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Abstract: The energy harvested by an ocean wave energy converter (WEC) can be enhanced by
a well-designed wave-by-wave control strategy. One of such superior control methods is model
predictive control (MPC), which is a nonlinear constrained optimization control strategy. A limitation
of the classical MPC algorithm is its requirement of an accurate WEC dynamic model for real-time
implementation. This article overcomes this challenge by proposing a data-driven MPC scheme
for wave energy converters. The data-based WEC model is developed by a Gaussian process
(encompassing mean predictions and symmetric uncertainties) for a more accurate description of
nonlinear and unmodeled system dynamics. A cross-entropy solver for data-driven MPC is employed
for rapid, high-performance results, which samples trajectories from Gaussian distributions based on
the concept of the symmetry principle. The proposed strategy is verified numerically by simulations
which demonstrate its superior performance over a classical complex-conjugate controller.

Keywords: wave energy converters; data-driven; model predictive control; Gaussian process;
complex-conjugate control

1. Introduction

Wave energy is a widespread and promising renewable source of energy from which
electricity can be generated without any carbon dioxide emissions. Nonetheless, appro-
priate control strategies are critical to optimize wave energy absorption efficiency and
guarantee operational safety at minimal hardware expense. This is especially important for
point-absorber wave energy converters (PAWECs). PAWECs can generally be described
as oscillators excited by waves, whose horizontal dimensions are much smaller than the
prevailing wavelength [1].

Many control strategies have been proposed to achieve a practically implementable
optimal power objective. The classical WEC controller design methods are mainly de-
veloped based on the principle that the optimal energy output can be achieved when
the resonance frequency of the WEC adaptively matches the dominant frequencies of the
incident waves under control. Classical WEC controllers include impedance matching [2],
complex-conjugate [3], latching [4], declutching [5] controllers, etc. These methods are
incapable of handling WEC physical constraints effectively. To maximize energy absorption
while maintaining safe operation, WEC control is essentially a constrained optimal control
problem subject to persistent disturbances [6], which can be solved by model predictive
control (MPC) or MPC-like control algorithms [7]. MPC is an online optimization tech-
nique which generates an optimal control sequence by solving a constrained optimization
problem at each sampling instant. Since MPC intrinsically handles multiple objectives and
constraints, it is suitable for WEC control. Nonetheless, there are still some challenges with
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the practical application of MPC of WECs. The majority of MPC-based WEC controllers uti-
lize the widespread linear WEC model based on Cummins’ equation [8]. This is developed
with the assumption that the device has only small movements around the equilibrium
position (the stationary water) [9]. Nonetheless, this linear model is impractical since the
WEC is expected to have large movements to maintain resonance with the wave excitation
force. The large WEC motion can result in strong nonlinear dynamics such as viscous
force on the device, which is verified to be non-negligible in the MPC design [10]. To this
end, nonlinear MPC (NMPC) control schemes are introduced to deal with the nonlinear
effects of WEC dynamics. To achieve the alleviation of computational burden and better
control performance, nonlinear buoyancy force effects are incorporated into online system
optimization by the pseudospectral approach which exploits the flatness property in the
constructed NMPC scheme [11]. The nonlinear WEC model, considering mooring forces, is
linearized and optimized in the NMPC framework [12], which indicates that the nonlinear
mooring force alone cannot fully realize the potential of NMPC. However, most of these
nonlinear models account for some weak nonlinear effects, which just are approximated by
the linear approach and fail to represent the “unmodeled dynamics” of the system well.
Some strong nonlinear hydrodynamics, especially the viscous damping, mooring force and
Froude–Krylov forces should be well-described to achieve a more accurate WEC model.
Therefore, it is important to propose an appropriate WEC model including nonlinear
dynamics for better control performance.

Data-driven methods have the capability to capture the key nonlinear wave–WEC
interaction hydrodynamics and do not require physical information, i.e., structure parame-
ters, as they are solely based on system measurements such as body position, velocity, wave
elevation, etc. Recently, there has been an explosion of data-driven modeling approaches
using machine learning techniques, which presents good generalization capabilities as well
as statistical inference, making them good at mapping highly nonlinear physical relation-
ships [13]. Due to the complex dynamics and high nonlinearity of WECs, it is desired to
introduce machine learning methods into WEC modelling for better control performance.
The work in [14] proposed an artificial neural network for wave prediction, which is further
combined with a linear real-time MPC controller. The work in [15] presented a model-free
deep reinforcement learning controller for WEC that outperforms the model-based control
in terms of wave energy production, but it is rather computationally expensive. The authors
of [16] presented a novel data-driven approach for updating reactive control parameters
based on a Multifidelity Gaussian process model for a WEC device. The machine learning
applications for WEC control are focused on wave force forecasting [14], wave excitation
force estimation [17], complex wave hydrodynamic approximation [18], direct controller
optimization using a reinforcement learning algorithm [15,19], etc. However, the use of
machine learning techniques to describe overall WEC dynamics and to study correspond-
ing control methods is relatively underdeveloped in the literature. This study fills this gap.
Gaussian Process (GP) is a powerful kernel-based learning method and presents strong po-
tential for analyzing implicit patterns between a series of training datasets. This approach is
good at dealing with complex nonlinear regression problems using nonparametric models.
The GP method provides the advantages of modeling flexibility, uncertainty estimation as
well as learning smoothness and noise parameters from a training dataset [20,21]. There-
fore, the GP technique is employed in this study to model the overall WEC dynamics. To
optimize the performance of this complex system, the data-driven model predictive control
is introduced and formulated for the proposed GP-based WEC model that maximizes the
wave energy absorption. Meanwhile, the physical limitations on the body movements and
control efforts are considered in designing this data-driven MPC.

Above all, the present study is instructive for developing a data-driven MPC approach
relying on black-box identification of a GP model from the WEC input/output datasets.
The contributions are illustrated as follows:

1. A novel data-driven WEC model using machine learning techniques and targeting the
control perspective is proposed, promising to advance state-of-the-art WEC modelling.
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The PAWEC system dynamics are learned by the Gaussian Process model, which aims
to capture the nonlinear system characteristics with mean value and uncertainties.

2. Developing a new data-driven MPC scheme based on the GP model for efficient and
real-time implementation in the actual operation of WEC. The cross-entropy technique
is introduced to deal with the trajectory optimization for fast, sample-efficient and
high performance.

3. The investigation of the performance of the data-driven MPC compared with the
classical complex-conjugate controller is expected to fill the gap in the literature.

4. The developed GP-based MPC scheme is validated in a small-sized and single-type WEC
in this study, which can generally be applied to any WECs across different deployment
prototypes (e.g., sizes, shapes) and other energy-maximizing control problems.

The arrangement of the paper sections is as follows. Section 2 presents the modeling of
point absorbers, including classical linear state-space modeling and Gaussian-Process-based
modeling methods. Section 3 introduces the complex-conjugate controller and data-driven
MPC scheme using the CEM solver. The detailed simulation results are presented in
Section 4 and finally the conclusions in Section 5.

2. Classical WaveStar PAWEC Modelling and Gaussian Process Regression
2.1. Classical WaveStar PAWEC Modelling

In this work, a specific type of WEC called point absorber (i.e., WaveStar WEC [22]) is
employed to demonstrate the efficacy of the proposed strategy. The WaveStar WEC is a
multiabsorber concept utilizing several hemispherical floats attached to a single platform.
Figure 1 illustrates the WaveStar in the WEC-Sim simulator considering a point absorber.
Assuming linear wavetheory and small body motions, the PAWEC response can be achieved
from the superposition of the inertial, hydrostatic, viscous, radiation, PTO control and
excitation forces. The floater–wave dynamic response (motions and forces) in WEC-Sim
is achieved by calculating the motion equation for each body around the gravity center
according to the Cummins’ equation [8,23]:

Figure 1. The scaled WaveStar device in the WEC-Sim [22].

(m + A∞)Ẍ(t) = −
∫ t

0
Kr(t− τ)Ẋ(τ)dτ

+ Fext(t) + Fvis(t) + Fhs(t) + Fpto(t)
(1)

where m represents the buoy mass, A∞ represents added buoy mass at infinite wave fre-
quency, X(t) represents the buoy displacement vector, Kr represents the radiation impulse
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response dynamic, Fext(t) denotes the wave excitation force acting on the floater, Fhs(t)
presents the hydrostatic restoring force, Fpto(t) represents the PTO force and Fvis(t) is the
quadratic viscous drag term computed using Morison’s equation. Other effects, including
mechanical friction and mooring force, are neglected.

Moreover, the WaveStar moment around the point A in Figure 1 can be expressed
using a Newtonian rotation equation [1]:

Jθ̈(t) = Mr(t) + Mext(t) + Mvis(t) + Mhs(t) + Mpto(t), (2)

where J denotes the moment of the rotating body’s inertia, θ̈(t) is the time derivative of
the buoy angular velocity θ̇(t), Mr(t) is the moment of the radiation force and similar
explanations follow for the other moments.

Generally, a finite state-space subsystem of the 2nd order is adopted to approximate
the radiation moment [24], illustrated in Equation (3). In Equation (3), (Ar; Br; Cr; Dr) are
the state-space matrices for the variable xr(t), which is an internal state without specific
physical meaning and is achieved by Prony’s method to express the inconvenient product
Mr(t) =

∫ t
0 Kr(t− τ)Ẋ(τ)dτ [24].

ẋr(t) = Arxr(t) + Br θ̇(t),

Mr(t) = Crxr(t) + Dr θ̇(t).
(3)

where

Ar =

[
−13.59 −13.35

8.0 0

]
,

Br =

[
8
0

]
,

Cr =
[

4.73 0.50
]
,

Dr = −0.1586.

Note that the wave excitation force Fext(t) and its relation to Mext(t) are as follows,
where LA denotes the distance from gravity center to point A in Figure 1 [25]:

Mext(t) = Fext(t)LA (4)

It is assumed that the small displacement Mhs(t) has an approximate proportional
relationship with the angular displacement θ(t), where Khs = 92.33 Nmrad−1 represents
the hydrostatic factor [22]:

Mhs(t) = −Khsθ(t) (5)

Moreover, the linear term can be used to approximate the nonlinear viscous moment
Mvis(t) with a linear damping coefficient Kv = 1.8 Nmrad−1s−1 [22]:

Mvis(t) = −Kv θ̇(t) (6)

Using Equations (2)–(5), the classical WaveStar PAWEC model can then be summarized
in a linear state-space expression, illustrated as:

ẋ(t) = Ax(t) + B(u(t) + Fext(t)),

y(t) = Cx(t),

x(t) = [θ(t) θ̇(t) xr(t)]T ,

(7)
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where

A =

 0 1 01×2

−Khs
Jt

−Kv
Jt

−Cr
Jt

02×1 Br Ar

,

B =
1
Jt

 0
1

02×1

,

C =

[
1 0 01×2
0 1 01×2

]
.

(8)

where u(t) = Fpto(t) =
(

Mpto(t)/LA
)

denotes the control input, Jt = J + J∞ = 1.36 kgm2

means the equivalent moment of inertia and 0m×n is a zero matrix with m rows and n
columns.

The electromechanical conversion efficiency η of the linear generator adopted here is
0.7. In this case, the absorbed wave power by the WaveStar is depicted as [24]:

P(t) = −ηptoFpto(t)Ẋ(t), ηpto =

{
η i f − Fpto(t)Ẋ(t) > 0
1/η i f − Fpto(t)Ẋ(t) ≤ 0

(9)

2.2. Gaussian-Process-Based Modeling Method

Gaussian process is a data-driven and nonparametric Bayesian approach to obtain
regression functions from the provided sample dataset. The GP regression provides the
advantages of modeling flexibility, uncertainty estimation as well as learning smoothness
and noise parameters from a training dataset [21]. Generally, a GP represents the function
distribution based on the training dataset. A GP is a stochastic process including an infinite
parameter set, any finite subsets of which are jointly Gaussian-distributed. Then, the priori
statistics of a GP model f (x) can be described by the mean function m(x) and the related
covariance function k(x, x∗):

f (x) ∼ GP(m(x), k(x, x∗))

m(x) = E[ f (x)]

k(x, x∗) = cov( f (x), f (x∗))

(10)

where x ∈ RD denotes the dynamic input vector, D is the input dimension and f (x) and
f (x∗) are random Gaussian scalar variables indexed by inputs x and x∗. Typically, k(x, x∗)
is called a kernel function parametrized by some specific hyperparameters. The covariance
function exhibits symmetry and non-negative determinism, which describes the process
behavior and defines the proximity between arbitrary random points of the Gaussian
function [26]. The regression problem here is equivalent to inferring the features of the
unknown PAWEC model from the input and output time series.

Assume a training dataset D = (X, Y) in a GP regression problem, where the matrix
X = [x1, x2, ..., xn] presents the input vector and vector Y = [y1, y2, ..., yn] denotes the
corresponding scalar outputs. The GP model can be regarded as a prior within the range
of plausible dynamic functions. After being updated through the training dataset, the GP
model will be a posterior over functions. The achieved GP posterior model is defined as:

yi = f (xi) + εi εi ∼ N (0, σ2) (11)

where y, f (x), and ε represent the observed outputs, GP model values (including uncer-
tainty estimates) and a white noise (errors) with a mean of 0 and variance of σ2, respectively.

With n-many training data points in the training input matrix x ∈ RN∗D and obser-
vation target vector y ∈ RN , any arbitrary collection of function values f (xi) is jointly
Gaussian-distributed:

[ f (x1), f (x2), · · · , f (xN)]
T ∼ N (µ, K + σ2 I) (12)
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where covariance function K = Kij = k(xi, xj) with N ∗ N entries and mean function
µ = µi = m(xi) with N entries.

The squared exponential (SE) is the adopted covariance function in this study, which
is referred to as the Radial Basis Function (RBF) [20]. Any continuous function can be
approximated when the number of RBFs is large enough. This is expressed as [16]:

k(xi, xj) = h2exp

[
−
( xi − xj

λ

)2
]

(13)

where two related hyperparameters h and λ decide the model input and output scales.
Large values of λ enhance the smoothness of the selected kernel function and vice versa.

The hyperparameter values h and λ in the SE covariance can be achieved by the
optimization of the log marginal likelihood function [20]) as follows:

log p(y|θ) = −1
2

log |K| − 1
2

yTK−1y− n
2

log (2π) (14)

Standard gradient nonconvex optimization strategies such as Rdrop, CG or Broyden–
Fletcher–Goldfarb–Shanno (BFGS) are normally adopted in the hyperparameter optimiza-
tion. It is noteworthy that highly appropriate initial hyperparameter values before the
training process can promote faster convergence of optimization and avoid convergence to
an unsatisfactory regional optimum.

The new target prediction f ∗ for a given input X∗ from the posterior can be achieved
after the training process using the extended joint distribution in Equation (15). The mean
can be interpreted as a deterministic prediction, while the variance can be viewed as a
measure of the uncertainty for that deterministic prediction.[

f ∗

Y

]
∼
([

m(X∗)
m(X)

]
,
[

k(X∗, X∗) k(X∗, X)
k(X, X∗) K + σ2 I

])
(15)

where k(X∗, X) = k(X, X∗)T = [k(X1, X∗), · · · , k(XN , X∗)]. According to the Joint Gaus-
sian Distribution Theorem [20], the forecasting result for the new target becomes:

µ( f ∗) = m(X∗) + k(X∗, X)[K + σ2 I]−1(Y−m(X))

σ( f ∗) = k(X∗, X∗)− k(X∗, X)[K + σ2 I]−1k(X, X∗)
(16)

3. Control for Optimal Power Extraction from WEC
3.1. Complex-Conjugate Control

Complex-conjugate control is a classical method to extract the optimal mechanical
power of PAWECs, which achieves energy absorption maximization through impedance
matching. As required, the PTO can be assumed to work as an additional spring or inertia
to compensate for the inherent WEC reactance. The WEC floater can move in phase with the
wave excitation force (WEF) by adding a PTO force. Therefore, optimal power absorption
can be achieved when the complex conjugate of the device’s mechanical impedance is
matched to the PTO impedance, or when the PTO’s reactance compensates the device’s
reactance. For convenience of control, the WEC-Sim floater–wave dynamic (1) is typically
expressed in the frequency domain as [27]:(

iω(m + Aω) + Bv + R(ω) +
S

iω

)
iωX(ω) = Fext(ω) + Fpto(ω) (17)

where X(ω) denotes the Fourier transform of the corresponding time-domain signal, Bv
and R(ω) are the PTO system viscous and radiation damping, respectively, and S represents
the hydrostatic restoring coefficient matrix.

Furthermore, the WEC system intrinsic impedance is defined as:

Zi(ω) = iω(m + Aω) + Bv + R(ω) +
S

iω
(18)
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According to linear potential flow theory [1], the optimal PTO impedance corresponds
to the complex-conjugate of the intrinsic mechanical impedance of the WEC system in the
frequency domain, i.e.,

Zpto(ω) = Z∗i (ω)

= −iω(m + Aω) + Bv + R(ω)− S
iω

(19)

In the wave complex-conjugate control, the system PTO force can be derived by adding
the mass, damping and spring terms, illustrated as:

Fpto(t) = MptoẌ(t) + BptoẊ(t) + CptoX(t)

= −(m + A)Ẍ(t) + (Bv + R)Ẋ(t)− SX(t)
(20)

The PTO spring coefficient Cpto changes with the PTO geometry. Given the PTO
geometry, Cpto turns out to be a constant value. However, the values of Mpto and Bpto need
to be regulated with different ω values. Assuming Bpto = Bv + R, Equation (20) becomes:

MptoẌ(t) + CptoX(t) = −(m + A)Ẍ(t)− SX(t) (21)

There are two unknown coefficients in Equation (21), namely Mpto and Cpto. When
a random certain value is provided for one of these two unknown coefficients, the other
coefficient can be computed according to Equation (21). When Mpto = 0 in Equation (21), it
is referred to as the complex-conjugate control [28]:

Fpto(t) = BptoẊ(t) + CptoX(t) (22)

The values of PTO damping and spring coefficients remain unchanged for a single
wave frequency. The complex-conjugate control is known to be noncausal, which means
that future knowledge of the wave excitation force is required for physical implementa-
tion [29]. The WEF forecasting can be approximated by correlated wave measurements
using different methods [30], but this is not the focus of this study. Therefore, ideal future
WEF information in the time domain is assumed in this paper. To summarize, Figure 2
provides the illustration of the computation of WEC device motions and corresponding
complex-conjugate controller in a block diagram.
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Figure 2. Block diagram for the WEC system model and corresponding complex-conjugate control.
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3.2. Data-driven MPC Design with Cross-Entropy Optimization
3.2.1. Cross-Entropy Optimization

To determine the control actions, the MPC solved by the learning model searches the
optimal action sequence for the system and executes the first action of the obtained sequence,
discarding the remaining control actions. Normally, this search is repeated after each step in
the real environment to resolve errors in model predictions and enable interaction with the
environment. In this study, the planning step is achieved with the Cross-Entropy Method
(CEM), a fast, sample-efficient and high-performing algorithm. The CEM algorithm is a
global derivative-free optimization technique and a sampling-based trajectory optimization
method applied to model predictive control, which presents symmetry [31]. It provides
several appeals including the possibility to optimize complex black-box functions, higher
robustness, no need for gradient knowledge and lower sensitivity to local optima.

In the CEM-based MPC design, CEM functions at each time step to optimize the
h-step planning problem over action sequences [32]. CEM iteration is referred to as a step
in the inner loop of CEM that implements the optimization of the sampling distribution.
The outer loop step represents progress in the real environment by performing a control
action. Typically, the next step is to consider the planning problem one time step later. The
CEM algorithm can be viewed as an evolution scheme which optimizes the system cost
function by finding appropriate "individuals". A sample of individuals is drawn from the
population distribution as control actions for MPC. These individuals are then evaluated
and sorted according to the cost function and a fixed number of "elite" candidates are
selected as the elite set. This elite set determines the population parameters for the next
iteration. In the standard CEM case, the population is modeled by a Gaussian probability
distribution based on the concept of the symmetry principle with mean µ and a diagonal
covariance matrix diag(δ2), where µ, δ ∈ Rn. By fitting µ and δ to the elite set, the sampling
distribution is centered around the near-optimal solutions with high performance. After
multiple selection processes, the best solution close to the global optimum is obtained.

To achieve strong performance with few samples, reduce computational cost and
make it suitable for real-time trajectory optimization in MPC, several improvements can
be employed to CEM [33]. Ideally, CEM action samples should yield trajectories that
explore the state space to a large extent. The momentum term α [34] is employed to
refit the distribution between the CEM iterations, aiming to estimate parameters of the
sampling distribution using only a small elite set. Here, µi+1

t = αµi + (1− α)µeliteseti
/K,

where α ∈ [0, 1], i denotes the index of CEM iterations and K is the size of the elite set.
Actions are sampled from the unmodified normal Gaussian distributions and the results
are clipped to lie inside the permitted action interval, which allows to sample maximal
actions more frequently. Once the inner optimization loop is completed, the optimized
Gaussian distribution and the elite set produced at each inner CEM iteration are stored,
while a small fraction of them are added to the pool for the next iteration, rather than
discarding the elite set during each CEM iteration. Moreover, a small fraction of the elite set
of the last CEM iteration is stored and added with each stochastic action to employ it in the
next step. Here, the elite reuse fraction ξ = 0.3 is introduced due to the fact that when an
optimum is closed, the standard deviation automatically reduces, thus narrowing down
the search space and fine-tuning the final solution. It turns out to be sufficient to sample
fewer action sequences as the CEM iterations progress. Therefore, an exponential decrease
in the sample size of a constant coefficient γ is introduced. The population size of iteration
i is Ni = max(Nγ−i, 2K), where max ensures that the population size is at least twice the
size of the elite set. In this CEM algorithm, the first action of the best seen action sequence is
performed. The overall CEM algorithm is summarized in Algorithm 1.
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Algorithm 1: The CEM optimization algorithm.
Parameters :CEM iterations: number of iterations; N: number of samples; K: size

of elite set; γ: sample decay; ξ: elite reuse fraction; (µ, δ) ∈ Rd×h:
control trajectory Gaussian distribution mean and covariance;
µinit, δeliteseti

: the initial mean and the covariance of the eliteseti; H:
prediction horizon; α: momentum

1 for i=0 to CEM iterations−1 do
2 Ni ← max(Nγ−i, 2K)
3 if i==0 then
4 samples← Ni from N (µinit, diag(2σ2

init);
5 if eliteset!=empty then add fraction ξ of shifted elitesett−1 to samples;
6 else
7 samples← Ni from N (µi, diag(σ2

i );
8 add fraction ξ of eliteseti to samples;
9 end

10 if i==last-iter then add mean of eliteseti to samples;
11 cost← evaluate cost function f (x) for x in samples
12 eliteseti ← best K samples according to costs
13 µt, δt ← fit Gaussian distribution to eliteseti with momentum
14 µi+1

t = αµi + (1− α)µeliteseti
/K

15 δi+1
t =

max(
∣∣∣µmax

eliteseti
−µi+1

∣∣∣,∣∣∣µmin
eliteseti

−µi+1
∣∣∣)

2
16 end
17 execute first action of the best elite sequence

3.2.2. Data-Driven MPC Formulation

In this section, the GP-based MPC controller aims to find optimal control actions
along the prediction horizon according to the given performance objectives and physical
constraints. For the WEC optimization problem, the data-driven MPC minimizes the
discrete form of the finite-horizon cost function of the nonlinear energy output criterion
over a certain prediction horizon TH , aiming to maximize the energy output:

J(t) = −
∫ t+TH

t
P(t)dt = −

∫ t+TH

t
ηptoFpto(t)Ẋ(t)dt (23)

with
Ẋ(t) = LA θ̇(t) (24)

where moment arm LA is the known and variable parameter. The mean value and covari-
ance of ˙X(t) can be derived from the GP model of θ̇(t) according to Equations (24) and (25).
The dynamic PAWEC system is illustrated by the GP regression:

∆x ∼ GP(∆Fext, ∆Fpto) (25)

where ∆x = [∆θ, ∆θ̇] denotes the output increments of the GP-based PAWEC model and
∆Fext and ∆Fpto represent the input increments of the GP-based PAWEC model.
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The MPC makes full use of the probability knowledge of the GP-based WEC model.
The data-driven GP-MPC scheme is a sampling-based algorithm, and the optimal PTO force
Fpto(k+ i|k), i = 1, 2, · · · , H is provided by the sampling-based CEM trajectory optimization
algorithm. To achieve noncasual control, H samples of wave excitation force prediction
Fext are assumed to be available. In this sense, ∆Fext and ∆Fpto can be achieved by the
difference between the previous moment and the next moment.

The data-driven MPC using GP-based PAWEC model can be illustrated as follows:

arg max
Fpto(·)

J(k) (26)

with :J(k) = −
H

∑
i=1

ηptoFpto(k + i|k)Ẋ(k + i|k)

s.t. Xk|k = X0 (27)

Xmin ≤ Xk+i|k ± 2σX ≤ Xmax i = 0, 1, · · · , H (28)

Fptomin ≤ Fpto(k + i|k) ≤ Fptomax (29)

Let Xk+i|k represents the prediction of X at sample k + i where the prediction is
achieved at sampling time k, the PTO force Fpto(k + i|k) is the optimal control input at
sample k + i obtained at sample k and H is the prediction horizon. Equation (27) indicates
the initial knowledge of states which is assumed to be available. Equation (28) represents
the buoy position constraints Xmin = −0.08m and Xmax = 0.08m. Given that this buoy
position X prediction is achieved from the GP, including mean µX and covariance σX , the
truncated GP Xk+i|k ± 2σX is employed to guarantee that the estimated uncertain X is
within the safe region. Equation (29) represents the control input constraints that can be
provided by the PTO mechanism Fptomin = −80N and Fptomax = 80N.

This GP model (Equation (25)) can realize the sequence-to-sequence state prediction for MPC
optimization, avoiding the error accumulation. That is to say, [∆xk+1|k, ∆xk+2|k, · · · , ∆xk+H|k]

T

can be obtained at the same k time from the GP regression (Equation (25)). Therefore, θ̇(k +
i|k), i = 1, 2, · · · , H can be achieved as follows:

xk+1|k = ∆xk+1|k + xk|k

xk+2|k = ∆xk+2|k + xk+1|k
...

xk+H|k = ∆xk+H|k + xk+H−1|k

(30)

Moreover, Ẋ(k + i|k), i = 1, 2, · · · , H can be obtained through the relationship be-
tween Ẋ(t) and θ̇(t) (Equation (24)). The proposed GP-based data-driven MPC strategy is
summarized in Figure 3, where the stop criteria indicates that the iteration number reaches
CEM iterations. In summary, the optimal PTO force can thus be achieved from the designed
data-driven MPC strategy.
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WEC Plant

GP-based data-driven MPC
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MPC solver

GP-based 
WEC model

Cost Function 
& Constraints 

∆����(� + 1|�)⋯ ∆����(� + �|�)

State Predictions

If stop criteria               
satisfied? Iteration number i=i+1

No

Yes

Optimal PTO force ����(�)

Test PTO force

����(�)Buoy angular position �(�) 

Buoy angular velocity �(�) 

State feedback

∆����(� + 1|�)⋯∆����(� + �|�)

Incident waves

Future WEF

�(�|�)

PTO force

X(� + 1|�)⋯�(� + �|�) ����(� + 1|�)⋯ ����(� + �|�)

Figure 3. The proposed GP-based data-driven MPC strategy.

4. Simulations

The numerical simulations to demonstrate the effectiveness of the proposed data-
driven MPC using the GP modeling method are provided in this section. The WaveStar
model in the WEC-Sim simulator is employed here. The sampling time is 0.1 s. The 100 s
record of buoy angular position is utilized as the training dataset for GP model fitting. With
the help of this step, the final GP model (posterior) is achieved from the initial GP model
(prior) through updating the relevant hyperparameters h and λ in Equation (13). Samples
of 20 s of buoy angular position and velocity (i.e., [100, 120] s) are estimated to test the
performance of the resulting GP regression model, as illustrated in Figure 4, where the
second subplot provides the zoomed-in regression result. Apart from the obtained mean
values, uncertainty estimates of state points are also provided. It can be seen that the buoy
angular position θ outputted by the GP regression model can follow the true value very
closely. It is interesting to note that the uncertainty range is not large, implying that the
mean value estimates are accurate.

Moreover, the GP regression results for a 350 s duration are compared with the outputs
of the linear state-space model and the real WEC-Sim nonlinear model outputs, and part of
the simulation results are as illustrated in Figure 5. It can be seen that the buoy angular
position and velocity estimated by the GP model are very similar to the actual output
values of WEC-Sim, presenting much better regression performance compared with that of
the linear state-space model. In contrast, the state-space model presents worse regression
results in terms of high-frequency components. This is because the GP model provides
a more complete description of the PAWEC nonlinear effects and unknown properties.
The results verify the feasibility and validity of the designed GP model for the WaveStar
model. Moreover, the GP regression performance is evaluated by normalized mean squared
error (NMSE). The smaller the NMSE is the better the performance. The NMSE results are
illustrated in Table 1. The NMSE results of the GP-based model are smaller than those of
the linear state-space model, which validates the effectiveness of the proposed GP-based
model.
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Figure 4. The resultant buoy angular position θ by the proposed GP-based model.
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Figure 5. Time–domain comparison of regression results for the WaveStar by different models. (a)
The WaveStar angular position. (b) The angular velocity.

The classical complex-conjugate controller is designed according to the authors’ previ-
ous work [35]. The prediction horizon is H = 20. CEM iteration is set to 5. The size of elite
set is 20 and the sample decay is γ = 1.25. The last time control output is set to the initial
mean µinit of the elite set, while the initial covariance δeliteseti

in the range [1, 12] increases
as the prediction horizon increases to guarantee the continuity of control output. The
irregular wave scenario with JONSWAP spectrum is adopted here to validate the proposed
strategy, with a significant wave height of 0.1042 m, peak wave cycle of 1.836 s and peak
enhancement parameter of 3.3, as illustrated in Figure 6.

Table 1. NMSE comparison results of the WaveStar model state regression.

Comparison Items State-Space Model GP Regression Model

NMSE of angular position
(θ) 0.2971 0.9951

NMSE of angular velocity
(θ̇) 0.3609 0.9607
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Figure 6. The irregular wave scenario used in the simulations. (a) Wave amplitude. (b) Spectral
energy distribution.

The MPC controller is activated after 10 s of the wave fluctuation to avoid numerical
instability during the initial transient. Under these settings, the control action output under
the data-driven MPC during one CEM iteration is compared with the corresponding output
of the complex-conjugate controller, as illustrated in Figure 7. The red line denotes the
complex-conjugate controller output and the green line represents the 20 control actions
from the elite set of the CEM-based MPC solver, while the other lines represent a subset of
normal sample control actions. It can be seen that the PTO force generated by the complex-
conjugate controller exceeds the control input constraints (i.e., [−80, 80] N) for a period
of time (i.e., horizon steps [8, 15]), which violates the physical limits. Moreover, a small
fraction of sample control actions by the data-driven MPC also exceed the floater physical
constraints but are discarded. The control actions presenting better energy output constitute
the final elite set. It is emphasized that the 20 control actions in the elite set are within the
control limits. Furthermore, the control action Fpto, the corresponding system buoy position
X and velocity Ẋ under the proposed data-driven MPC strategy are illustrated in Figure 8,
where the black line denotes the best elite sequence of the elite set. It is worth noting that
the optimal PTO force and the buoy velocity should be maximized under the premise of
the same phase, thus realizing energy output optimization.
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F
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to
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)
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Figure 7. The action output under the data-driven MPC during the CEM iteration.
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Figure 8. The control action Fpto, the corresponding system buoy position X and velocity Ẋ under
the proposed data-driven MPC strategy.

The buoy position during the simulation time is depicted in Figure 9, where the second
subplot provides a zoomed-in figure between [300, 350] s. It can be seen that the buoy
position X is within the physical limits [−0.08, 0.08] m. Moreover, the buoy position X
computed by the data-driven MPC is always larger than that of the complex-conjugate
controller, implying that the floater motion is largely exaggerated by the proposed MPC
scheme, thereby achieving energy maximization.
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-0.04
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Data-driven MPC

Complex-conjugate

Figure 9. The buoy position X under the two control strategies.

Figure 10a,b provides the extracted instantaneous energy output and the accumulated
power output of the two above-mentioned controllers, respectively. It can be seen that the
proposed GP-based MPC can yield more instantaneous power. Especially, the proposed
method, which can obtain 14% more energy than the classical complex-conjugate controller
under irregular wave conditions for the considered simulation duration. The results reveal
that with the help of the proposed GP-based MPC scheme the PAWEC can achieve more
energy output, which verifies its effectiveness.
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Figure 10. Comparison of results for the instantaneous and accumulated power under the two
control strategies. (a) The instantaneous power. (b) The accumulated power.

Moreover, when the proposed data-driven MPC strategy is applied in real practice,
an initial energy maximization controller is required to generate the original training
datasets for the GP-based WEC model regression. The relevant sensors are required to
collect the measurement inputs/outputs. The measurement noise should be reprocessed
before being injected to the GP model training. Once the training datasets are ready,
the GP-based WEC model can be trained offline. The regression performance should be
validated and compared with the real observations before the GP model is applied to the
data-driven MPC.

5. Conclusions

This paper proposes a data-driven MPC strategy for PAWEC energy maximization that
relies on a GP-based probabilistic model from black-box identification using input/output
training datasets. The proposed GP-based PAWEC model can describe the system nonlinear
parts and the unmodeled dynamics more accurately than classical linear state-space models,
providing the system mean value and corresponding symmetric uncertainty. The resulting
nonlinear MPC problem is solved and optimized by the CEM algorithm, making full
use of the uncertainty information of the probabilistic GP-WEC model. This novel GP-
based WEC model targets the control perspective and is combined with the data-driven
MPC, which is expected to advance the state-of-the-art WEC energy-maximizing control
scheme. The proposed method achieves better energy optimization performance than the
conventional complex-conjugate controller; it can also prevent system constraint violations.
The experimental results under the irregular wave conditions verify that the proposed
strategy has the merits of better energy-maximization performance and better constraint
compliance. The proposed GP-based model can include PTO dynamics in the future,
completing a wave-to-wire WEC model, to improve the model-based energy-maximizing
controller performance. Although the point absorber is employed as a case study, the
proposed GP-based MPC using the CEM optimization framework can be applied to the
control of other WECs and other similar energy-maximizing control problems.
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