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Abstract: Genetic regulation of organisms involves complicated RNA–RNA interactions (RRIs)
among messenger RNA (mRNA), microRNA (miRNA), and long non-coding RNA (lncRNA). Detect-
ing RRIs is beneficial for discovering biological mechanisms as well as designing new drugs. In recent
years, with more and more experimentally verified RNA–RNA interactions being deposited into
databases, statistical machine learning, especially recent deep-learning-based automatic algorithms,
have been widely applied to RRI prediction with remarkable success. This paper first gives a brief
introduction to the traditional machine learning methods applied on RRI prediction and benchmark
databases for training the models, and then provides a recent methodology overview of deep learning
models in the prediction of microRNA (miRNA)–mRNA interactions and long non-coding RNA
(lncRNA)–miRNA interactions.

Keywords: RNA–RNA interaction; miRNA–mRNA interaction; lncRNA–miRNA interaction;
deep learning

1. Introduction

RNAs are important biological molecules, including messenger RNA (mRNA) and
non-coding RNA (ncRNA) [1,2]. ncRNA has several types, such as microRNA (miRNA),
circular RNA (circRNA), and long non-coding RNA (lncRNA). In the past decade, they
have attracted widespread attention [3–6].

Generally speaking, mRNAs can be translated into proteins that maintain the life
activities of organisms, and ncRNAs also play important roles in biological processes, such
as genetic regulation, by interacting with other molecules, such as proteins or RNAs. The
miRNAs are approximately 22-nucleotide (nt)-length ncRNAs, combining with partially
complementary mRNA sequences, which are called miRNA response elements (MREs) [7],
to regulate the translation process of mRNAs. circRNAs are usually closed loops formed
by reverse splicing of pre-mRNA [8]. Previous studies have shown that some circRNAs
could act as “miRNA sponges” (competitive inhibitors of miRNA) in the process of genetic
regulation [9,10]. The lncRNAs are ncRNAs more than 200 nt in length. Some lncRNAs
could act as precursors of miRNAs [11], and other lncRNAs could competitively bind
to a miRNA and prevent it from binding to mRNAs or circRNAs [12,13]. Salmena et al.
proposed a competing endogenous hypothesis [14], which interprets the interactions of
mRNA, lncRNA, circRNA, and other ncRNAs with MRE as “communicate” interactions,
and systematically explains the process of their mutual regulation, as illustrated in Figure 1.
Recent studies have shown that some miRNAs and lncRNAs play crucial roles in cancer
progression [15,16]; thus, predicting correlated RRIs provides a remarkable opportunity for
targeted therapies for cancer. Additionally, there are some reported complicated interactions
among RNAs. For example, miRNAs can directly target lncRNAs for certain biological
functions, such as promoting the degradation of lncRNAs [17,18]. In addition, interactions
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exist among ncRNAs themselves, i.e., small nucleolar RNAs (snoRNAs) and ribosomal
RNAs (rRNAs) [19]. The descriptions and pairwise interactions of the main RNA types
involved in RRI are summarized in Table 1.
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Figure 1. (A) Schematic figure to show potential interaction patterns between miRNAs and other
RNAs. (B) RNA–RNA interactions interpreted by ceRNA hypothesis. Target mRNA attracts the
binding miRNAs through MRE. Other mRNAs, lncRNA and circRNA, competitively bind to miRNAs
by MRE and block the miRNA–mRNA interaction. MRE plays the role of “words of communication”
in the regulation process [14].

Table 1. Descriptions and pairwise interactions of the main RNA types involved in RRI.

RNA Type Description Length Pairwise Interactions

mRNA Carrier of genetic information 102~105 nt miRNA, lncRNA
miRNA Micro non-coding RNA about 22 nt mRNA, lncRNA, circRNA
lncRNA Long non-coding RNA more than 200 nt mRNA, miRNA
circRNA RNA which forms a closed loop more than 100 nt miRNA

It is worth pointing out that RNA–RNA interaction (RRI) embodies a biological sym-
metry. Asymmetric single-stranded RNA molecules form local double-helical structures
with helical symmetry [20] through complementary base pairing in their interactions, and
these structural changes promote specific biological functions.

Although RRI can be determined with many different wet-lab experiments [21–25],
they are time-consuming and costly in general. Bioinformatics-based models are a promis-
ing way to speed up the understanding of the functions of RNAs, whose predictions could
provide useful clues and top-rated candidates for further experimental design and verifica-
tion. The computational models can be applied in the following three fields at least: first,
for a function unannotated RNA, its potential interacting partners in the RNA regulatory
network could be mined with a large-scale screening manner from a large database, and
thus its functions could be partially inferred from its annotated neighborhood; second,
interaction motif patterns can be discovered with the automatic models, which are expected
to be helpful to reversely infer the detailed biology mechanisms; third, the mined RRI
knowledge as well as the interaction motif patterns could be further applied to design
corresponding drugs to regulate the expression of disease-related genes.

In recent years, there have been many computational methods designed to predict the
interactions between RNAs. These methods can be generally classified into three groups:
traditional, conservation-based methods, data-driven, traditional, statistical-machine-
learning-based methods, and recent deep-learning-based methods, as shown in Figure 2
and Table 2. From the perspective of the prediction purpose, these methods can be classified
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into two groups: site-level-based models and RNA-level-based models. The former focuses
on predicting the specific binding sites on RNAs, while the latter only judges whether the
input RNA pairs interact or not.
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Table 2. The classification of recent computational RRI prediction methods.

Methods Characteristic References

Conservation-based methods Detecting complementary regions miRU [26], miRNAassist [27]

Thermodynamic-based methods Calculating the minimum free energy
structure RNAcofold [28], RNAhybird [29]

Shallow-machine-learning-based
methods Data-driven and feature extraction TargetMiner [30], miTarget [31]

Deep-learning-based methods Data-driven and learning the high-level
discriminative features MiRTDL [32], LncMirNet [33]

Graph-based methods Network inference LCBNI [34], EPLMI [35]

For traditional, conservation-based methods, the initial and direct hypothesis about
RRI prediction is to use sequence alignment tools such as BLAST [36]. If there is a com-
plementary region in the two RNA sequences, then the two RNAs would be predicted
potentially interacting with a high probability. This hypothesis would result in many false
positives since complementary regions in RNA pairs will occur frequently, but not all of
them will form true interactions. On the other hand, some interacting RNAs may only have
partial complementarity between the two RNA sequences [37], which further increases the
difficulty of the sequence-alignment-based approach.

Later methods interpret RNA interactions from the thermodynamic perspective by
calculating the minimum free energy (MFE) structure of the RNA complex, which extends
the RRI prediction problem to the generalization problem of the RNA secondary structure
folding and prediction. RNAcofold [28] concatenated the two RNA sequences to calculate
its secondary structure with MFE. RNAhybrid [29] calculated the MFE structure under a
constraint of abandoning the interactions inside the two RNA molecules. Alkan et al. [38]
hypothesized that the complex structure would be restricted with no internal pseudoknots,
crossing interactions, or zigzags to avoid the prohibitive computational resources needed
for interactions prediction between two long RNA molecules.
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In addition to base pairing, conservation score [39] and site accessibility [40] are also
introduced for predicting miRNA–mRNA interactions. Graph-based methods [34,35] are
developed for predicting lncRNA–miRNA interactions, which predict the potential edges
in lncRNA–miRNA interaction networks with lncRNAs and miRNAs as the nodes and the
known interactions as the existing edges.

Data-driven models have witnessed rapid progress in recent years with more and more
experimental data being deposited into the database. Machine-learning-based methods,
e.g., support vector machines (SVMs) [30,31,41], are frequently used in early stages. Other
different machine learning models have also been used. For instance, IMTRBM [42] applied
restricted Boltzmann machines to predict miRNA–mRNA interactions. LMI-DForest [43]
applied a deep forest model to predict lncRNA–miRNA interactions. The circMRT [44]
is an ensemble-machine-learning-based method to predict the regulatory information of
circRNAs. A common feature for these machine-learning-based methods is that they rely on
hand-designed features; thus, expert knowledge is important for the model development.
Since the molecular mechanism understanding on the RRI is far from complete, it is a
challenging task to collect all the discriminative features.

This paper mainly focuses on the recent deep-learning-based methodology develop-
ment in RRI prediction. A typical characteristic of deep-learning-based models is that they
can better and automatically learn the high-level discriminative features from data. They
have achieved remarkable results in many fields, such as natural language processing [45],
face recognition [46], and computational biology [47]. Recently, deep-learning-based meth-
ods are applied in many aspects of molecular biology, including protein–protein interac-
tions (PPIs) prediction [48], RNA-binding proteins (RBPs) identification [49], and drug
design [50]. To date, there have been a few deep-learning-based methods proposed for RRI
prediction, and some of them are summarized in Table 3. These existing methods can be
classified into two groups according to their purposes, i.e., lncRNA–miRNA interaction
prediction and miRNA–mRNA interaction prediction. To the best of our knowledge, deep-
learning-based methods for predicting the interactions with circRNA or other ncRNAs are
still very rare. A potential reason could be labeled training dataset sizes for them are small,
which limits the development of deep models.

Table 3. Some deep learning methods developed for RRI prediction tasks. All the websites were
accessed before 1 February 2021.

Name Year Method Type Website Reference

MiRTDL 2015 CNN miRNA–mRNA [32]

deepTarget 2016 RNN, AE miRNA–mRNA http://data.snu.ac.kr/pub/deepTarget/ [51]

miRAW 2018 CNN miRNA–mRNA http://data.snu.ac.kr/pub/deepTarget/ [52]

DeepMirTar 2018 SdAE miRNA–mRNA https://github.com/Bjoux2
/DeepMirTar_SdA [53]

GCLMI 2019 GCN, AE lncRNA–miRNA [54]

CIRNN 2019 CNN, RNN lncRNA–miRNA
(Plant) [55]

PmliPred 2020 CNN, BiRNN lncRNA–miRNA (Plant) http://bis.zju.edu.cn/PmliPred/ [56]

miTAR 2020 CNN, BiRNN miRNA–mRNA https://github.com/tjgu/miTAR [57]

NONAME 2020 CNN miRNA–mRNA https://github.com/ailab-seoultech/
deepTarget [58]

LncMirNet 2020 CNN lncRNA–miRNA https://github.com/abcair/LncMirNet [33]

lncIBTP 2020 CNN lncRNA–RNA
https://drive.google.com/file/d/1w_

2sthSYQXW3FfaF8YNgbu-
hJUbHdzWp/view?usp=sharing

[59]

GEEL-FI 2020 DANN lncRNA–miRNA [60]

http://data.snu.ac.kr/pub/deepTarget/
http://data.snu.ac.kr/pub/deepTarget/
https://github.com/Bjoux2/DeepMirTar_SdA
https://github.com/Bjoux2/DeepMirTar_SdA
http://bis.zju.edu.cn/PmliPred/
https://github.com/tjgu/miTAR
https://github.com/ailab-seoultech/deepTarget
https://github.com/ailab-seoultech/deepTarget
https://github.com/abcair/LncMirNet
https://drive.google.com/file/d/1w_2sthSYQXW3FfaF8YNgbu-hJUbHdzWp/view?usp=sharing
https://drive.google.com/file/d/1w_2sthSYQXW3FfaF8YNgbu-hJUbHdzWp/view?usp=sharing
https://drive.google.com/file/d/1w_2sthSYQXW3FfaF8YNgbu-hJUbHdzWp/view?usp=sharing
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2. Benchmark Datasets Used for Training Deep Models

With the development of high-throughput RNA sequencing and crosslinking methods
such as HITS-CLIP [21], PAR-CLIP [22], PARIS [25], and CLASH [23], numerous RRI data
can be obtained. For example, the PARIS method employed the psoralen-derivative 4′-
aminomethyltrioxsalen [61] (AMT) to fix and crosslink RNA duplexes and specifically
identified, base-paired RNA fragments through RNA purification. These RRI data can
serve as training sets for machine learning and deep learning methods. Table 4 lists a part
of the databases that deposit RRI data, which can be used to construct benchmark datasets
for training machine-learning-based methods.

Table 4. Some databases and their websites for depositing RRI data. All the websites were accessed
before 1 February 2021.

Name Last Update Type URL Reference

miRecords 2013 miRNA–mRNA http://c1.accurascience.com/miRecords/ [62]

ENCORI 2014 RNA–RNA http://starbase.sysu.edu.cn/ [63]

TarBase 2017 miRNA–mRNA
https:

//carolina.imis.athena-innovation.gr/diana_
tools/web/index.php?r=tarbasev8%2Findex

[64]

lncRInter 2017 lncRNA–miRNA http://bioinfo.life.hust.edu.cn/lncRInter/ [65]

lncRNASNP2 2017 lncRNA–miRNA http:
//bioinfo.life.hust.edu.cn/lncRNASNP#!/mirna [66]

miRTarBase 2018 lncRNA–miRNA http://mirtarbase.cuhk.edu.cn/php/index.php [67]

LncRNA2Target 2018 lncRNA-mRNA http://123.59.132.21/lncrna2target/ [68]

RNAInter 2020 RNA–RNA http://www.rna-society.org/raid/ [69]

This topic could be formulated as a binary class classification problem. Although there
are many positive samples (interactions) derived from experimental data, there are much
fewer experimentally verified negative samples (no interactions). Obviously, it would
be unreasonable to treat all unknown pairs as negative samples. On the one hand, some
pairs can form interactions, but current experiments have not yet uncovered these. On the
other hand, from statistical and computational points of view, the dataset will be extremely
imbalanced due to the huge number of negative samples generated in this way, which will
mean that the model prefers to reflect the pattern of negative samples. Thus, generating
negative samples in this binary class classification task is still a challenging problem.

In lncRNA–miRNA interaction prediction, some methods [33,54,60] use traditional
prediction tools to predict the possibility of a random lncRNA and a random miRNA in
the positive dataset and treat lncRNA–miRNA pairs with a low interaction possibility as
negative samples. Other methods [55,56] divide lncRNAs into two groups according to
existing experimental observations as to whether these lncRNAs interact with miRNAs.
Then, a random lncRNA that does not interact with miRNAs is paired with a random
miRNA, and this lncRNA–miRNA pair is added to the negative dataset. In miRNA–mRNA
interaction prediction, a common approach is to randomly generate mock miRNAs which
have different seed region sequences from observed miRNAs in databases, which then
screen out mRNAs with a high interaction possibility by traditional prediction tools to pair
with mock miRNAs [51–53,57]. Generating representative negative samples for training
the model is still a challenging task worth investigating in future studies.

3. Deep-Learning-Based Methods for RRI Prediction

Deep-learning-based methods, also known as deep neural networks, are the exten-
sion of artificial neural networks. Data-driven deep learning models have been widely
applied in analyzing the RNA sequences, including convolutional neural network (CNN),

http://c1.accurascience.com/miRecords/
http://starbase.sysu.edu.cn/
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
https://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex
http://bioinfo.life.hust.edu.cn/lncRInter/
http://bioinfo.life.hust.edu.cn/lncRNASNP#!/mirna
http://bioinfo.life.hust.edu.cn/lncRNASNP#!/mirna
http://mirtarbase.cuhk.edu.cn/php/index.php
http://123.59.132.21/lncrna2target/
http://www.rna-society.org/raid/
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recurrent neural network (RNN), auto-encoder (AE), and graph convolution network
(GCN) [32,33,51–57,59,60]. The basic idea can be divided into two steps: training a neu-
ral network and making prediction using the trained neural network. In the first step,
the labeled RNA sequences are mapped to digital matrices by expert features, one-hot
encoding, or embedding representation as the input of the neural networks. Then, the
network is trained by continuously updating the parameters to minimize the predefined
loss function. In the second step, the unlabeled RNA sequences can be labeled by the
trained neural network.

Some CNN-based methods for RRI prediction include MiRTDL [53], miRAW [52],
CIRNN [55], PmliPred [56], miTAR [57], LncMirNet [33], and lncIBTP [59], etc. CNN is a
type of neural network that is invariant to shift and has two special layers: the convolutional
layer and the subsampling layer (also called the pooling layer). The convolutional layer can
extract feature maps from the input data, and the subsampling layer can remove redundant
features from the feature maps [70,71]. CNN can extract the spatial features of the RNA
sequences well.

Some RNN-based methods for RRI prediction include deepTarget [51], CIRNN [55],
PmliPred [56], and miTAR [57], etc. RNN is a type of neural network widely used to process
sequence data. It establishes connections between neurons in the same layer [72,73]. In
sequence data, there exists connections between adjacent units, such as the connection
between adjacent words in a sentence, and the connection between adjacent nucleotides in
an RNA sequence. In an RRI prediction task, every two adjacent nucleotides in the RNA
sequence would have some correlations and the order information can be captured well
by RNN.

Some AE-based methods for RRI prediction include deepTarget [51], DeepMirTar [53],
and GCLMI [54], etc. Auto-encoder is an unsupervised deep learning algorithm, which
consists of two modules: an encoder and a decoder. The encoder module encodes the input
data X to a hidden layer representation of H, and then the decoder module decodes H to
the output data of Y [74]. The training objective of AE is to minimize the reconstruction loss
between the output data, Y, and the input data, X, for denoising the AE [75,76]. Noise can
be added to the AE to strengthen the generalization ability of the AE model by randomly
forcing some neurons of the input layer to be zeros, which is called denoising the AE.
The AE can be used to extract abstract features from the raw RNA sequences with the
representations of the hidden layer.

To the best of our knowledge, there are only a few reported GCN-based methods
proposed for RRI prediction, such as GCLMI [54]. GCN is an extension method of CNN in
processing non-Euclidean data such as a graph, which is a powerful technique to deal with
the network data, and is expected to be more developed for RRI network prediction tasks.

3.1. miRNA–mRNA Interaction Prediction

Many early studies [7,40,77–79] for miRNA–mRNA interactions made predictions on
some specific binding modes, such as “Seed match”. The region from the 2nd nt to the
8th nt of the miRNA sequence is generally called “Seed”, and finding the complemen-
tary match in the 3′ UTR of mRNA is accordingly called “Seed match” [80,81]. With the
development of more experiments, more interesting patterns have been revealed. For in-
stance, some interacting miRNA–mRNA pairs would be beyond the predefined interaction
mode [82,83], and many noninteracting miRNA–mRNA pairs could also be complementary.
Thus, recent studies have gradually introduced more complicated knowledge features,
including seed match type [79], conservation score [39], binding energy [28,29,38], and site
accessibility [40,84] to enhance the model’s capability of catching different types of interac-
tion patterns.

Deep-learning-based methods can automatically extract abstract features from the
data, which will reduce the requirements of predefined expert features [85–87]. In 2016,
the deep-learning-based method for miRNA–mRNA interaction prediction miRTDL [32]
is proposed, which is based on expert features and CNNs. It first calculates three kinds
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of scores for each binding site: evolutionary conservation score, complementation score,
and site accessibility score. Then, these features are concatenated as the input of CNN
for classification. The CNN architecture in miRTDL consists of six layers, including an
input layer, two convolutional layers, two subsampling layers, and a fully connected layer.
Overall, miRTDL achieves promising high-precision scores, illustrating the power of deep
learning models.

DeepMirTar [53] uses 750 features to describe miRNA–mRNA pairs, these features not
only include expert features (seed match type and free energy), but also include one-hot-
encoded features of the raw sequence, as illustrated in Table 5. DeepMirTar uses a stacked
denoising auto-encoder (SdAE) model, which consists of multiple layers of denoising
auto-encoder. This approach gradually performs unsupervised pretraining on denoising
the autoencoder (DA) by minimizing the reconstruction loss. When all DAs are trained,
the entire network is trained to minimize the negative log-likelihood loss. The model
architecture of DeepMirTar is shown in Figure 3.

Table 5. One-hot representation and an initial embedding representation of RNA nucleotides.

Nucleotides Type One-Hot Encoding An Initial Embedding
Representation

A [1, 0, 0, 0] [0.1, 0.3, 0.9, 0.5]
U [0, 1, 0, 0] [0.2, 0.7, −0.5,0.3]
C [0, 0, 1, 0] [−0.3, 0.5, 0.8, 0.6]
G [0, 0, 0, 1] [0.4, 0.1, −0.9, 0.7]
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The above two methods use deep neural networks to classify miRNA–mRNA pairs
with expert features as input. DeepTarget [51] is an end-to-end miRNA–mRNA prediction
method based on RNN and AE. It first pretrains two AEs as the encoders to obtain the
hidden representations of miRNAs and mRNAs: hmi and hm. Then, the learned hmi and
hm are concatenated to be the input of the next RNN layer. It uses learned embeddings
for encoding sequences instead of the one-hot-encoded representation. One-hot encoding
has the inevitable sparsity problem and could not reflect the internal correlation in the
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raw sequence. Specifically, for miRNA–mRNA interaction prediction task, there exists an
internal correlation among the four nucleotides “AUCG”. “A” can pair with “U” to form a
dihydrogen bond, and “C” can pair with “G” to form a triple hydrogen bond. Embedding
representations are dense vectors, as shown in Table 5, correlation can be evaluated by the
cosine similarity between two embedding vectors.

Another model of miRAW [52] applies AE and a deep ANN to identify miRNA–mRNA
interactions. It first uses a 30 nts sliding window with a step of 5 nts to process the 3’ UTR of
the mRNA sequence to achieve site-level prediction. Then, two traditional feature filters are
used to select miRNA–mRNA pairs with a high binding potential. The Vienna RNACofold
software [28] checks the stability, and the candidate site selection method (CSSM) checks
whether the seed region meets the predefined criteria. The concatenated one-hot encoding
of miRNA–mRNA pairs after two filters is fed into an eight-layer-deep ANN classifier.
The first five layers are pretrained AEs, and the last the three layers are trained to make a
classification from the learned features of the AEs.

A recent computational study on miRNA–mRNA interaction prediction based on
deep learning, miTAR [57], combines the advantages of CNN and RNN. CNN learns the
spatial features of miRNA–mRNA interaction, and RNN learns the sequential features of
RNA sequences. The embedding representations of miRNAs and mRNAs pass through a
convolutional layer, a maximum pooling layer, a bidirectional RNN layer, and two fully
connection layers.

3.2. lncRNA–miRNA Interaction (LMI) Prediction

Different from the interactions between miRNA–mRNA, the interactions between
lncRNAs and miRNAs are more complicated and could be roughly divided into three
groups. (1) lncRNAs can act as precursors of miRNAs [11]. (2) lncRNAs can competitively
bind to miRNAs and act as “miRNA sponges” [12] to regulate the interactions between
miRNA and mRNA, as proposed in the ceRNA hypothesis [14]. (3) miRNA can directly
target lncRNA for certain biological functions, such as promoting the degradation of
lncRNA [17,18].

Recently, deep-learning-based methods have been applied to predict LMI, bringing
a promising improvement compared with traditional methods. CIRNN [55] and Pm-
liPred [56] are two deep-learning-based methods for plant LMI. Both methods use a hybrid
CNN and RNN. A batch normalization (BN) layer is added in the PmliPred model. In
deep neural networks, as the number of layers increases, and the data distribution of the
subsequent layers will change, resulting in a decline in the generalization ability. Adding
BN layers can help make the data distribution of the subsequent layer more stable, speed
up the training process, and prevent model overfitting [88].

In addition to the above methods based on learned representations from RNA se-
quences, there is also a type of graph-representation-learning-based methods that can be
used to predict LMI. Graph representation learning is a powerful method for learning
and processing graph data. In the biological field, there are numerous graph data, such as
protein interaction networks, drug molecular, and gene–disease networks. Graph neural
network (GNN)-based methods are attracting widespread attention in the bioinformatics
field [50,89–91]. For LMI tasks, it first constructs a heterogeneous graph, where the nodes
are miRNAs and lncRNAs, and the edges are known LMI. Then, the LMI prediction will be
transformed into finding the potential edges.

GCLMI [54] is an LMI prediction method based on graph convolution network (GCN)
and AE. It consists of a graph convolution encoder and a graph convolution decoder. The
adjacency matrix of the lncRNA–miRNA interaction network (a sparse network) and the
feature matrix of the node (the feature information of lncRNAs and miRNAs) are fed into
the encoder to learn a graph embedding representation. The decoder reconstructs the graph
and produces a new adjacency matrix M’. In M’, there is a weight for each lncRNA–miRNA
pair representing the probability of the interaction between them. The model architecture
of GCLMI is shown in Figure 4.
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Another GNN-based method, GEEL-FI [60], is based on graph embeddings and
deep attention neural networks. It first learns the graph embeddings from the lncRNA–
miRNA interaction network by an ensemble method, which consists of five different graph
embedding methods. Then, the graph embeddings are fed into a deep attention network for
making classifications. The attention mechanism is introduced to assign different weights to
these five different graph embeddings, avoiding redundant information caused by simply
concatenating them.

The LncMirNet [33] method combines graph embeddings with CNN. First, it extracts
two expert features k-mer compositions and the composition/transition/distribution (CTD)
feature, and learned embeddings of RNA sequences by doc2vec [92]. In addition, LncMir-
Net extracts graph embedding representations of lncRNAs and miRNAs by role2vec [93],
which is a node-level graph embedding method that learns a representation of each node
rather than the whole graph. This graph is derived from the lncRNA–lncRNA similarity
network and the miRNA–miRNA similarity network instead of the lncRNA–miRNA in-
teraction network. The lncRNA–lncRNA similarity network is constructed by forming
an edge between a lncRNA and its top 15 similar lncRNAs, k-mer, CTD, and doc2vec
features are used as the feature matrix of the nodes. Then, the above four features are
reshaped to be input to a CNN model for prediction. All these methods have indicated a
promising application of the graph representation and learning for the challenging LMI
prediction task.

4. Discussion

Most deep-learning-based methods [51,52,55–57] use different RNA sequence encod-
ing (one-hot encoding or embeddings) as the model input. Some methods [32,33,52,53,56]
combine domain features such as seed match and site accessibility. Other methods [33,54,60]
construct RNA similarity network to extract features for each node, or directly use the
RRI network for learning graph embeddings. These current deep-learning-based methods
not only have their own characteristics, but also combine the advantages of traditional
methods, so that they outperform the traditional methods overall. Although the deep-
learning-based methods are proven to achieve remarkable success in RRI prediction, their
limitations should be considered. The deep-learning-based methods have high data depen-
dency, which requires RRI data with high quality. Besides, the complexity and numerous
parameters of the deep neural networks make them hard to interpret the prediction results.

In the future, more efforts can be devoted. In terms of the training dataset, generating
reasonable negative samples with diversity for training is a difficult problem that remains
for further study. In organisms, there are far fewer positive samples (interactions) than
negative samples (no interactions): that is, it would form an imbalanced dataset. Thus,
collecting representative negative samples which cover the real situation as much as
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possible, while being balanced with the positive samples to enable the statistical model is
not biased from the huge negative data, is a future direction.

In terms of the discriminative features, classical thermodynamic free-energy features
can be more explored in the deep-learning-based methods. A recent study [94] proposes
that SHAPE data [95] can be applied to RRI prediction; SHAPE data is a type of RNA
structure data at the single nucleotide level, and it can accurately obtain the contribution of
each nucleotide to the overall free energy. It is expected to achieve better effectiveness if
the free-energy information of the single nucleotide level is integrated into deep learning
for RRI predictions.

Besides performing the predictions, mining more interpretable binding sequence
motifs is another future direction. Binding motifs can provide biological interpretability as
well as extra information in RRI prediction, and detecting potential binding motifs can be a
significant aspect to be considered in future RRI prediction methods [49].

Some recent studies investigate biological mechanisms using RRI data, which also
highlight a future application of the data-driven machine learning models. For instance,
MVMTMDA [96] infers microRNA-disease associations (MDA) from lncRNA–microRNA
interactions by multi-view, multi-task learning. DeepLGP [97] applies LMI data to infer
the target genes of lncRNAs. It encodes lncRNAs and genes as vectors through their
interactions with miRNAs, and infer the potential correlation between lncRNA and genes
by measuring the cosine distance of the vectors.

5. Conclusions

Deep-learning-based methods have been applied in predicting RNA–RNA interac-
tions with remarkable performance. This paper introduces an overview of the application
of deep learning methods in predicting miRNA–mRNA and lncRNA–miRNA interac-
tions. We expect that this paper will provide a useful resource and guide for future RRI
prediction studies.
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