1, 2, . . . , m (2)

where xI denotes the interval vector composed of m interval variables; xi and xi are called
the lower and upper bound of the interval variable xI

i , respectively; and xc
i = (xi + xi)/2

and ∆xc
i = (xi − xi)/2 are the midpoint and the radius of xI

i , respectively. Since the interval
model only needs the bounds of the parameters to quantify the uncertainty, it has been
widely applied in various engineering fields [49–51]. Similar to the probabilistic methods,
existing interval-related studies can also be divided into those on interval variables [49],
interval process [52] and interval fields [51].

Ellipsoid model. To remedy the deficiency that the interval model can only handle
independent variables, the ellipsoid model has been applied to tackle various engineer-
ing problems with dependent variables [41,53,54]. The explicit mathematical formula to
represent the ellipsoid model Ωe is given as follows

Ωe =
{

x| (x− x0)
T

Ge(x− x0) ≤ 1
}

(3)

where x = (x1, x2, . . . , xm)
T stands for the variable vector in m-dimensional space; Ge

and x0 are the characteristic matrix and the centroid of the ellipsoid, respectively; and
the characteristic matrix Ge measures the shape and orientation of the ellipsoid. When
conducting the ellipsoid-based uncertainty quantification, the optimal ellipsoid model is
considered to envelop all experimental samples with a minimal volume. In this context,
many ellipsoid-modeling techniques have flourished, such as the rotation matrix method,
the correlation approximation method and data-driven methods [55–58]. Theoretically,
efficiently constructing a reasonable ellipsoid model under high-dimensional space remains
a challenging issue.

Evidence theory. The evidence theory, also known as Dempster–Shafer theory, has
seen increasing applications due to its advantages in flexibly, dealing with imprecise and
incomplete uncertain information from multiple sources [59–61]. Two important measures,
i.e., belief and plausibility, are considered in the evidence theory for each proposition A in
the frame of discernment Θ:

Bel(A) = ∑
ξ|ξ⊆A

m(ξ), Pl(A) = ∑
ξ|ξ∩A 6=

m(ξ) (4)
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where m(ξ) is interpreted as the basic probability assignment (BPA) of possible proposition
A; Bel(A) denotes the aggregate of m(ξ) values that totally support the proposition A;
Pl(A) represents the aggregate of m(ξ) values that totally or partially support the proposi-
tion A. Generation techniques of BPA, which play a key role in practical applications, have
also received extensive investigations [62]. Considering that existing evidence inevitably
conflicts in multi-source information, ways of measuring and fusing these inconsistencies
more reasonably have been a research focus in recent decades [63].

Rough set theory. Rough set theory is recognized as a promising technique for uncer-
tainty management, especially for those uncertainties with incomplete and inconsistent
information. By exploiting a boundary region of a set, the classical rough set theory defines
the following two operations to express vagueness:

R(X) = {x ∈ U : R(x) ⊆ X}, R(X) = {x ∈ U : R(x) ∩ X 6= } (5)

where R(·) is an equivalence relation (also known as indiscernibility relation) on the
universe U; x is an arbitrary element in a subset X ⊆ U; R(X) and R(X) are named
the R-lower and R-upper approximations of X, respectively. As the above equivalence
relations are too stringent, many scholars have proposed more general rough sets (e.g.,
probabilistic-rough, fuzzy-rough and rough-soft sets) for engineering applications [64–66].
The rough set model has been widely applied in decision making, attribute reduction and
fault diagnosis [65,67,68].

In addition to the above models, other types of non-probabilistic methods have also
been developed in terms of various requirements for uncertainty modeling, such as pos-
sibility theory (see [69]), the information gap model (see [70]), the parallelepiped model
(see [71]), the super ellipsoid model (see [72]) and the convex polyhedral model (see [73]).
To intuitively exhibit the characteristic of different non-probabilistic convex modeling tech-
niques in uncertainty quantification, the envelope results of experimental samples under
five types of convex models are shown in Figure 2.
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2.3. Hybrid Models

Overall, significant studies have investigated uncertainty quantification based on
both probabilistic and non-probabilistic schemes. In some engineering practices, however,
diverse types of uncertainty often coexist in a unified system, and using conventional
single-type models becomes incompetent [2,40,74]. In this context, a variety of hybrid
uncertainty modeling strategies have been increasingly attended and investigated in recent
years. Theoretically, they can be divided into two categories: parallel and embedded
hybrid methods. As a common hybrid case, parallel-type hybrid methods enable different
uncertain parameters exist in systems simultaneously and independently. In contrast, the
embedded-type ones are more general when dealing with various coexisting uncertainties
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but also remain technically challenging at the same time [40,75]. For a better understanding,
Table 1 summarizes related investigations on the above hybrid strategies in past five years.

Table 1. Hybrid strategies for dual-uncertainty modeling in past five years.

Hybrid Strategy Uncertainty
Involved Descriptions Reference Papers

Parallel-type

Probabilistic interval Mutually independent [2,76]

Probabilistic fuzzy Mutually independent [77]

Fuzzy interval Mutually independent [6]

Probabilistic convex Mutually independent [78]

Fuzzy evidence Mutually independent [7,79]

Embedded-type

Probabilistic interval
Distribution parameters
of random variables are

interval values
[2,80]

Probabilistic fuzzy
Distribution parameters
of random variables are

fuzzy numbers
[40,81]

Fuzzy interval Interval variables with
fuzzy bounds [75,82]

Fuzzy evidence Evidence variables with
fuzzy focal elements [83]

Take the probabilistic-interval hybrid model as an example; the parallel type is suitable
for those problems with determined probability distribution types but inaccurate parameter
values. In contrast, the embedded type is suitable for solving problems where only the
fluctuation intervals can be obtained for some parameters due to the lack of available
samples or expert experience. In practice, it is usually strenuous to choose the most
reasonable hybrid strategy for a certain problem and the selection criteria of these two types
of hybrid models have not been reported. With the increasing complexity of uncertainties
in multidisciplinary practices, the study of engineering problems concerning more than two
kinds of uncertainties under a unified framework is promising but mostly unexplored [3,5].

3. Numerical Methods in Uncertainty Propagation

After the results of uncertainty quantification are obtained, the next priority is to
measure the impact of disturbances in the input parameters on the system responses,
i.e., uncertainty propagation. In this section, several popular numerical methods in uncer-
tainty propagation are reviewed, including sampling-based, expansion-based, optimization-
based and integration-based ones. They are schematically summarized in the following
subsection.

3.1. Sampling-Based Method

Sampling-based techniques predominantly include Monte Carlo simulation (MCS)
and its variants. As shown in Figure 3, MCS generates random variables from probability
density functions to estimate unknown parameters and then calculate their expected value
and variances. Based on the law of large numbers and the central limit theorem, one
usually works with the multivariable normal distribution. In practice, the MCS procedure
remains in essence identical regardless of the complexity or the computational burden
of the simulation model. Theoretically, MCS requires extensive samplings (usually 106

runs or greater) to procure reliable statistics, which implies that it is often computationally
expensive for complex engineering problems [84]. By updating a Markov chain with desired
distribution as the stationary distribution, the Markov Chain Monte Carlo (MCMC) method
aims to recover the properties of an unknown probability distribution and is deemed an
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important complement to the problems with known probability distribution. Both MCS
and MCMC have been widely applied to obtain reliable results in various domains [85–87].
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Another important family of Monte Carlo techniques is importance sampling (IS)
and its adaptive version (AIS). As a variance reduction technique, IS utilizes a targeted
sampling strategy to reduce the number of model evaluations. In contrast, AIS focuses
on employing the information of previously drawn samples to adjust proposals to further
reduce the variance in the desired estimators. For applications of importance sampling in
reliability analysis, one can consult [89–91].

3.2. Expansion-Based Method

The perturbation method (also known as the small-parameter expansion method)
expresses the desired solution in terms of a formal power series (i.e., perturbation series)
in small parameter ε that measures the deviation from the fully solvable problem [92].
A pivotal idea of this method is an intermediate operation that breaks the problem into
‘solvable’ and ‘perturbative’ parts. On this basis, the full solution A can be subsequently
represented by a series in ε with the first-order perturbative correction:

A = A0 + ε1 A1 + o(ε2) (ε→ 0) (6)

where A0 and A1 indicate the know solution and the first-order terms, respectively, and
o(ε2) denotes the truncation error of high-order terms. As the basis of other expansion
methods, parameter and subinterval perturbation strategy have been widely applied in
heat transfer, structural-acoustic systems, etc. [6,93,94].

The Taylor series expansion method expands the system function y = f (x) at a certain
point x0 and constructs a polynomial using each order’s partial derivative to approximately
replace the original system function [95]. Due to its implementation-friendly characteristic,
the first-order Taylor series expansion has been extensively used, in which the high-order
terms are truncated:

y(x) ≈ f (x0) +
m

∑
i=1

∂ f (x0)

∂xi
(xi − xi0) (7)

where m indicates the dimension of the uncertain variable vector and xi and xi0 are the
ith components of x and x0, respectively. In practice, the first-order Taylor series is widely
used to reduce the computational cost in heat conduction, structural vibration analysis,
etc. [96,97].

The truncated Neumann series can be employed for approximate matrix inversion
by introducing a liner operator T(x) [98]. The inverse of a matrix A can be approximately
written as:

A−1 ≈
n

∑
i=0

(I−A)i (8)
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where T(x) = (I−A)x and T satisfies the norm condition; A−1 and I are the inverse of A
and the identity matrix, respectively; and the Neumann series is truncated with n terms.
Neumann series have been employed to approximate the interval matrix inverse in acoustic
field, coupled structural-acoustic field prediction, etc. [99,100].

Karhunen–Loève (KL) expansion represents the stochastic process as an infinite lin-
ear combination of orthogonal functions, similar to the Fourier series representation of
functions on a bounded interval [27,101]. Assume that Xt is a zero-mean square-integrable
stochastic process defined over the probability space on a closed interval [a, b] and admits
the following decomposition:

Xt =
∞

∑
k=1

Zkek(t) (9)

where Zk are pairwise uncorrelated random variables and the real-valued functions ek
are continuous on [a, b] that are pairwise orthogonal in L2([a, b]). KL expansion has been
widely applied in dynamic uncertainty analysis, including stochastic process, random field
models and interval process [101–103].

3.3. Optimization-Based Method

According to the type of uncertain variables involved, existing optimization-based
methods in uncertainty propagation can be broadly classified into three main categories:
stochastic programming, fuzzy programming and interval optimization [104].

Stochastic programming combines conventional deterministic optimization with ran-
dom variables and probabilistic constraints, which often require time-consuming sim-
ulations [105]. Such problems can be calculated by either classical methods, such as
nonlinear programming or quadratic programming, or other advanced methods, e.g.,
Nondominated Sorting Genetic Algorithm II (NAGA-II) or simulated annealing (SA)
optimization [106–108].

Fuzzy programming broadly includes two main concerns: the possibilistic program-
ming approach, using the possibility or necessity measures to convert the fuzzy mathe-
matical programming problems into conventional ones, and the ordering-based approach,
considering non-dominated solutions based on the ordering of fuzzy sets [109]. Many
heuristic algorithms have been introduced in a variety of non-deterministic problems with
fuzzy numbers, such as Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), and Genetic Algorithm (GA) [110–113].

Interval optimization transforms the non-deterministic optimization problem into a
deterministic, double-loop nested optimization problem. The outer optimizer is adopted
to search the optimal design variable, while the inner optimizer is employed to compute
the bounds of uncertain objective functions and constraints [114]. Though such processing
has high precision, it suffers from expensive computational cost. For the consideration of
efficiency, various approaches have been introduced to decouple the nested optimization
into a single-layer one, including the degree of interval constraint violation (DICV) [115], the
Karush–Kuhn–Tucker (KKT) condition [116], lightning attachment procedure optimization
(LAPO) [117], affine arithmetic [118], etc.

In addition to the above uncertainty, optimization methods can also be incorpo-
rated into ellipsoid models [119], evidence theory [120], etc. Moreover, optimization
schemes have received increasing applications in hybrid uncertainties, e.g., probabilistic-
interval [121], probabilistic-fuzzy [122], and interval-fuzzy uncertainties [123].

3.4. Integration-Based Method

When determining the statistical moments of performance function, analytical solu-
tions are often strenuous to obtain. In this context, various numerical integration methods
are introduced to estimate the probability distribution of the system response. In general,
the statistical moments of system response can be measured in two numerical manners: the
point estimation method (PEM) and the dimension-reduction method (DRM).
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For the first type, the statistical moments are evaluated by the weighted sum of
values of the response functions at a set of collection points in random space. Appropriate
strategies for selecting the computational nodes have been increasingly investigated to
enhance computational efficiency. The simplest scheme is the full factorial numerical
integration (FFNI) method, which utilizes a tensor product based on the one-dimensional
quadrature rule. As the number of dimensions grows, however, it suffers from the well-
recognized ‘curse of dimensionality’ [124]. In this context, the sparse grid numerical
integration (SGNI) method constructed by the Smolyak algorithm is more popular in
engineering problems [125]. In addition, several innovative techniques, e.g., adaptive
SGNI [126], high-order unscented transformation [127], cubature formulation [128] and the
quasi-symmetric point method [129], have also been developed for efficiency consideration.
In such cases, considerable computing efforts are usually required on high-dimensional
problems.

For the second type, the multiple-dimension integral is decomposed into a sum of sev-
eral low-dimensional integrals. The univariate dimension-reduction method (UDRM) [130],
the eigenvector UDRM [131] and the multiplicative UDRM (M-UDRM) [132] are consid-
ered the most popular ones due to their simplicity and efficiency in moderate nonlinear
problems where few performance function calls are required. For the system with large
random variations and high nonlinearity, multivariate DRM (e.g., the bivariate [133] and
the trivariate DRM [134]) and adaptive DRM [135] can be employed to enhance the accuracy
of the evaluation of moments. Although the above significant improvements have been
achieved, the scheme that can strike a trade-off between accuracy and efficiency is still of
great interest in the assessment of statistical moments.

State-of-the-art numerical simulations often involve complex mechanisms with a
vast number of input parameters, where extensive runs of computational models incur
unaffordable computing effort in many practical cases. In view of this issue, the surrogate
model has been recognized as an attractive alternative to reduce the computing budget and
has received sustained attention and wide applications in recent decades. Herein, two main
concerns of the surrogate model—theoretical basis and sampling strategy—are discussed
in the following two sections.

4. Theoretical Basis of Surrogate Model

Surrogate models are a series of easy-to-evaluate mathematical models that approxi-
mate the original time-consuming simulation models based on paired input–output experi-
mental samples [41]. In this section, commonly used approaches for surrogate modeling
are discussed with an emphasis on their recent advances. As one of the hotspots in surro-
gate models, state-of-the-art hybrid strategies are subsequently discussed. Finally, several
popular accuracy evaluation criteria for the surrogate model are reviewed.

4.1. Commonly Used Surrogate Model

Polynomial response surface (PRS) model. This popular model is trained by the least-
square method, which minimizes the variance of unbiased estimators of the coefficients by
means of the conditions of the Gauss–Markov theorem. A typical second-order PRS model
can be expressed as:

ĝ(x) = α0 +
n

∑
i=1

βixi +
n

∑
i=1

βiix2
i +

n

∑
i=1

n

∑
j=1

βijxixj (10)

where xi and xj denote the ith and the jth components of the n-dimensional design variable,
respectively; α0 is the constant term;βi, βii, βij stands for the coefficient of first-order term,
the second-order term and the cross term, respectively.

When establishing the PRS model, the coefficients are interpreted as the significance
of different terms. The remarkable smoothing capability of PRS model enables the fast
convergence of noisy functions. Although the PRS model is simple and implementation-
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friendly, a main drawback lies in its applications for high nonlinear problems. In such cases,
a vast number of samples are usually required to estimate the coefficients of PRS model,
and high-order polynomials may cause instabilities. In practice, linear and second-order
PRS model are commonly used ones.

Radial basis function (RBF) model. The RBF model exploits linear combinations of
radial symmetric kernel functions to approximate the system function. A general RBF
model can be expressed as:

ĝ(x) =
n

∑
i=1

ωiψi(‖x, xi‖) (11)

where n is the number of sample points; ‖x, xi‖ denotes the Euclidean distance between
predicted point x and observed point xi; ψi(·) represents the radial basis function on xi;
ωi stands for the weight coefficient to be determined. A typical structure of RBF neural
network is displayed in Figure 4. Here, Γ∗ and Θ∗ denote the input and output sample
respectively.
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By substituting all observed sample points xi i = 1, 2, . . . , n into Equation (11), a group
of equations related to the unknown weight coefficients ωi can be obtained

ψ(‖x1, x1‖) ψ(‖x2, x1‖) · · · ψ(‖xn, x1‖)
ψ(‖x1, x2‖) ψ(‖x2, x2‖) · · · ψ(‖xn, x2‖)

...
...

. . .
...

ψ(‖x1, xn‖) ψ(‖x2, xn‖) · · · ψ(‖xn, xn‖)




ω1
ω2

...
ωn

 ≈


g(x1)
g(x2)

...
g(xn)

 (12)

where g(xi) i = 1, 2, . . . , n denotes the response at the observed point xi, calculated by the
original system function. RBF model is usually employed to interpolate scattered multi-
variate data and has shown satisfactory approximations for arbitrary forms of response
functions. Various radial basis functions, e.g., linear, Gaussian and multi-quadric [71], can
be flexibly determined for diverse practical requirements.

Polynomial chaos expansion (PCE) model. The PCE model aims to project the random
variable onto a stochastic space spanned by a set of orthogonal polynomial basis. Then, a
prototypical p-order PCE for an m-dimensional random variable is represented as [60]:

ĝ(x) = ∑
|α|≤p

bαΨα(x) (13)

where Ψα(x) denotes the polynomial basis function; bα is the unknown expansion coeffi-
cient vector; |α| is calculated by |α| = α1 + α2 + · · ·+ αm; the total number of expansion
terms is Cm

m+p = (m + p)!/(m!p!).
Classical families of orthogonal polynomials have been developed and extensively

used, such as Hermite, Legendre, Laguerre and Jacobi polynomials [137]. Different types
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of orthogonal polynomials are shown in Table 2. In practice, both generalized polynomial
chaos (gPC) and arbitrary polynomial chaos (aPC) frameworks have also seen a promising
future in various engineering practices with different probability measures [138].

Table 2. Different types of orthogonal polynomials with distribution.

Polynomial Type Distribution Support

Hermite Gaussian (−∞, ∞)
Laguerre Gamma [0, ∞)

Jacobi Beta [a, b]
Legendre Uniform [a, b]

Kriging model. The Kriging, also known as Gaussian process regression, is an in-
terpolation methodology based on Gaussian processes governed by prior covariance, as
shown in Figure 5. A general form of Kriging can be formulated as a summation of two
components: a trend of mean prediction determined by several basis functions at known
locations and a random error with zero-mean distribution [139]:

ĝ(x) =
n

∑
i=1

βi fi(x) + Z(x) (14)

where fi(x) and βi are the ith basis function and its corresponding coefficient, respectively;
n is the number of sample points; and Z(x) denotes a Gaussian process with a zero-mean
and covariance function formulated as

Cov
(
Z(xi), Z(xj)

)
= σ2R(xi, xj, θ) (15)

where σ2 stands for the variance of Z(x) and R(xi, xj, θ) is the correlation function between
Z(xi) and Z(xj) with hyper-parameters θ.
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Figure 5. Schematic diagram of Kriging [140].

Kriging starts with a prior distribution over functions, and a set of spatial-related
observation values are then obtained. By combining the Gaussian prior with a Gaussian
likelihood function for each observed value, unknown value can be predicted at new spatial
locations, together with their means and covariance. The correlation function R(xi, xj, θ)
can be specified with various forms, including linear, exponential, Gaussian, etc. According
to the various stochastic process assumed, there are different types of Kriging models,
namely, ordinary, simple, universal Kriging, their adaptive versions, etc. [141].
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Support vector regression (SVR) model. The SVR model is a supervised machine learn-
ing model and is regarded as a special version of the support vector machine for regression.
SVR utilizes the kernel function to map the original data onto a high-dimensional feature
space and then searches the optimal regression function in a linear feature space. A general
form of the SVR model is a sum of basis function ψ(·), with weighting coefficient ωi, added
to a constant term b, which can be written as:

ĝ(x) =
n

∑
i=1

ωiψi(x, xi) + b (16)

This form of SVR is similar to that of the RBF and the Kriging model. However, the
way to calculate the unknown parameters in SVR model differs significantly from them.
The purpose of SVR is to find a function that can estimate the output value with a deviation
less than ε from the real value. The corresponding band of deviation is called the ε-tube.
The optimal regression function is determined by formulating a mathematical optimization
problem:

min 1
2‖ω‖

2 + C
n
∑

i=1
(ξi + ξ∗i )

s.t. −ε− ξi ≤ yi − (ωTxi + b) ≤ ε + ξ∗i , i = 1, 2, . . . , n
ξi, ξ∗i ≥ 0

(17)

whereωTxi + b is a linear version of SVR, yi denotes the predicted value, slack variables ξi
and ξ∗i allow the existence of outliers outside the ε-tube, and the regularization constant
(also known as penalty coefficient) C here achieves a trade-off between the model com-
plexity and the empirical risk. For better understanding, a typical SVR model is shown in
Figure 6.
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Artificial neural network (ANN) model. ANNs are computational systems inspired
by biological central neural networks and are gaining increasing popularity for surrogate
modeling. In accordance with the universal approximation theorem, a three-layer ANN
with a non-linear activation function is able to approximate any complex non-linear func-
tions with satisfactory accuracy [142]. A typical three-layer feedforward ANN, which is
trained by error back propagation algorithm, consists of an input layer, a hidden layer and
an output layer, as shown in Figure 7.
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The training process of an ANN mainly includes two stages: (1) signal forward prop-
agation, in which each neuron collects incoming signals and the weighted summation
of inputs is processed and transferred to the next layer of neurons by means of the ac-
tivation function, and (2) error backward propagation, in which the deviation between
the actual outputs and the forecasting outputs is calculated and back-propagated and
then connection weights are updated by the gradient-descent strategy. Since machine
learning techniques are increasingly important in many engineering fields, more complex
ANNs have also received increasing applications in surrogate modeling, such as long short-
term memory (LSTM), convolutional neural networks (CNNs) and deep neural networks
(DNNs) [143–145].

4.2. Hybrid Strategies of Surrogate Model

Although an individual surrogate model can achieve good performance for certain
problems, it is well recognized that no single surrogate model always performs the best
for all types of engineering applications [146]. This motivates the idea of using a hybrid
surrogate model that takes full advantage of the individual surrogate model to guarantee
the accuracy and robustness of the predictions for diverse low-/high-dimensional prob-
lems. The basic principle of the hybrid surrogate model is to utilize a linearly weighted
summation of the individual surrogate model as follows:

ĝh(x) =
m

∑
i=1

ωi ĝi(x),
m

∑
i=1

ωi = 1 (18)

where ĝh(x) is the response predicted by the hybrid surrogate model at point x, m is
the number of surrogate models involved and ωi is the weight associated with the ith
surrogate model ĝi(x). Theoretically, the adjustable weights provide a flexibility to place
more emphasis on the good surrogate model and less emphasis on the bad surrogate model
as per the need [13].

According to the schemes for determining the weights, existing hybrid strategies can
generally be classified as average measures (or global ensemble) and pointwise ones (or
local ensembles) [147]. The weights evaluated by average measures remain constant in the
whole design space [148,149]. However, the precision of the individual surrogate model
may change significantly in the design space; accordingly, the hybrid surrogate model with
fixed weights inevitably encounters a precision fluctuation. In contrast, pointwise measure-
based schemes have shown more satisfactory precision, and various approaches have flour-
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ished to reasonably determine the weights, such as minimal prediction error-based, cross
validation-based, optimization-based and trust region-based approaches [146,150–154]. In
general, auxiliary optimization procedures that are used to search for the weights also
inevitably increase the computing effort, especially for high-dimensional problems.

To mitigate the computational burden in complex engineering practices, building a
multi-fidelity (also known as variable-fidelity) surrogate model that combines a cheaper,
low-fidelity model and a more expensive, high-fidelity model has gradually become another
attractive alternative [155,156]. In such cases, the global trend of the system function is
captured by the low-fidelity model, and the local accuracy is guaranteed by the high-fidelity
model, as shown in Figure 8. Two main concerns, including the sampling strategy and the
precision combination, have always been the work emphasis under various multi-fidelity
modeling frameworks.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 8. Schematic diagram of multi-fidelity surrogate model. 

To address the uncertainties in multi-level systems, a series of multi-level surrogate 
modeling strategies have also emerged to simultaneously tackle different models. When 
constructing a multi-level surrogate model, some scholars prefer to employ a local explo-
ration to modify the global surrogate model [157,158], while others focus on tackling the 
challenge of co-existing uncertainties in surrogate modeling [159–161]. 

4.3. Accuracy Evaluation of a Surrogate Model 
To assess the accuracy of a surrogate model, different metrics can be used to measure 

the deviation between the predicted value and the actual value from the following per-
spectives. 

Coefficient of determination 2R . The 2R  is used to gauge the overall reliability of 
the surrogate model, which can be written as: 

2 2 2

1 1

ˆ1 ( ) / ( )
n n

i i i i
i i

R y y y y
= =

= − − −   (19)

where ˆ, ,y y y  and n  denote the actual value, the predicted value, the mean of the ac-

tual value and the number of test samples, respectively. In general, the larger the 2R  is, 
the higher the accuracy of surrogate model is. 

Mean square error (MSE). The MSE utilizes the square of Euclidean distance to meas-
ure the prediction error, and it is defined as: 

2

1

1 ˆ( )
n

i i
i

MSE y y
n =

= −  (20)

Since the MSE does not have the same unit of measurement as the actual value, its 
square root version (root mean square error, RMSE) provides a more intuitive measure-
ment: 

2

1

1 ˆ( )
n

i i
i

RMSE y y
n =

= −  (21)

Theoretically, both the MSE and the RMSE stay at positive values and decrease as the 
prediction error approaches zero. 

Mean absolute error (MAE). The MAE describes the average deviation between the 
predicted value and actual value and is defined as: 

1

1 ˆ
n

i i
i

MAE y y
n =

= −  (22)

Figure 8. Schematic diagram of multi-fidelity surrogate model.

To address the uncertainties in multi-level systems, a series of multi-level surrogate
modeling strategies have also emerged to simultaneously tackle different models. When
constructing a multi-level surrogate model, some scholars prefer to employ a local explo-
ration to modify the global surrogate model [157,158], while others focus on tackling the
challenge of co-existing uncertainties in surrogate modeling [159–161].

4.3. Accuracy Evaluation of a Surrogate Model

To assess the accuracy of a surrogate model, different metrics can be used to mea-
sure the deviation between the predicted value and the actual value from the following
perspectives.

Coefficient of determination R2. The R2 is used to gauge the overall reliability of the
surrogate model, which can be written as:

R2 = 1−
n

∑
i=1

(yi − ŷi)
2/

n

∑
i=1

(yi − yi)
2 (19)

where y, ŷ, y and n denote the actual value, the predicted value, the mean of the actual
value and the number of test samples, respectively. In general, the larger the R2 is, the
higher the accuracy of surrogate model is.

Mean square error (MSE). The MSE utilizes the square of Euclidean distance to measure
the prediction error, and it is defined as:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (20)
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Since the MSE does not have the same unit of measurement as the actual value, its
square root version (root mean square error, RMSE) provides a more intuitive measurement:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (21)

Theoretically, both the MSE and the RMSE stay at positive values and decrease as the
prediction error approaches zero.

Mean absolute error (MAE). The MAE describes the average deviation between the
predicted value and actual value and is defined as:

MAE =
1
n

n

∑
i=1
|yi − ŷi| (22)

Relative average absolute error (RAAE). The RAAE is utilized to measure the global
relative error, and it can be expressed as:

RAAE =
1
n

n

∑
i=1
|yi − ŷi|/

√
1
n

n

∑
i=1

(yi − yi)
2 (23)

5. Sampling Strategy of Surrogate Model

Sampling (also known as Design of Experiments, DoE), the process of generating a
good set of data points in the design space, has become a pivotal issue in experiments
or simulations, with the purpose of maximizing the information gained from a limited
number of samples. To guarantee the quality of surrogate models without incurring
excessive samples, studying sampling techniques is of immense importance [13,162]. In
general, sampling techniques can be classified into two categories: one-shot sampling and
sequential sampling. Design considerations and progresses of different sampling strategies
will be discussed in what follows.

5.1. One-Shot Sampling

One-shot sampling (or static sampling) determines the sample size and points in a
single stage. Widely used one-shot sampling approaches include Monte Carlo sampling
(MCS), Full/Fractional factorial design (FFD), Central composite design (CCD), Orthogonal
array sampling (OAS), Latin hypercube sampling (LHS), etc.

Monte Carlo sampling utilizes pseudo-random numbers to generate a large number
of samples, hoping to achieve space-filling by its random actions. To reduce possible un-
presented regions caused by randomness, Stratified Monte Carlo sampling is proposed to
achieve space-filling by dividing several non-random strata [163]. Quasi-Monte Carlo sam-
pling employs a quasi-random low-discrepancy sequence to generate samples, where sev-
eral popular low-discrepancy sequences (e.g., Halton, Hammersley and Sobol sequences)
are attractive for sampling [164].

Full factorial design takes into account all possible combinations of design variable
levels, filling the whole design space regularly with the same density of samples in each sub-
domain [165]. A main drawback of this method is that the computational budget explodes
exponentially as the number of design variables (dimensions) grows. To overcome this
disadvantage, Fractional factorial design has been introduced to neglect certain high-order
interaction effects to reduce the number of experiments [166].

Central composite design is regarded as a full/fractional factorial-embedded design,
augmented with a group of center and axial points (two axial points for each axis) [162].
It is a popular second-order design due to its unique feature of adding center and axial
points. Another similar approach named Box–Behnken design requires fewer runs than the
CCD, despite its poor coverage at the corner of the cube enclosing the design space.
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Orthogonal array sampling utilizes the orthogonal table to generate some represen-
tative samples, in which the interaction between factors is considered. This method can
procure uniform-dispersed and representative samples without executing expensive simu-
lations under multi-factors and levels.

Latin hypercube sampling, a special case of OAS, has gained much popularity in
various fields. In an m-dimensional design space, each dimension is divided into n equal
bins and thus results in nm hypercubes. Subsequently, n samples are arranged randomly
such that there exists only one sample in each dimension of the hypercube (also known as
the non-collapsing property). The LHS configuration is typically used as an improvement
over MCS but may not guarantee adequate space-filling [167]. To generate regularly
dispersed samples, the so-called optimal LHS has emerged, using different optimal criteria,
e.g., the centered L2-discrepancy criterion, the φp criterion, the max–min distance criterion
and the entropy criterion [14]. For more details about search algorithms in optimal LHS,
one can consult [168].

5.2. Sequential Sampling

Although the sampling strategies discussed so far are popular, some can lead to
over/under-sampling and thus poor system approximations [167]. In this context, the
sequential sampling (also known as adaptive sampling), as depicted in Figure 9, has
been developed to augment new informative points on the basis of initial samples. Two
major benefits of sequential sampling methodologies over one-shot ones are their low
computational budget and better approximations.
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Overall, sequential sampling includes two basic concepts: exploration and exploita-
tion [14,167]. For sample settlement, the exploration of the design space tends to cover
the poorly represented/unexplored regions in a global sense. In contrast, exploitation
focuses on placing samples in poor-precision/nonlinear regions under local consideration.
Theoretically, most sequential sampling techniques rely on designating an appropriate
criterion to strike a trade-off between global exploration and local exploitation [13].

To enhance the global approximation accuracy of the surrogate model, it is pivotal
to develop an effective local exploitation criterion for error prediction over the domain
wherein additional samples are designed in these poorly estimated regions. Variance-based
approaches embrace the assumption that regions with large prediction variances contain
more estimation errors in the whole design space [169]. Entropy-based methods search
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new points by maximizing the determinant of prior covariance matrix under the Bayesian
framework [170]. Cross-validation (CV)-based techniques utilize leave-one-out CV errors
to estimate prediction errors, evaluating the credibility of the surrogate model to some ex-
tent [171]. Gradient-based methods select the point with the maximal gradient for updating,
aiming to improve the accuracy in these high-gradient regions [172]. Query-by-committee-
based strategies assert that the point at which all committee members (several competing
surrogate models) have maximal divergence are selected for supplement points [173].

In practical terms, if a global optimization is pursued, one can employ the following
criteria to search the global optimum. Expected improvement (EI)-based techniques aim to
generate the sample point that can maximize the EI function as new candidate points. Due
to its easy-to-complement and robustness characteristic, this popular criterion has received
increasing applications in recent years and is elaborately explained in [174]. Statistical-
lower-bound-based methods choose the point at which the surrogate model yields the
statistical lower bound as the new point. Though this criterion is simple, it is not easy to
strike a balance between exploration and exploitation [175]. Probability of improvement-
based approaches hope to find the point with the maximal probability that the system
response is smaller than a threshold [156,176]. This method is sensitive to the above user-
defined value, and arbitrary assignment may influence the performance of the criterion.

6. Conclusions

Despite the fact that surrogate modeling techniques have received increasing attention
and investigations in the last few decades, the existing studies lack a comprehensive
overview of surrogate modeling tricks in uncertainty-treatment practices. Firstly, this
paper provides a thorough overview of two pivotal arms in uncertainty management,
i.e., uncertainty quantification and propagation, together with their theoretical bases and
recent applications. Subsequently, a comprehensive discussion lies in two main concerns in
surrogate modeling: the theoretical basis and sampling strategy. The following remarks
emphasize existing challenges and provide suggestions for future studies.

(1) The probability framework is well-established and is still the most useful tool for
uncertainty handling, and its incorporation of emerging machine learning techniques
has become a research hotspot. Complementing this, non-probabilistic techniques
have initially shown superiority in tackling the epistemic uncertainty, but there are
still many unsolved issues in theoretical construction. In contrast, hybrid strategies
that tackle different uncertainties simultaneously are flexible in theory but remain in
the exploratory stage.

(2) Existing numerical methods for uncertainty propagation are mostly developed to
tackle aleatory uncertainty, and their potential in non-probabilistic frameworks should
be emphasized. An open research area is investigations developing new tricks of
uncertainty propagation to strike a trade-off between efficiency and accuracy.

(3) Though various surrogate models have received wide applications in different sce-
narios, using a weighted mixture of different surrogate models rather than focusing
performance improvements on single ones has been suggested as an easier way to de-
liver better predictions. In addition, finding ways to extend the combination of certain
types of surrogate models to two arbitrary ones remains a challenging issue. Consider-
ing the well-recognized ‘curse of dimensionality’, future developments should place
more emphasis on dimension-reduction-assisted techniques for surrogate modeling.

(4) Sequential sampling relies heavily on sampling criteria to update the prior information
on the dataset, and thus designating appropriate algorithms remains an active area
of research. In addition, as the complexity of simulation-based engineering practices
increases, developing an effective sampling strategy that can deliver multiple-source
information or conduct multi-point updates has gradually become an important
research topic.

(5) In addition to developing new algorithms for both uncertainty treatment and the
surrogate model, building software platforms or packages should also be given
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attention. Many useful platforms have been successfully developed (e.g., Isight
for uncertainty optimization [177] and UQLab for uncertainty treatment [178]), but
further development is still needed to improve their functionality.

(6) The investigation of surrogate modeling in uncertainty treatment practices should
be extended to more complex scenarios. With necessary extensions, more investiga-
tions should emphasize multidisciplinary design, multi-scale and other engineering
practices, especial in symmetrical systems.
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Nomenclature
Ω sample space m(·) basic probability assignment
(Ω,F, P) probability triple R(·) equivalence relation
Rn n-dimensional real number field ε perturbation parameter
X input variable y(·), f (·), g(·) system function
µA f membership function α, β, ω, b coefficients
∆(·) width of interval number ε deviation threshold
Ge characteristic matrix of ellipsoid ψ(·) basis function
x0 centroid of ellipsoid ξi, ξ∗i slack variable
Θ frame of discernment σ2 variance
Bel(·) belief measure Cov(·) covariance function
Pl(·) plausibility measure C penalty coefficient
Subscripts
I Interval number e ellipsoid
c midpoint , Lower and upper bound of

interval
f Fuzzy set T transposition
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