
Citation: Xing, Y.; Tan, J.; Hong, P.;

He, Y.; Hu, M. Mesh Denoising Based

on Recurrent Neural Networks.

Symmetry 2022, 14, 1233. https://

doi.org/10.3390/sym14061233

Academic Editors: Zhixun Su

and Rushi Lan

Received: 2 April 2022

Accepted: 10 June 2022

Published: 14 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Mesh Denoising Based on Recurrent Neural Networks
Yan Xing 1, Jieqing Tan 1,*, Peilin Hong 2,*, Yeyuan He 1 and Min Hu 3

1 School of Mathematics, Hefei University of Technology, Hefei 230009, China; xingyan@hfut.edu.cn (Y.X.);
2020111426@mail.hfut.edu.cn (Y.H.)

2 School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei 230012, China
3 School of Computer Science and Information Engineering, Hefei University of Technology,

Hefei 230602, China; jsjxhumin@hfut.edu.cn
* Correspondence: jieqingtan@hfut.edu.cn (J.T.); hongpeilin@ahtcm.edu.cn (P.H.)

Abstract: Mesh denoising is a classical task in mesh processing. Many state-of-the-art methods are
still unable to quickly and robustly denoise multifarious noisy 3D meshes, especially in the case of
high noise. Recently, neural network-based models have played a leading role in natural language,
audio, image, video, and 3D model processing. Inspired by these works, we propose a data-driven
mesh denoising method based on recurrent neural networks, which learns the relationship between
the feature descriptors and the ground-truth normals. The recurrent neural network has a feedback
loop before entering the output layer. By means of the self-feedback of neurons, the output of a
recurrent neural network is related not only to the current input but also to the output of the previous
moments. To deal with meshes with various geometric features, we use k-means to cluster the faces of
the mesh according to geometric similarity and train neural networks for each category individually
in the offline learning stage. Each network model, acting similar to a normal regression function,
will map the geometric feature descriptor of each facet extracted from the mesh to the denoised facet
normal. Then, the denoised normals are used to calculate the new feature descriptors, which become
the input of the next similar regression model. In this system, three normal regression modules are
cascaded to generate the last facet normals. Lastly, the model’s vertex positions are updated according
to the denoised normals. A large number of visual and numerical results have demonstrated that the
proposed model outperforms the state-of-the-art methods in most cases.

Keywords: mesh denoising; recurrent neural networks; supervised learning; face clustering

1. Introduction

Three-dimensional sensing and scanning technology has been widely used to capture
the digital surface of physical objects. However, noise inevitably sneaks into the process
of 3D capture and reconstruction, which significantly hinders the subsequent geometry
processing tasks. Therefore, restoring high-quality 3D models from noise-damaged meshes
has attracted widespread attention in computer graphics. Generally speaking, noise and
sharp features are both high frequencies. Therefore, how to maintain sharp features when
effectively removing noise is still a challenging problem in mesh denoising. In recent years,
researchers have made significant contributions to mesh denoising.

Traditional denoising methods blur some features, more or less. For example, the
early work from Taubin [1] and Desbrun et al. [2] focused on mesh fairing and smoothing,
which led to feature blurring. With the rapid development of machine learning in all kinds
of application areas, we aim at applying machine learning methods to mesh denoising to
achieve better results. Based on Wang et al.’s work [3] and some other methods [4–6], we
propose a data-driven mesh denoising method based on a recurrent neural network. The
Recurrent Neural Network (RNN) is a neural network model that achieves a prominent
performance on important tasks that include language modeling, speech recognition, and
machine translation. In the traditional feedforward neural network, it is assumed that

Symmetry 2022, 14, 1233. https://doi.org/10.3390/sym14061233 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061233
https://doi.org/10.3390/sym14061233
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2122-0240
https://doi.org/10.3390/sym14061233
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061233?type=check_update&version=1


Symmetry 2022, 14, 1233 2 of 14

neurons in the same layer are independent of each other. From the input layer to the hidden
layer and then to the output layer, the layers are all connected, but the nodes in the same
layer are not connected. This kind of common neural network cannot effectively solve the
problems with time sequence or nonlinear data. RNN adds a delayer in the hidden layer
as a one-step delay operator to achieve the purpose of memory. Therefore, the system has
the ability to adapt to the time-varying characteristics and enhances the global stability of
the network. It has stronger computational capability than the general feedforward neural
network and can also be used to solve the problem of fast optimization. What makes RNN
so special is the recurrent nets allow us to operate over sequences of vectors: sequences
in the input, in the output, or both, generally. Two very nice papers from DeepMind [7,8]
showed that the way of sequence processing still works well in the absence of sequence
information. The takeaway is that even if your data is not in the form of sequences, you can
still formulate and train a powerful RNN to process them sequentially. We train the RNN
to map the feature descriptor to the denoised normal. Although the inputs seem unordered,
the experiments show that the trained RNN can effectively denoise the mesh in real time.

2. Related Works

In the past two decades, various smoothing algorithms have been introduced to re-
move undesirable noise while maintaining sharp features in geometry. Classical Laplacian
smoothing [9,10] is a very fast and simple surface smoothing method. However, when
Laplacian smoothing is applied to a noisy 3D surface, it will lead to obvious shape dis-
tortions and surface shrinkage, in addition to noise removal. To overcome the shrinkage
problem, Taubin [1] developed a surface smoothing algorithm, where the discrete Laplacian
function of the surface was defined by the weighted averaging neighborhood normals.
Desbrun et al. introduced an implicit smoothing algorithm [2], which produced stable
results on irregular meshes and avoided volume shrinkage. Later, other isotropic methods
were also proposed, including a low-pass/high-pass filter framework, volume-preserving
method and differential characteristic-based methods [11–15]. The concept of differential
coordinates was introduced by Alexa [11] as a geometric local shape descriptor.

However, early work focused on mesh smoothing and fairing algorithms, which
usually resulted in feature blurring. In order to preserve the features, many researchers
began to pay attention to anisotropic methods. The early anisotropic methods [16–20] were
based on anisotropic geometric diffusion, inspired by image processing [21].

Bilateral filtering denoising techniques originate from image denoising [22]. Fleishman
et al. successfully proposed a single-step iterative bilateral mesh denoising method directly
applied to vertices [23], which is closely related to the anisotropic filter. In [23], a vertex
and its normal define a parameterization plane, over which a bilateral filter is applied to
the neighborhood of that vertex, and the vertex will be updated along its normal vector
according to the displacement obtained from the filter. However, experiments show that
this method does not always accurately maintain the fine features of the mesh. Since mesh
normals can represent the surface geometry more directly than vertex positions, lately,
many researchers, such as Sun et al. [24], Zheng et al. [4], Wei et al. [25], Zhang et al. [5],
and Yadav et al. [15], have used a two-stage framework, first filtering the mesh normals
and then updating the vertex positions according to the estimated normals. More recently,
in a two-stage mesh denoising fashion, Yadav et al. [15] used Tukey’s bi-weight function
as a similarity function in the bilateral normal filtering, which stops the diffusion at sharp
edges to retain the features, and introduced an edge-weighted Laplace operator to compute
a differential coordinate to produce a high-quality mesh. Bilateral filtering is also the core
of many multi-step normal filtering methods [4,5]. Compared with the single-stage method,
the two-stage method can usually recover the features more effectively when dealing with
high-level noises.

Based on the observation that sharp features may be sparse on the 3D model, several
mesh denoising methods based on sparse optimization were proposed. For example,
He et al. [6] use the L0 norm, which directly measures sparsity, to preserve sharp features



Symmetry 2022, 14, 1233 3 of 14

when smoothing the surface. Wang et al. [26] and Wu et al. [27] performed L1 optimization
to restore sharp features. Although these global methods are more robust numerically,
often, the meshes with local fine details are excessively smoothed. Zhang et al. [28]
combined the total variation and piecewise constant function to perform variational mesh
denoising. Correct estimations of differential geometric properties are usually essential for
these methods.

Lately, the methods based on deep neural networks have made important progress in
various fields and achieved impressive results. Li et al. [29] presented a deep normal filter-
ing network, called DNF-Net, for mesh denoising. To capture the local geometry, DNF-Net
takes patches of facet normals as inputs and directly outputs the corresponding denoised
facet normals of the patches. The network includes a multi-scale feature embedding unit,
a residual learning unit, and a joint supervision loss function. However, DNF-Net may
produce unsatisfying denoising results when encountering a test mesh whose noise pattern
is very different from that in the training set. Shen et al. [30] presented a GCN-Denoiser
to perform graph convolutions in the dual spaces of triangular meshes, which utilizes
both static and dynamic edge convolutions to learn both the explicit mesh structure and
implicit potential relations among non-adjacent neighbors. To obtain a better denoising
effect, they also employed multiple GCNs to progressively regress the facet normals in a
cascade manner.

As the pioneers of neural network methods for mesh denoising, Wang et al. [3]
proposed a cascaded radial basis function (RBF) neural network to denoise 3D meshes.
It is a data-driven method, in which a large number of noisy meshes and ground truth
meshes are used for learning regression function, and a regression model is established in
order to remove mesh noise. However, this regression model [3] adopted a single hidden
layer radial basis neural network to carry out the global fitting of the data. The radial basis
neural network is a typical feedforward neural network. A feedforward neural network is
the simplest neural network, in which neurons are all arranged hierarchically and are only
adjacent to the neurons in the previous layer. The neuron in the current layer receives the
output of the previous layer as input and transmits its output as the input of the next layer.
There is no feedback between the layers.

Due to the lack of feedback between layers, the denoising effects of the RBF neural
network are not particularly ideal. In this paper, the recurrent neural network is introduced
to denoise 3D meshes. The input/output of our model seems to have no sequential
information, but it is important to realize that the positional relationships in the spatial
domain can still be processed in a sequential manner using RNN with powerful temporal
capabilities. The steps of our method are as follows. Firstly, descriptors representing
geometric features are extracted from the mesh. Then, we use the recurrent neural network
to train the regression function, which maps the descriptor to the expected face normal. The
output of the hidden layer not only relates to the current input but, also, to its output at the
previous moments by using neurons with self-feedback. Then, the denoised normals will
be used to calculate the new feature descriptors as the next input of the regression model
to perform cascaded regression. Finally, the normals obtained from the trained regression
model are used to update the vertex coordinates to reconstruct a new mesh.

3. Methods
3.1. RNN

RNN, born in the 1980s, is a typical dynamic recurrent neural network, which is based
on the basic structure of the BP network and adds a delayer to the hidden layer as a one-step
delay operator. The original intention of RNN is to process sequential data. RNN provides
a very elegant way of dealing with (time) sequential data, which makes use of correlations
between data points that are close in the sequence. The current output is not only related
to the current input but also related to the previous output. Therefore, the system can
adapt to time-varying characteristics and enhances the global stability of the network. It
has stronger computing power than feedforward neural networks and can also be used to



Symmetry 2022, 14, 1233 4 of 14

solve the problem of fast optimization. Figure 1 shows a basic RNN architecture with a
delay line.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

use of correlations between data points that are close in the sequence. The current output 
is not only related to the current input but also related to the previous output. Therefore, 
the system can adapt to time-varying characteristics and enhances the global stability of 
the network. It has stronger computing power than feedforward neural networks and can 
also be used to solve the problem of fast optimization. Figure 1 shows a basic RNN archi-
tecture with a delay line. 

 
Figure 1. The structure of RNN. 

The structure of RNN can be generally divided into four layers: input layer, hidden 
layer, delayer, and output layer. The connection of the input layer, hidden layer, and out-
put layer is similar to a feedforward network. Usually, the activation function of the hid-
den layer takes a nonlinear hyperbolic tangent function (tanh). The output of the hidden 
layer unit is sent to the delayer for storage and then fed into the hidden layer at the next 
moment, forming the next input of the hidden layer together with the input signal. In this 
way, the delayer acts as a delay operator with one step delay function. By the storage and 
delay of the delayer, the network is time-sensitive. This internal feedback mechanism en-
hances the ability of the network to process dynamic information. 

Figure 2 shows an unfolded diagram of the hidden layer in two time steps. 1t −  and 
t  represent the time steps, x  is the input samples, ts  is the memory of the samples at 
time step t , U  and W represent the input weight and the memory weight, respectively, 

and V  is the output weight. At time step 0t = , s  will be initialized as 0 0s = , and U , 
W , and V will be initialized randomly. State ts , the storage state of the time step t , par-
ticipates in the next prediction. This rule and the final output are formulated as follows: 

1( ),t t ts f Ux Ws −= +  (1)

( ),T To g Vs=  (2)

where f  and g  are the activation functions of the hidden layer and output layer, re-

spectively. f is usually a sigmoid function. g  is usually a linear function in regression 
case and a SoftMax function in a classification case. 

 
Figure 2. An unfolded diagram of hidden layer in two time steps. 

Figure 1. The structure of RNN.

The structure of RNN can be generally divided into four layers: input layer, hidden
layer, delayer, and output layer. The connection of the input layer, hidden layer, and output
layer is similar to a feedforward network. Usually, the activation function of the hidden
layer takes a nonlinear hyperbolic tangent function (tanh). The output of the hidden layer
unit is sent to the delayer for storage and then fed into the hidden layer at the next moment,
forming the next input of the hidden layer together with the input signal. In this way, the
delayer acts as a delay operator with one step delay function. By the storage and delay of
the delayer, the network is time-sensitive. This internal feedback mechanism enhances the
ability of the network to process dynamic information.

Figure 2 shows an unfolded diagram of the hidden layer in two time steps. t− 1 and t
represent the time steps, x is the input samples, st is the memory of the samples at time
step t, U and W represent the input weight and the memory weight, respectively, and V is
the output weight. At time step t = 0, s will be initialized as s0 = 0, and U, W, and V will
be initialized randomly. State st, the storage state of the time step t, participates in the next
prediction. This rule and the final output are formulated as follows:

st = f (Uxt + Wst−1), (1)

oT = g(VsT), (2)

where f and g are the activation functions of the hidden layer and output layer, respectively.
f is usually a sigmoid function. g is usually a linear function in regression case and a
SoftMax function in a classification case.

Symmetry 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

use of correlations between data points that are close in the sequence. The current output 
is not only related to the current input but also related to the previous output. Therefore, 
the system can adapt to time-varying characteristics and enhances the global stability of 
the network. It has stronger computing power than feedforward neural networks and can 
also be used to solve the problem of fast optimization. Figure 1 shows a basic RNN archi-
tecture with a delay line. 

 
Figure 1. The structure of RNN. 

The structure of RNN can be generally divided into four layers: input layer, hidden 
layer, delayer, and output layer. The connection of the input layer, hidden layer, and out-
put layer is similar to a feedforward network. Usually, the activation function of the hid-
den layer takes a nonlinear hyperbolic tangent function (tanh). The output of the hidden 
layer unit is sent to the delayer for storage and then fed into the hidden layer at the next 
moment, forming the next input of the hidden layer together with the input signal. In this 
way, the delayer acts as a delay operator with one step delay function. By the storage and 
delay of the delayer, the network is time-sensitive. This internal feedback mechanism en-
hances the ability of the network to process dynamic information. 

Figure 2 shows an unfolded diagram of the hidden layer in two time steps. 1t −  and 
t  represent the time steps, x  is the input samples, ts  is the memory of the samples at 
time step t , U  and W represent the input weight and the memory weight, respectively, 

and V  is the output weight. At time step 0t = , s  will be initialized as 0 0s = , and U , 
W , and V will be initialized randomly. State ts , the storage state of the time step t , par-
ticipates in the next prediction. This rule and the final output are formulated as follows: 

1( ),t t ts f Ux Ws −= +  (1)

( ),T To g Vs=  (2)

where f  and g  are the activation functions of the hidden layer and output layer, re-

spectively. f is usually a sigmoid function. g  is usually a linear function in regression 
case and a SoftMax function in a classification case. 

 
Figure 2. An unfolded diagram of hidden layer in two time steps. Figure 2. An unfolded diagram of hidden layer in two time steps.

3.2. Geometric Feature Descriptors
3.2.1. Bilateral Filtering and Guided Bilateral Filtering

We use M = (V, F) to represent a mesh, where V = {vi : i = 1, . . . , n} represents the
set of vertices, and F = { fi : i = 1, . . . , m} represents the set of faces. Denote the centroid,
normal, area, and neighborhood of fi by ci, ni, Ai, and N fi

. The well-known bilateral
normal filter of 3D mesh is defined by



Symmetry 2022, 14, 1233 5 of 14

ni
′ = norm( ∑

f j∈N fi

Aj exp(
−‖ci − cj‖2

2σ2
s

) exp(
−‖ni − nj‖2

2σ2
r

)nj), (3)

where σs and σr are the standard deviation of spatial Gaussian filter and signal Gaussian
filter, respectively. To deal with a large noise, the guided normal filter is introduced via a
more accurately guided signal. Similarly, the guided normal joint filter is defined by

ng,i
′ = norm( ∑

f j∈N fi

Aj exp(
−‖ci − cj‖2

2σ2
s

) exp(
−‖g(ni)− g(nj)‖2

2σ2
r

)nj). (4)

In the formula, g(ni) and g(nj) are the guided normal vectors of the face fi and f j,
respectively, and the guided normal vector is calculated by

g(ni) = norm( ∑
f j∈N fi

Aj exp(
−‖ci − cj‖2

2σ2
s

)nj). (5)

3.2.2. Feature Descriptors

The bilateral normal feature descriptor Di and guided bilateral normal feature descrip-
tor Dg,i for each face are defined by binding different parameters to the bilateral normal
filter and guided bilateral normal filter.

Di = (ni
′(σs1 , σr1), ni

′(σs2 , σr2), . . . , ni
′(σsL , σrL)), (6)

Dg,i = (ng,i
′(σs1 , σr1), ng,i

′(σs2 , σr2), . . . , ng,i
′(σsL , σrL)). (7)

Dg,i is used in the first cascaded regression and Di in the remaining cascaded regression.

3.3. Regression Model

The dataset P is partitioned into the training set PX , validation set PV , and test set PT .

PX consists of a series of training data pairs {Di, ni}
NPX
i=1 . ni is the ground truth normal of

face fi. First, divide the training data into four clusters based on the feature descriptors
via the k-means method. The faces in each cluster have strong geometric similarities. For
cluster l, we divide the data into the training set PX(l), validation set PV(l), and test set
PT(l). A regression function is trained by minimizing the following energy function:

E = ∑
{Di ,ni∈PX(l)}

‖norm(Rl(Di))− ni‖2 + µEreg, (8)

where Ereg is an L2 regularization term to prevent overfitting, µ is set as 0.05 in our
experiments, and the regression function Rl(D) for cluster l is defined by

Rl(D) = g(sT,lV) =
Nr

∑
k=1

sT,l(k)Vl,k (9)

where Nr is the number of the hidden nodes, and

st,l(k) = tanh(UT
l,kDt + WT

l,kst−1,l(k) + WT
l,kst−2,l(k) + bl,k) =

2

1 + exp
{
−2 ∗ [UT

l,kDt + WT
l,kst−1,l(k) + WT

l,kst−2,l(k) + bl,k]
} − 1. (10)

where Ul,k ∈ R3L, Wl,k ∈ RNr , bl,k ∈ R, Vl,k ∈ R3. In our experiment, Nr is set to 10. The
regression model is iteratively trained until the approximation error on the validation
set increases. Since the k-means clustering is carried out according to the similarity of



Symmetry 2022, 14, 1233 6 of 14

descriptors, and the models are trained for each cluster separately, the final regression
function is

R(D) = Rl(D), i f ∀k(‖D− cl‖ ≤ ‖D− ck‖), (11)

where cl refers to the center of cluster l. The normal of the final output should be

n∗i = norm(R(D)). (12)

4. Vertex Update

After the estimation of the face normals, the vertex positions need to be updated
to match the new normals

{
n∗i
}

. We adopt the iterative scheme from [23] for the vertex
update. Specifically, the iterative approach is

vt+1
i = vt

i +
1

3|Fvi |
∑

fk∈Fvi

∑
(i,j)∈∂ fk

n∗k (n
∗
k · (v

t
j − vt

i)), (13)

where Fvi is the set of faces that share a common vertex vi, and ∂ fk is the set of edges of face fk.

5. Experiments and Analysis
5.1. Visual Comparisons

In this paper, we have proposed a data-driven feature-preserving denoising method
for mesh surfaces. The core of our approach lies in using the special structure of recurrent
neural network, which has more feedback layers than the feedforward neural network.
Our method was tested on many meshes corrupted with either synthetic or raw scanning
noise to validate the efficiency and robustness of the proposed method. We compare the
results with seven state-of-the-art denoising methods, namely, He et al.’s L0 minimiza-
tion [6], Zheng et al.’s local bilateral normal filter [4], Zhang et al.’s guided normal filter [5],
Wang et al.’s cascaded normal regression method [3], Yadav et al.’s robust and high-fidelity
mesh denoising [15], Li et al.’s DNF-Net [29], and Shen et al.’s GCN-Denoiser [30]. Different
mesh denoising methods have different sets of parameters. To allow for fair comparisons,
we chose the parameters suggested by the authors of [3,29,30] or fine-tuned the parameters
to produce visually better results.

First, these approaches are tested on the Nicolo model with low-level noise. Obviously,
all the methods can remove this low-level noise (see Figure 3). However, [6] oversmooths
and slightly shrinks this mesh, and the results of [4,5] are not as good as ours in maintaining
some fine details. Our method is very close to [3,15,29,30] in visual effect but has a smaller
mean angular error (See Table 1). Figure 4 shows a Bunny-Hi model with rich textures
corrupted by medium low-level noise. One can see that the results by [4–6] lost the textures
but [3,15,29] and our method maintains them. The GCN [30] seems to retain the most
textures. Later, we will give numerical comparisons to distinguish the superior method,
especially when visual results are similar. For the Trim-star model with medium high-level
noise in Figure 5, Refs. [3–5,29] removed most of the noise, but some artifacts remained.
Ref. [6] oversmooths the model and sharpens the inner five corners. Ref. [30] and our
method have the best denoising results.

In addition to synthetic cases, the regression model based on RNN was verified on the
other two datasets of meshes with raw noise. The results generated by the eight methods
shared visual similarities when handling the low-level noise. However, in the case of
high-level noise, the existing methods could not remove the noise completely. The Boy
model with high-level noise in Figure 6 and the Pyramid model with moderate-level noise
in Figure 7 were acquired by a Microsoft Kinect V1 camera and Microsoft Kinect V2 camera,
respectively. These scanning data from Kinect V1, V2, [3,15,30], and our method can remove
noise to the maximum extent, meanwhile protecting the features well.



Symmetry 2022, 14, 1233 7 of 14

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

superior method, especially when visual results are similar. For the Trim-star model with 
medium high-level noise in Figure 5, Refs. [3–5,29] removed most of the noise, but some 
artifacts remained. Ref. [6] oversmooths the model and sharpens the inner five corners. 
Ref. [30] and our method have the best denoising results. 

 
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 3. Denoising of the Nicolo model corrupted by Gaussian noise (0.1) in a normal direction. (a) 
Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) 
DNF [29]. (i) GCN [30]. (j) Ours. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 4. Denoising of the Bunny-hi model corrupted by Gaussian noise (0.3) in a normal direc-
tion. (a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD 
[15]. (h) DNF [29]. (i) GCN [30]. (j) Ours. 

  

Figure 3. Denoising of the Nicolo model corrupted by Gaussian noise (0.1) in a normal direction.
(a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15].
(h) DNF [29]. (i) GCN [30]. (j) Ours.

Symmetry 2022, 14, x FOR PEER REVIEW 7 of 14 
 

 

superior method, especially when visual results are similar. For the Trim-star model with 
medium high-level noise in Figure 5, Refs. [3–5,29] removed most of the noise, but some 
artifacts remained. Ref. [6] oversmooths the model and sharpens the inner five corners. 
Ref. [30] and our method have the best denoising results. 

 
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 3. Denoising of the Nicolo model corrupted by Gaussian noise (0.1) in a normal direction. (a) 
Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) 
DNF [29]. (i) GCN [30]. (j) Ours. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 4. Denoising of the Bunny-hi model corrupted by Gaussian noise (0.3) in a normal direc-
tion. (a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD 
[15]. (h) DNF [29]. (i) GCN [30]. (j) Ours. 

  

Figure 4. Denoising of the Bunny-hi model corrupted by Gaussian noise (0.3) in a normal direction.
(a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15].
(h) DNF [29]. (i) GCN [30]. (j) Ours.

For meshes with an extremely high level of noise, denoising is an arduous process for
traditional methods. However, our method shows its strong power to remove large noise
while maintaining appearances. Figure 8 shows the Fandisk model with sharp features,
which is contaminated by Gaussian noise of 0.9 times the average edge length. Refs. [4,6]
failed in the denoising task. Refs. [3,5,29] could not obtain satisfactory denoising results,
but [15,30] and our method obtained acceptable denoising results.



Symmetry 2022, 14, 1233 8 of 14Symmetry 2022, 14, x FOR PEER REVIEW 8 of 14 
 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 5. Denoising of the Trim-star model corrupted by Gaussian noise (0.5) in a normal direc-
tion. (a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD 
[15]. (h) DNF [29]. (i) GCN [30]. (j) Ours. 

Table 1. The comparison of the MAE. 

Models BNF GNF L0 CNR RFD DNF GCN OURS 
Nicolo 

(Gaussian 0.1) 
5.378 5.755 7.990 4.099 7.704 5.453 4.377 4.077 

Fandisk 
(Gaussian 0.2) 

2.032 2.195 5.143 1.780 2.029 4.257 1.639 1.740 

Gargoyle 
(Gaussian 0.2) 11.210 12.480 16.230 7.540 9.325 7.979 7.254 7.500 

Trim-star 
(Gaussian 0.2) 6.515 6.924 8.123 4.142 9.657 5.477 4.428 4.057 

Rockerarm 
(Gaussian 0.3) 

7.639 7.735 12.130 5.382 9.172 6.244 5.073 5.318 

Bunny-Hi 
(Gaussian 0.3) 7.341 7.162 11.030 5.775 6.677 6.522 5.469 5.699 

Boy 
(Kinect V1) 14.660 11.801 10.510 9.798 9.873 10.079 9.576 9.754 

Pyramid 
(Kinect V2) 

9.042 7.963 7.622 6.897 6.897 7.419 6.797 6.789 

In addition to synthetic cases, the regression model based on RNN was verified on 
the other two datasets of meshes with raw noise. The results generated by the eight meth-
ods shared visual similarities when handling the low-level noise. However, in the case of 
high-level noise, the existing methods could not remove the noise completely. The Boy 
model with high-level noise in Figure 6 and the Pyramid model with moderate-level noise 
in Figure 7 were acquired by a Microsoft Kinect V1 camera and Microsoft Kinect V2 cam-
era, respectively. These scanning data from Kinect V1, V2, [3,15,30], and our method can 
remove noise to the maximum extent, meanwhile protecting the features well. 

Figure 5. Denoising of the Trim-star model corrupted by Gaussian noise (0.5) in a normal direction.
(a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15].
(h) DNF [29]. (i) GCN [30]. (j) Ours.

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

 
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 6. Denoising of the Boy model corrupted by a Kinect V1 camera. (a) Original model. (b) 
Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) DNF [29]. (i) GCN 
[30]. (j) Ours. 

 
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 7. Denoising of the Pyramid model corrupted by a Kinect V2 camera. (a) Original model. 
(b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) DNF [29]. (i) 
GCN [30]. (j) Ours. 

For meshes with an extremely high level of noise, denoising is an arduous process 
for traditional methods. However, our method shows its strong power to remove large 
noise while maintaining appearances. Figure 8 shows the Fandisk model with sharp fea-
tures, which is contaminated by Gaussian noise of 0.9 times the average edge length. Refs. 
[4,6] failed in the denoising task. Refs. [3,5,29] could not obtain satisfactory denoising re-
sults, but [15,30] and our method obtained acceptable denoising results. 

Figure 6. Denoising of the Boy model corrupted by a Kinect V1 camera. (a) Original model. (b) Noisy
model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) DNF [29]. (i) GCN [30].
(j) Ours.

Table 1. The comparison of the MAE.

Models BNF GNF L0 CNR RFD DNF GCN OURS

Nicolo
(Gaussian 0.1) 5.378 5.755 7.990 4.099 7.704 5.453 4.377 4.077

Fandisk
(Gaussian 0.2) 2.032 2.195 5.143 1.780 2.029 4.257 1.639 1.740



Symmetry 2022, 14, 1233 9 of 14

Table 1. Cont.

Models BNF GNF L0 CNR RFD DNF GCN OURS

Gargoyle
(Gaussian 0.2) 11.210 12.480 16.230 7.540 9.325 7.979 7.254 7.500

Trim-star
(Gaussian 0.2) 6.515 6.924 8.123 4.142 9.657 5.477 4.428 4.057

Rockerarm
(Gaussian 0.3) 7.639 7.735 12.130 5.382 9.172 6.244 5.073 5.318

Bunny-Hi
(Gaussian 0.3) 7.341 7.162 11.030 5.775 6.677 6.522 5.469 5.699

Boy
(Kinect V1) 14.660 11.801 10.510 9.798 9.873 10.079 9.576 9.754

Pyramid
(Kinect V2) 9.042 7.963 7.622 6.897 6.897 7.419 6.797 6.789

Symmetry 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

 
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 6. Denoising of the Boy model corrupted by a Kinect V1 camera. (a) Original model. (b) 
Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) DNF [29]. (i) GCN 
[30]. (j) Ours. 

 
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 7. Denoising of the Pyramid model corrupted by a Kinect V2 camera. (a) Original model. 
(b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) DNF [29]. (i) 
GCN [30]. (j) Ours. 

For meshes with an extremely high level of noise, denoising is an arduous process 
for traditional methods. However, our method shows its strong power to remove large 
noise while maintaining appearances. Figure 8 shows the Fandisk model with sharp fea-
tures, which is contaminated by Gaussian noise of 0.9 times the average edge length. Refs. 
[4,6] failed in the denoising task. Refs. [3,5,29] could not obtain satisfactory denoising re-
sults, but [15,30] and our method obtained acceptable denoising results. 

Figure 7. Denoising of the Pyramid model corrupted by a Kinect V2 camera. (a) Original model.
(b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. (h) DNF [29].
(i) GCN [30]. (j) Ours.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 14 
 

 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 8. Denoising of the Fandisk model corrupted by Gaussian noise (0.9) in a normal direction. 
(a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15]. 
(h) DNF [29]. (i) GCN [30]. (j) Ours. 

5.2. Quantitative Comparisons 
We also make quantitative comparisons to supplement qualitative comparisons. 

Sometimes, it is easy to judge the performance of different methods through visual com-
parisons. However, when there exist only small visual differences, one needs numerical 
metrics to distinguish them. We choose the mean angular error and Hausdorff distance as 
the quantitative metrics suggested by the previous works [3,24]. The mean angular error 
(MAE) is to estimate the mean angular difference between the face normals of the de-
noising mesh and those of the ground truth mesh and is defined as 

( ), ,dMAE E n n= ∠    (14)

where ( ),dn n∠  is the angle between the denoising normal and the ground truth, and E  
is the expectation operator, which is realized by averaging the angles between the pre-
dicted normals and the ground truth normals of all facets in the mesh. The small mean 
angular error indicates that the shape of the denoising surface is close to that of the ground 
truth surface. We calculated the MAEs on different types of meshes, which have corre-
sponding ground truth normals. The MAE values of experimental results are listed in Ta-
ble 1, and the best results are shown in bold. The results of GCN [30] and our method are 
closest to the ground truth models, since the smallest MAE values are either obtained by 
[30] or by our method. The statistics of the MAE, together with the above visual compar-
isons, show that our approach is convincing both numerically and visually. 

Hausdorff distance is used to measure the positional error between the denoised 
mesh and the ground truth mesh and is defined as 

max[ ( , ), ( , )],H h d g h g dD D M M D M M=  (15)

where 

2 21 1
1 2 1 2( , ) max min .h v Mv M

D M M v v
∈∈

= −  (16)

where dM  and gM  are the denoised mesh and the ground truth mesh, respectively, and 
1v  and 2v  are the vertices in the mesh. The Hausdorff distances for the experimental re-

sults are listed in Table 2, and the smallest results are shown in bold. Our method gener-
ates the denoising result with the smallest Hausdorff distance on meshes Gargoyle, Trim-
star, and boy (Kinect V1). GCN [30] has the smallest Hausdorff distance on models Nicolo, 
Rockerarm, and Bunny-Hi. The other two minimum Hausdorff distances appear in the 

Figure 8. Denoising of the Fandisk model corrupted by Gaussian noise (0.9) in a normal direction.
(a) Original model. (b) Noisy model. (c) BNF [4]. (d) GNF [5]. (e) L0 [6]. (f) CNR [3]. (g) RFD [15].
(h) DNF [29]. (i) GCN [30]. (j) Ours.



Symmetry 2022, 14, 1233 10 of 14

5.2. Quantitative Comparisons

We also make quantitative comparisons to supplement qualitative comparisons. Some-
times, it is easy to judge the performance of different methods through visual comparisons.
However, when there exist only small visual differences, one needs numerical metrics
to distinguish them. We choose the mean angular error and Hausdorff distance as the
quantitative metrics suggested by the previous works [3,24]. The mean angular error (MAE)
is to estimate the mean angular difference between the face normals of the denoising mesh
and those of the ground truth mesh and is defined as

MAE = E[∠(nd, n)], (14)

where ∠(nd, n) is the angle between the denoising normal and the ground truth, and E is
the expectation operator, which is realized by averaging the angles between the predicted
normals and the ground truth normals of all facets in the mesh. The small mean angular
error indicates that the shape of the denoising surface is close to that of the ground truth
surface. We calculated the MAEs on different types of meshes, which have corresponding
ground truth normals. The MAE values of experimental results are listed in Table 1, and
the best results are shown in bold. The results of GCN [30] and our method are closest to
the ground truth models, since the smallest MAE values are either obtained by [30] or by
our method. The statistics of the MAE, together with the above visual comparisons, show
that our approach is convincing both numerically and visually.

Hausdorff distance is used to measure the positional error between the denoised mesh
and the ground truth mesh and is defined as

DH = max[Dh(Md, Mg), Dh(Mg, Md)], (15)

where
Dh(M1, M2) = max

v1∈M1
min

v2∈M2
‖v1 − v2‖. (16)

where Md and Mg are the denoised mesh and the ground truth mesh, respectively, and v1
and v2 are the vertices in the mesh. The Hausdorff distances for the experimental results
are listed in Table 2, and the smallest results are shown in bold. Our method generates
the denoising result with the smallest Hausdorff distance on meshes Gargoyle, Trim-star,
and boy (Kinect V1). GCN [30] has the smallest Hausdorff distance on models Nicolo,
Rockerarm, and Bunny-Hi. The other two minimum Hausdorff distances appear in the
CNR [3] and BNF [4] methods, respectively. Except for Pyramid captured by the Kinect V2
camera, the Hausdorff distances of the results generated by our method were the minimum
or close to the minimum. This indicates that our method can preserve the volume of the
3D model and avoid volume shrinkage. The Hausdorff distance is usually, but not always,
consistent with the visual comparisons. This may be because the repositioning of vertices
after denoising will result in larger or smaller Hausdorff distances.

Table 2. The comparisons of Hausdorff distances.

Models BNF GNF L0 CNR RFD DNF GCN OURS

Nicolo
(Gaussian 0.1) 0.0208 0.0282 0.0435 0.0151 0.0260 0.0210 0.0138 0.0151

Fandisk
(Gaussian 0.2) 0.8707 0.9979 0.9997 0.7512 0.7616 0.7574 0.7557 0.7601

Gargoyle
(Gaussian 0.2) 2.6390 0.7996 1.4213 0.5928 0.6045 0.6115 0.5989 0.5840

Trim-star
(Gaussian 0.2) 0.5004 0.4498 0.5076 0.2257 0.2411 0.2741 0.2299 0.2079

Rockerarm
(Gaussian 0.3) 0.0104 0.0190 0.0171 0.0075 0.0218 0.0106 0.0060 0.0074



Symmetry 2022, 14, 1233 11 of 14

Table 2. Cont.

Models BNF GNF L0 CNR RFD DNF GCN OURS

Bunny-Hi
(Gaussian 0.3) 0.0095 0.0102 0.0187 0.0074 0.0088 0.0089 0.0059 0.0069

Boy
(Kinect V1) 6.1152 6.1374 5.8713 5.9764 5.9965 6.0018 6.0104 5.8206

Pyramid
(Kinect V2) 6.5917 6.8797 7.6550 7.0556 7.0723 6.7052 7.0018 7.0093

To compare the effects of these methods more intuitively, Figures 9 and 10 plot the
bar charts of the MAE and Hausdorff distances, respectively. For the convenience of
observation, for the three models Nicolo, Rockerarm, and Bunny-Hi in Table 2, the values
of Hausdorff distances are multiplied by 100.

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

CNR [3] and BNF [4] methods, respectively. Except for Pyramid captured by the Kinect 
V2 camera, the Hausdorff distances of the results generated by our method were the min-
imum or close to the minimum. This indicates that our method can preserve the volume 
of the 3D model and avoid volume shrinkage. The Hausdorff distance is usually, but not 
always, consistent with the visual comparisons. This may be because the repositioning of 
vertices after denoising will result in larger or smaller Hausdorff distances. 

Table 2. The comparisons of Hausdorff distances. 

Models BNF GNF L0 CNR RFD DNF GCN OURS 
Nicolo 

(Gaussian 0.1) 
0.0208 0.0282 0.0435 0.0151 0.0260 0.0210 0.0138 0.0151 

Fandisk 
(Gaussian 0.2) 0.8707 0.9979 0.9997 0.7512 0.7616 0.7574 0.7557 0.7601 

Gargoyle 
(Gaussian 0.2) 2.6390 0.7996 1.4213 0.5928 0.6045 0.6115 0.5989 0.5840 

Trim-star 
(Gaussian 0.2) 

0.5004 0.4498 0.5076 0.2257 0.2411 0.2741 0.2299 0.2079 

Rockerarm 
(Gaussian 0.3) 

0.0104 0.0190 0.0171 0.0075 0.0218 0.0106 0.0060 0.0074 

Bunny-Hi 
(Gaussian 0.3) 0.0095 0.0102 0.0187 0.0074 0.0088 0.0089 0.0059 0.0069 

Boy 
(Kinect V1) 6.1152 6.1374 5.8713 5.9764 5.9965 6.0018 6.0104 5.8206 

Pyramid 
(Kinect V2) 

6.5917 6.8797 7.6550 7.0556 7.0723 6.7052 7.0018 7.0093 

To compare the effects of these methods more intuitively, Figures 9 and 10 plot the 
bar charts of the MAE and Hausdorff distances, respectively. For the convenience of ob-
servation, for the three models Nicolo, Rockerarm, and Bunny-Hi in Table 2, the values of 
Hausdorff distances are multiplied by 100. 

 
Figure 9. Comparisons of the MAE. Figure 9. Comparisons of the MAE.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 14 
 

 

 

Figure 10. Comparisons of the Hausdorff distances. 

5.3. Running Time 
We recorded the time cost of each method in the experiments. The denoising time is 

listed in Table 3. The minimum running time is highlighted in bold. Our method is the 
fastest of all. Whether the number of facets in a mesh is large or small, the time perfor-
mance of our method is very good. It can be seen from Table 3 that the networks trained 
by CNR [3] and our method can be directly used for real-time denoising. Although the 
method of GCN [30] has achieved better results than our method in many cases, the run-
ning time of our method is much faster than that of GCN. As for why their speed is slower 
than CNR, the authors of [30], we believe that it is because they used complex neural net-
works. In conclusion, our approach has a good balance between efficacy (effectiveness) 
and time efficiency. 

Table 3. Computational times (s). 

Models #Vertices #Faces #Edges BNF GNF L0 CNR RFD DNF GCN Ours 
Nicolo 50,419 99,994 150,412 15.56 275.24 1873.95 3.47 18.43 1280.87 40.33 3.36 

Fandisk 6475 12,946 19,419 1.88 33.87 131.94 0.62 4.07 132.23 5.12 0.60 
Gargoyle 85,558 171,112 256,668 28.41 584.90 1948.63 7.74 19.05 2605.41 112.45 7.17 
Trim-star 5192 10,384 15,576 1.43 53.96 92.38 0.56 3.12 102.53 4.56 0.54 

Rockerarm 9413 18,826 28,239 2.90 69.39 232.91 0.86 4.90 222.42 7.15 0.84 
Bunny-Hi 34,877 69,537 104,417 11.04 178.40 1241.35 2.72 13.22 989.36 27.13 2.65 

Boy 28,187 53,229 81,541 22.34 176.21 458.98 1.78 6.77 621.05 16.30 1.75 
Pyramid 6915 13,296 20,229 2.37 31.85 97.25 0.61 3.58 132.18 5.04 0.57 

6. Limitations 
Although our method does not need to tune the parameters in denoising, the sizes of 

training datasets and the intensities and types of noise involved in the datasets will affect 
the generalization of the final regression model. When encountering large noise, the geo-
metric feature descriptors may be unable to tell noise from features. Searching for better 
alternate feature descriptors will be one of our future efforts. 

7. Conclusions and Future Works 
In this paper, a novel RNN-based mesh denoising model is proposed, inspired by 

cascade normal regression [3]. The feedback property of RNN is utilized, which the RBF 

Figure 10. Comparisons of the Hausdorff distances.



Symmetry 2022, 14, 1233 12 of 14

5.3. Running Time

We recorded the time cost of each method in the experiments. The denoising time
is listed in Table 3. The minimum running time is highlighted in bold. Our method is
the fastest of all. Whether the number of facets in a mesh is large or small, the time
performance of our method is very good. It can be seen from Table 3 that the networks
trained by CNR [3] and our method can be directly used for real-time denoising. Although
the method of GCN [30] has achieved better results than our method in many cases, the
running time of our method is much faster than that of GCN. As for why their speed is
slower than CNR, the authors of [30], we believe that it is because they used complex neural
networks. In conclusion, our approach has a good balance between efficacy (effectiveness)
and time efficiency.

Table 3. Computational times (s).

Models #Vertices #Faces #Edges BNF GNF L0 CNR RFD DNF GCN Ours

Nicolo 50,419 99,994 150,412 15.56 275.24 1873.95 3.47 18.43 1280.87 40.33 3.36
Fandisk 6475 12,946 19,419 1.88 33.87 131.94 0.62 4.07 132.23 5.12 0.60

Gargoyle 85,558 171,112 256,668 28.41 584.90 1948.63 7.74 19.05 2605.41 112.45 7.17
Trim-star 5192 10,384 15,576 1.43 53.96 92.38 0.56 3.12 102.53 4.56 0.54

Rockerarm 9413 18,826 28,239 2.90 69.39 232.91 0.86 4.90 222.42 7.15 0.84
Bunny-Hi 34,877 69,537 104,417 11.04 178.40 1241.35 2.72 13.22 989.36 27.13 2.65

Boy 28,187 53,229 81,541 22.34 176.21 458.98 1.78 6.77 621.05 16.30 1.75
Pyramid 6915 13,296 20,229 2.37 31.85 97.25 0.61 3.58 132.18 5.04 0.57

6. Limitations

Although our method does not need to tune the parameters in denoising, the sizes
of training datasets and the intensities and types of noise involved in the datasets will
affect the generalization of the final regression model. When encountering large noise, the
geometric feature descriptors may be unable to tell noise from features. Searching for better
alternate feature descriptors will be one of our future efforts.

7. Conclusions and Future Works

In this paper, a novel RNN-based mesh denoising model is proposed, inspired by
cascade normal regression [3]. The feedback property of RNN is utilized, which the RBF
neural network does not have. The previous output of the hidden layer can be used as the
memory and fed back to the next input, which connects the previous learning results with
the current learning and reinforces the training effect. Although our task seems to have
nothing to do with sequence processing, it is still possible to use this powerful formalism
of RNN to process our data in a sequential manner. Experimental results show that the
proposed method is superior to or comparable to the state-of-the-art methods in removing
noise and maintaining the features and details of meshes for both synthetic noise and
scanning noise. In the future, we can try to design better feature descriptors to characterize
the mesh and distinguish noise and features accurately. In addition, we can also try to
construct an end-to-end deep learning network to automatically learn mesh features, so that
we can obtain better denoising results without calculating feature descriptors in advance.

Author Contributions: Conceptualization, J.T.; methodology, Y.X.; software, Y.H. and Y.X.; validation,
P.H.; formal analysis, M.H.; investigation, P.H.; data curation, Y.H.; writing—original draft prepara-
tion, Y.X. and Y.H.; writing—review and editing, Y.X. and J.T.; supervision, M.H.; project administra-
tion, J.T.; and funding acquisition, J.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant No. 62172135 and No. 62176084 and in part by the Fundamental Research Funds for the Central
Universities of China under Grant No. PA2021GDSK0094.



Symmetry 2022, 14, 1233 13 of 14

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The meshes used in the synthetic dataset are courtesy of the Aim@Shape repos-
itory and the 3D mesh database of the Inria GAMMA group. We would like to thank Peng-Shuai
Wang for providing the data and codes for the mesh denoising. We would like to thank Sunil Kumar
Yadav, Xianzhi Li, and Yuefan Shen for sharing the implementation of their methods in [15,29,30],
respectively. We also thank the editors and the anonymous reviewers for their hard work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taubin, G. A signal processing approach to fair surface design. In Proceedings of the 22nd Annual Conference on Computer

Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 351–358.
2. Desbrun, M.; Meyer, M.; Schroder, P.; Barr, A. Implicit fairing of irregular meshes using diffusion and curvature flow. In

Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 26–30 July
1999; Volume 33, pp. 317–324.

3. Wang, P.S.; Liu, Y.; Tong, X. Mesh denoising via cascaded normal regression. ACM Trans. Graph. 2016, 35, 232. [CrossRef]
4. Zheng, Y.; Fu, H.; Au, O.K.-C.; Tai, C.-L. Bilateral normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph. 2011,

17, 1521–1530. [CrossRef] [PubMed]
5. Zhang, W.; Deng, B.; Zhang, J.; Bouaziz, S.; Liu, L. Guided mesh normal filtering. Comput. Graph. Forum. 2015, 34, 23–34.

[CrossRef]
6. He, L.; Schaefer, S. Mesh denoising via l0 minimization. ACM Trans. Graph. (TOG) 2013, 32, 1–8.
7. Ba, J.; Mnih, V.; Kavukcuoglu, K. Multiple object recognition with visual attention. arXiv 2014, arXiv:1412.7755.
8. Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D.J.; Wierstra, D. Draw: A recurrent neural network for image generation. Comput.

Sci. 2015, 37, 1462–1471.
9. Field, D.A. Laplacian smoothing and delaunay triangulations. Int. J. Numer. Methods Biomed. Eng. 1988, 4, 709–712. [CrossRef]
10. Vollmer, J.; Mencl, R.; Müller, H. Improved Laplacian smoothing of noisy surface meshes. Comput. Graph. Forum. 1999,

18, 131–138. [CrossRef]
11. Alexa, M. Differential coordinates for local mesh morphing and deformation. Vis. Comput. 2003, 19, 105–114. [CrossRef]
12. Nehab, D.; Rusinkiewicz, S.; Davis, J.; Ramamoorthi, R. Efficiently combining positions and normal for precise 3D geometry.

ACM Trans. Graph. (TOG) 2005, 24, 536–543. [CrossRef]
13. Nealen, A.; Igarashi, T.; Sorkine, O.; Alexa, M. Laplacian mesh optimization. In Proceedings of the 4th International Conference

on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, Kuala Lumpur, Malaysia, 29 November–2
December 2006; pp. 381–389.

14. Su, Z.X.; Wang, H.; Cao, J.J. Mesh denoising based on differential coordinates. In Proceedings of the 2009 IEEE International
Conference on Shape Modeling and Applications, Beijing, China, 26–28 June 2009; pp. 1–6.

15. Yadav, S.K.; Reitebuch, U.; Polthier, K. Robust and high fidelity mesh denoising. IEEE Trans. Vis. Comput. Graph. 2019,
25, 2304–2310. [CrossRef] [PubMed]

16. Bajaj, C.L.; Xu, G. Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graph. (TOG) 2003, 22, 4–32. [CrossRef]
17. Clarenz, U.; Diewald, U.; Rumpf, M. Anisotropic Geometric Diffusion in Surface Processing; IEEE: Piscataway, NY, USA, 2000;

pp. 397–405.
18. Ouafdi, A.F.E.; Ziou, D. A global physical method for manifold smoothing. In Proceedings of the 2008 IEEE International

Conference on Shape Modeling and Applications, Stony Brook, NY, USA, 4–6 June 2008; pp. 11–17.
19. Desbrun, M.; Meyer, M.; Schroder, P.; Barr, A.H. Anisotropic feature-preserving denoising of height fields and bivariate data. In

Proceedings of the Graphics Interface 2000, Montréal, QC, Canada, 15–17 May 2000; pp. 145–152.
20. Tsuchie, S.; Higashi, M. Surface mesh denoising with normal tensor framework. Graph. Models 2012, 74, 130–139. [CrossRef]
21. Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990,

12, 629–639. [CrossRef]
22. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the 6th International Conference on

Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846.
23. Fleishman, S.; Drori, I.; Cohen-Or, D. Bilateral mesh denoising. In ACM SIGGRAPH 2003 Papers; Association for Computing

Machinery: New York, NY, USA, 2003; pp. 950–953.
24. Sun, X.; Rosin, P.; Martin, R.; Langbein, F. Fast and effective feature preserving mesh denoising. IEEE Trans. Vis. Comput. Graph.

2007, 13, 925–938. [CrossRef]
25. Wei, M.; Yu, J.; Pang, W.; Wang, J.; Qin, J.; Liu, L.; Heng, P. Bi-normal filtering for mesh denoising. IEEE Trans. Vis. Comput. Graph.

2015, 21, 43–55. [CrossRef]
26. Wang, R.; Yang, Z.; Liu, L.; Deng, J.; Chen, F. Decoupling noise and features via weighted l1-analysis compressed sensing. ACM

Trans. Graph. (TOG) 2014, 33, 1–12.

http://doi.org/10.1145/2980179.2980232
http://doi.org/10.1109/TVCG.2010.264
http://www.ncbi.nlm.nih.gov/pubmed/21173457
http://doi.org/10.1111/cgf.12742
http://doi.org/10.1002/cnm.1630040603
http://doi.org/10.1111/1467-8659.00334
http://doi.org/10.1007/s00371-002-0180-0
http://doi.org/10.1145/1073204.1073226
http://doi.org/10.1109/TVCG.2018.2828818
http://www.ncbi.nlm.nih.gov/pubmed/29993913
http://doi.org/10.1145/588272.588276
http://doi.org/10.1016/j.gmod.2012.03.010
http://doi.org/10.1109/34.56205
http://doi.org/10.1109/TVCG.2007.1065
http://doi.org/10.1109/TVCG.2014.2326872


Symmetry 2022, 14, 1233 14 of 14

27. Wu, X.; Zheng, J.; Cai, Y.; Fu, C. Mesh denoising using extended rof model with l1 fidelity. Comput. Graph. Forum. 2015, 34, 35–45.
[CrossRef]

28. Zhang, H.; Wu, C.; Zhang, J.; Deng, J. Variational mesh denoising using total variation and piecewise constant function space.
IEEE Trans. Vis. Comput. Graph. 2015, 21, 873–886. [CrossRef]

29. Li, X.; Li, R.; Zhu, L.; Fu, C.-W.; Heng, P.-A. DNF-Net: A deep normal filtering network for mesh denoising. IEEE Trans. Vis.
Comput. Graph. 2020, 27, 4060–4072. [CrossRef]

30. Shen, Y.; Fu, H.; Du, Z.; Chen, X.; Burnaev, E.; Zorin, D.; Zhou, K.; Zheng, Y. GCN-Denoiser: Mesh Denoising with Graph
Convolutional Networks. ACM Trans. Graph. (TOG) 2022, 41, 1–14. [CrossRef]

http://doi.org/10.1111/cgf.12743
http://doi.org/10.1109/TVCG.2015.2398432
http://doi.org/10.1109/TVCG.2020.3001681
http://doi.org/10.1145/3480168

	Introduction 
	Related Works 
	Methods 
	RNN 
	Geometric Feature Descriptors 
	Bilateral Filtering and Guided Bilateral Filtering 
	Feature Descriptors 

	Regression Model 

	Vertex Update 
	Experiments and Analysis 
	Visual Comparisons 
	Quantitative Comparisons 
	Running Time 

	Limitations 
	Conclusions and Future Works 
	References

