
Citation: Gnana Jeslin, J.; Mohan

Kumar, P. Decentralized and Privacy

Sensitive Data De-Duplication

Framework for Convenient Big Data

Management in Cloud Backup

Systems. Symmetry 2022, 14, 1392.

https://doi.org/10.3390/

sym14071392

Academic Editor: Alexander

Zaslavski

Received: 19 June 2022

Accepted: 2 July 2022

Published: 6 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Decentralized and Privacy Sensitive Data De-Duplication
Framework for Convenient Big Data Management in Cloud
Backup Systems
J. Gnana Jeslin 1 and P. Mohan Kumar 2,*

1 Department of Computer Science and Engineering, RMK College of Engineering and Technology,
Chennai 601206, India; gnanajeslincse@rmkcet.ac.in or jgjeslin@gmail.com

2 Department of Computer Science and Engineering, Sri Krishna College of Engineering and Technology,
Coimbatore 641008, India

* Correspondence: mohankumarp@skcet.ac.in or mohankumarmohan@gmail.com

Abstract: The number of customers transferring information to cloud storage has grown significantly,
with the rising prevalence of cloud computing. The rapidly rising data volume in the cloud, mostly
on one side, is followed by a large replication of data. On the other hand, if there is a single duplicate
copy of stored symmetrical information in the de-duplicate cloud backup the manipulation or
lack of a single copy may cause untold failure. Thus, the deduplication of files and the auditing
of credibility are extremely necessary and how they are achieved safely and effectively must be
addressed in academic and commercial contexts urgently. In order to tune in this task by using
application recognition, data similitude, and locality to simplify decentralized deduplication with
two-tier internode and application deduction, we suggest a flexible direct decentralized symmetry
deduplication architecture in a cloud scenario. It first distributes application logic to the contents of
the directory through implementation-oriented steering to maintain a deployment location and also
attributes the same kind of information to the cloud backup node with the storage node specificity by
means of a hand printing-based network model to attain adequate global deduplication performance.
We build up a new ownership mechanism during file deduplication to ensure continuity of tagging
and symmetrical modeling and verify shared ownership. In addition, we plan an effective ownership
policy maintenance plan. In order to introduce a probabilistic key process and reduce key storage
capacity, a user-helped key is used for in-user block deduplication. Finally, the protection and
efficiency audit demonstrate that the data integrity and accuracy of our system are ensured and
symmetrically effective in the management of data ownership.

Keywords: deduplication; cloud data storage; convergent encryption; cryptographic hash; routing

1. Introduction

As the dramatic growth in the volume of electronic data created by 2020 is seen, from
12 to 18 zettabytes, and the projected amount of data provided in 2020, to 44 zettabytes,
in part, is showing the exponential rise of digital data worldwide. Perhaps, the greatest
difficult and critical challenge over large backup devices during the era of Big Data is
the management of storage efficiently. Microsoft, as well as EMC workflow, research
shows that over 50%, besides 85% of information on main and subordinate devices of
output, have been superfluous. One of the previous studies found that almost 80% of the
organizations studying data deduction approaches over backup devices are pursuing to
eliminate superfluous information to improve the productivity of their storage and to cut
backup economy [1].

Data storage is an integral cloud infrastructure branch, allowing database proprietors
to keep the data on cloud systems and deliver flexible and profitable storage amenities.
In the present decade, most individuals and organizations, due to the benefits of cloud

Symmetry 2022, 14, 1392. https://doi.org/10.3390/sym14071392 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14071392
https://doi.org/10.3390/sym14071392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8438-3808
https://doi.org/10.3390/sym14071392
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14071392?type=check_update&version=2

Symmetry 2022, 14, 1392 2 of 20

computing with regards to cost and control, have been storing their personal data with
cloud service providers. But this ambitious data management model nevertheless confronts
several new safety and reliability problems. The first problem is the quality of cloud services.
The cloud volumes are growing exponentially, and the same cloud data is often stored by
multiple users, resulting in duplication of data. Recently, 80% of electronic information
has been standardized, as shown in published studies. Cloud storage desperately uses
efficient deduplication strategies in order to conserve storage capacity and enhance storage
performance, that is to say, cloud servers only retain a new instance on any duplicate file
and the service provider only requires a connection to access a single file on all DO’s in
same file [2].

Deduction methods are now approximately divided in two: deduplication from
the server and deduplication from the client. Database deductible means that the cloud
server tests the replication by acquiring the contracted file through clients and performs
a deduplication process. Only the normalization is saved with this form. The client-
side deduplication process applies to the client communicating over the cloud server for
checking, if the given external file was kept before the file was submitted. If the external
data has been doubled, the recipient won’t have to store the external data, and also uses
the data kept over the server. The service provider deduplication obviously saves server
capacity, communications, and latency, which helps both the cloud and the customer. The
second problem is cloud storage protection [3].

Only a single copy of the same file is retained by the service provider in a deduplication
cloud service. The harm to this particular file copy could lead to hardware or program
malfunction, which would result in severe loss of the data of owners and service providers.
The authenticity of the very few versions of data security for cloud deduplication storage
solutions is also important. The emphasis of data owners and service providers is the fact
that outsourced data should be stored securely and intact in the cloud server. Therefore, it
is very important to facilitate the credibility auditing of the Cloud deduplication scheme.
Owing to their worries over safety and security, owners of data are thus encrypting their
own data with the help of their own keys before cloud outsourcing [4].

The process of data deduplication is thus difficult since separate ciphertexts result
in the same data, encrypted by keys of multiple data proprietors, and is not duplicated
further by the cloud. A hash key has been used as an encryption key to resolve this
issue, which otherwise known as convergence encryption approach. The same data is then
encrypted into this kind of ciphertext, enabling ciphertext deduction. While this appears to
be the perfect option for anonymity and deductibility concurrently, it is sadly influenced by
well-known vulnerabilities such as malicious attacks and the issue of accuracy in tags [5].

Big data deductions are a widely flexible automated deduplication strategy used to
handle dredging under database infrastructure improvements in order to satisfy cloud
storage service level agreement criteria. It commonly supports direct deduplication architec-
ture, as it copies over repositories on the basis of the information cohort, can automatically
be identified and discarded, and thus, physical processing needs can be substantially re-
duced and bandwidth network preserved during data transfer. It works within a standard
distributed deduplication architecture to meet large data scaling capacity and efficiency
demands. The system comprises the internal assignment of data from clients to various
backup systems via data redirection methods, as well as the autonomous removal of
intra-node consistency of specific storage nodes [6].

Unfortunately, in inter-node and intra-node contexts, this small-piece, adjustable
deduplication system is distributed on a broad scale. Firstly, there is a problem known as
the Deduplication Node Knowledge with the multi-node situation separating over decen-
tralized deduplication with a maximized additional workload in the universally similar
request. This implies, regardless of the contact overhead requirements, that replication is
only achieved within different nodes and the cross-node redundancies remain unaffected.
Secondly, the chunk index search disk bottleneck suffers from the intra-node situation.

Symmetry 2022, 14, 1392 3 of 20

There is a broad chunk index that maps the fingerprint of every chunk on the disk to classify
the mirrored files [7].

Usually, it is an extensive process to fit the small deduplication node storage and
contributes to a significant deterioration of the simultaneous deduplication efficiency of
many data streams due to the widespread and random Input/Output (I/O) disk indices.
The general data deduplication workflow is shown in Figure 1. The documents are first
separated into pieces of the same or equivalent size and their individual footprint represents
each piece. Doping preserves the specific non-duplicate fractions on the disk by checking
the identity of them using signature indexing. The list of partial metadata chunks that
would be used to restore the old file are also documented [8].

Figure 1. Data Deduplication workflow.

As the volume of signatures exceeds the capacity of Random Access Memory (RAM)in
large storage solutions, a range of optimization methods can be proposed to speed up the
index on the disk. In general, most chunk data deduplication methods have five major
workflows: overall layout, facial recognition, fingerprinting indication, further capacity
management, and compression [9]. Further encoding is optional, such as standard non-
duplicate transcription of the parts and non-duplicate, but identical, delta compression.
Data deduplication storage communication can be characterized in several categories:
removal of fragment data restoration, collection of waste, redundancy, protection, etc. [9].

In terms of decentralized data deduplication, scaling performance and a data reduc-
tion ratio comparable to that of a centralized deduplication system are two technological
obstacles. We can get an optimum data deduplication ratio by requesting and comparing
all of the data worldwide. However, a global index library must be maintained. Over-
heads in network transmission are caused by index data updates as well as duplicate data
detection [10]. In a cloud storage system with hundreds of nodes, such a global deduplica-
tion will have a considerable performance decrease. Local deduplication in conjunction
with content-aware data routing is an alternate option. One must overcome the hurdle of
constructing a data routing method that is both low-complexity and high-dedupe.

There is a list of the important contributions of our research:

• In order to promote privacy protection and control in complex fashion, we suggest an
effective and reliable data deduction method;

• We also built a seamless upgrade strategy for reducing the update frequency as well
as overhead calculation, aimed at multiple user data deduction through maintaining
uploaded data protection;

• According to the application understanding, data similitude and locality, a two-tier
routing decision was introduced for directing the file after customers towards the de-
ductions of memory to strike a virtuous equilibrium amongst the competing priorities
of better deduction efficacy and reducing workload of the overall system;

Symmetry 2022, 14, 1392 4 of 20

• We have designed a universal routing model to ease the chunk search disk constraint
for each destination computer with autonomous similitude indexing with extremely
fragmented data over the conventional chunk signature indexing schemes;

• The analysis of effectiveness and security shows that the method developed is effective
and reliable.

2. Literature Review
2.1. Reducing Data Redundancy

The purpose of information encoding remains to provide an information source file
with the least number of bits, as precisely as possible. In general, data compression could be
categorized as lossless and lossless in two broad groups. Lossless compression reduces files,
as expressed by optimizations such as GZIP and Lempel–Ziv–Welch(LZW), in reversible
form by defining and removing statistical redundancies [11]. Loss compression removes
information by defining and irretrievably eliminating redundant information as is typical of
JPEG compression techniques. This article concentrates on the lossless type of compression,
particularly data deduplication as lossless compression for general storage systems is
needed [12].

The early methods for data compression use statistical models, also known as entropy
coding, which define byte redundancy. The most commonly used entropy codification
algorithm is Huffman, which generates the best codes for entropy coding using a frequency-
sorted binary tree. In the 60s, ELIA’s first suggested arithmetic code converts the whole
data over many numbers, aimed at a better compressibility, to meet fundamental data
compression ratio limit. The coding of Huffman divides the input into variable symbols,
including one with a smaller code [13].

Lempel and Ziv proposed the modern dictionary-model coding method, which is
described by the LZ77 and LZ78 algorithms in the 1970s, through a mounting number in
technological knowledge globally. It simplifies and speeds data compression by defining
string redundancy: it recognizes the strings repeatedly with a descending space then
substitutes replicated data with the matched places and spans. Eventually in the 1980s, LZ-
compression alternatives were suggested either for the purposes of improving compression
or speeding up the encoding operation. Entropy coding methods typically must count all
of the information in smaller, non-portable, bits, before coding the occurrence of frequent
bytes [14].

Vernacular methods have to look for any line, so that duplicate strings can be matched
and eliminated. Consequently, entropy and dictionary coding methods also restrict the
compression pane to switch the compression ratio and speed between each other. The
compression window sizes DEFLATE that combines LZ77 and Huffman are 64 kB, while for
the bzip2 and 7z the maximal windows are 900 kB and 1 GB. There can be broad differences
in total compression with the vast array of compression window sizes, although certain
techniques are available for increased encoding by analytical response [15].

2.2. Main Characteristics of Data Deduplication

It was recommended that to use variable long chunks in massive file systems in order
to detect related data. Deduplication was suggested in the form of a network file system
based on this differential chunking concept. When storing separate copies of the same
data, such as archival storage and backup schemes, the biggest improvements in data
deduplication are made [16]. Consequently, data deduplication for primary storage devices
also has been successfully implemented. Digital device processing centers, where data can
be deduplicated for virtualization and virtual disk image storage, are another area of use.
As discussed earlier, data deduplication from a knowledge, theoretical, point of view has
not yet been examined.

Encoding with unidentified alphabets, also based on multi-origins or the null-frequency
problem, are the closest problems to informational-theory literature. In reality, the big repet-
itive blocks in the data source are part of an unfamiliar alphabet that the encoder needs to

Symmetry 2022, 14, 1392 5 of 20

understand and explain. In the information-theoretical literature, the associated issue of file
synchronization was thoroughly examined. Duplicates of two different copies of almost the
same file are an issue with synchronization [17]. Duplication, on the other hand, addresses
a vast number of redundant files or data blocks and their communication is unknown
beforehand. The most common data deduplication technique at present reduces chunk
redundancies in large storage solutions by measuring and fingerprinting data bits. Notice
that a deduplication of files was proposed previously, but subsequently, due to improved
compression, the approach was overshadowed by chunk-level deduplication [18].

In certain cases, the deduplication of files adopts many of the advantages of finer-
grained contrasts. In recent times, the scale of digital data has steadily increased, but the
entropy of information is not increasing proportionally. Some data may be continuously
copied and preserved on backup and archive storage facilities, for example, by a substantial
chunk of high-volume data. In order to identify similar strings for duplicated recognition,
conventional compression methods are using a byte sliding window using a small window.
In contrast, the data deduplication breaks the data input into non-overlapping, isolated
chunks throughout a storage device [19].

In the past, Dropbox has used an established deductibility approach, in which the
file hash value is considered to act as evidence that a person has this file. Even worse, the
service provider could supply a malicious user with the right hash value to access the file,
which ensures that the lack of a sufficient hash value will cause a complete file to leak
to an external opponent. That is to say, a major security flaw exists in the deduplication
process. Halevi et al., proposed a promising protocol called Proof of Ownership, which
allows users to show that Content Security Policy (CSP) owns all of the stored information.
Also, the authors have suggested an enhanced Proof of Ownership system, with continuous
calculation costs [20].

However, the security of duplicated files is not considered in both of the POW systems.
Data owners have more recently began to encrypt contracted files in needed to shield
their privacy. Each owner generates distinct ciphertexts because of the varied encryption
methods and keys, and hence each owner needs a service provider to store the varied
ciphertexts. Therefore, the deduction of a cryptographic outcome is one of the difficult
issues. The file deduplication system was first applied to privacy security by Ng et al., To
fix this secrecy, Dourceur et al., implemented a primitive cryptography called “Convergent
Encryption”. DupLESS was investigated for the realistic use of convergent cryptography in
safe deduplication [21].

Li et al., used the disperse key approach in order to handle convergent encryption
content-based keys. Decentralized network deduplication approaches, with the support of
accurate deductions, are transmitted to storage nodes.A hash table has been used, which is
distributed in nature, that applies a routing scheme that has no states, by routing customer
data to the main data server through equal grid batch coarseness to the deduplication
processes [22]. The stateless navigation only contains data about the processing chunk,
rather than information about the routing of the previous chunks. While these specific
decentralized deduplication systems are able to achieve high-capacity savings, the device
output in any store node is still bad due to the weak position. Extreme binning, by using
file semblance, is an estimated distributed deduction strategy. The application locates and
extracts the similarity fingerprints for all signature files in the file, then sends them to nodes
that perform the deduplication process in an insecure stateless manner [23].

This strategy limits deduplication where interfile similarity is low. Increased cache
missiles and data skew also affects this. Symantec suggests another data routing method,
equivalent to Intense Partitioning, but it just offers a rough architecture. By exploiting
data location in backup streams, EMC has built statefull, as well as stateless, models of
the routing process. It is installed over DDFS with component-level deduplication with its
decentralized deduplication system. The super-split routing is preferred, compared to using
single strokes to maximize deduplication, to obtain scalable performance. Decentralized
forwarding is an effective and convenient way to create a small deductible cluster. However,

Symmetry 2022, 14, 1392 6 of 20

the load balance for a massive, distributed deduplication cannot be saved by high power
savings. Stateful routing can accomplish high deletion and load balancing, but it has high
fingerprint connectivity overhead [24].

2.3. Security in Deduplication

Douceur et al., recommend and formalize a solution to ensuring data secrecy when
the data hash is encrypted, and when an appropriate tag is created from ciphertext. Storer
et al., takes the approach to look for secure, anonymous models for deduplication of
results. Since this solution is vulnerable to attacks by brute force, Bellare et al., introduces
a comment authentication framework and its security concept and suggests one kind
of encryption model application [25]. To stable and effective multipathing of vast files,
Chen et al., formalizes a notion of frame comment encryption. In addition, Block-Level
Message-Locked Encryption (BL-MLE) takes a main administration and PoW into account,
at block level. Keelveedhi et al., suggest DUPLESS for further ensuring the theprotection of
Convergent Encryption (CE), which encrypts data from a key-server using a forgotten PRF
protocol using message-based keys. It works well to avoid the assault of the conventional
subjectivist CE from potential brute forces [26].

However, DupLESS participates in significant overhead computations for fine-grained
deductions since it takes time to obliviously use PRF protocol. Duan introduces a dis-
tributed variant of EwS DUPLESS, in which the consumer would communicate in order to
create a convergent key, with the threshold of other customers. It works well to avoid future
attacks from the conventional deterministic CE by brute force. Consequently, DupLESS is
involved in large overhead measurements for fine grain deduplication, so it takes time to
obliviously use the pseudorandom function (PRF) protocol [27].

Duan offers a distributed EwS variant called DupLESS, in which the customer must
communicate with other customers’ thresholds to produce a converging key. It is unsatis-
factory that all Cloud Service Provider (CSP)authentication tags from separate DOs must
be stored in a single register, resulting in large overhead storage for the CSP. Harnik et al.,
illustrates how information deduplication could be used as a malicious insider attack that
contributes to cloud storage data leaking. Halevi et al., are introducing a related scenario of
attacks using multiple cloud consumer data deduplication. They add a notion of ownership
proof to resist this attack, in order to efficiently show that a recorded owner has the full file
in the cloud [28].

In order to produce proofs on a random basis, Pietro and Sorniotti propose the effective
and stable proof of ownership schemes called s-PoW. Through using the Bloom filter,
Blasco et al., are building the PoW for each block to store cryptographic tags. Note that
no privacy security is taken into consideration in any of the systems listed above [29]. Ng
et al., introduced a modern POW system for the deduplication of private data that is very
computationally slow to produce PoW for encrypted data. For the encrypted data in cloud
storing, Xu et al., suggested a leak-resistant deduplication system implemented in client-
side that works under PoW. As explained in Li et al., convergence keys can be exchanged
and distributed over several systems through the network to ensure the protection and
stability of the chosen values for deduplication done over the blocks [30].

Zhou et al., suggest a clever solution; user data as well as indoor deduplication over
blocks with a combination key management scheme are implemented in SecDup. In addi-
tion, various CE variants are used between clients to reduce overhead measurements [30,31].
Moreover, the keys on the block level are encrypted using a file-level key, to prevent the
quantity of shared users from increasing key space. However, because the keys used over
the blocks have been provided using the public key, it does not minimize overhead space
required for key storage as described in the paper by the multi-level approach [32,33].

Li et al., developed a stable deduplication method for distribution of the data on
various remote server machines. Also, Yan et al., suggest a file replication framework
focused on the problems of file possession, as well as substitution-based encoding for the
adaptive monitoring and revocation of data access [34]. Wen et al., recommend a session-

Symmetry 2022, 14, 1392 7 of 20

key-based convergence authentication scheme designated as session-key-based convergent
key management scheme (SKC), as well as CKS, to support dynamical key organization in
cross-user data deduplication in pervasive computing social systems [35].

But, complex property maintenance problems inherent in the safe deduplication cannot
be addressed in these schemes. Hur et al., proposes an encryption-based deduplication
approach on the server. They follow randomized convergent encryption (RCE) and an
ownership community key for the complex handling of cross-user file levels [35–37]. The
throughput will, however, not be preserved and the PoW technique is not considered.

3. Proposed Approach

The proposed data deduplication system is described and built in this section. The
deduplication rate ought to be proportionally deduced through the storage nodes and with
other numbers of nodes. To hit a high duplication removal ratio, identical data must be
redirected to the same deduplication node. To achieve a high duplication elimination ratio,
identical data should be transmitted to a certain deduplication node. To achieve strong
deduplication performance and a high deduplication ratio while using little computational
power, we build an inline deduplication architecture, outlined in this section. The design of
our developed framework is seen in the following sections. We introduce our suggested
data routing solution to improve high deduplication reliability and scalable performance.
The approach has been accompanied with the overview of the implementation-oriented
datatypes for fast deduplication performance over the removal of duplication endpoints.

3.1. Overview of Framework

The proposed approach of this paper has been depicted in Figure 2. The architecture
proposed in this article is symmetrical in nature with both the end user as well as end
service provider. In this symmetrical decentralized deduplication model, there are mainly
three modules: user nodes, storage nodes, and manager nodes.

Figure 2. Proposed System model.

User Nodes: A user node has three primary feature components: data categorization,
identity verification chunk, and data redirection. The user feature preserves and recovers
data files, executes a colliding-resistant hashing algorithm, including SHA and MD5, in the
data clustering module, determines the chunk sizes of each data stream, and that redirects
from every part to a deduction backup node that is highly similitude via the two-tier routing
check. The customer decides whether a data file is duplicated or not by choosing the shock
fingerprints over the target node on a data component close to information part transfers,
then, the individual components have been transmitted across node links to increase the
distributed device interoperability, by preserving the network transmission bandwidth.

Storage Nodes: The storage server section consists of three main components: client
similitudes database search, chunk index cache storage, and chunk management. It intro-
duces the core deduplication and network storage logic, along with the return of application-
conscious search results for route optimization, stuttering new hot chunk signatures into

Symmetry 2022, 14, 1392 8 of 20

the chunk index buffer to speed up the search process, duplicating chunks while storing
the single components in larger units known as warehouses in parallel.

Manager: This was responsible for monitoring and handling file platform for data
storage and retrieval on the deduplicated storage node. It comprises of administration of
file recites and forwarding decision-making. The file receipt management module hosts
file mapping for extracting impressions as well as file reconstruction data. The director
maintains file-level metadata. The program, understanding the forwarding recommenda-
tion framework, selects a collection of applicable storage nodes to every file and provides
customers with input on direct super chunk routing. In an effective link failure, the director
assists up to two nodes in order to prevent the singular link failures for high access.

Our system generally deducts user data levels by uploading the files from the data
holders. Each file has an information module and a file-based key that are determined by
the owner of the file. A data user then transfers the label to the supplier. A service provider
completes the process of deduplication and generates reports to the data holders. Notice
that the data user and service provider ought to provide evidence of the job procedure for
ensuring tag accuracy. When the data owner opts to do a block level deduplication in an
interior customer, the file will be split into multiple data blocks when not a redundant file.

By executing the user encryption, the converging keys and tags of these blocks are
determined. The data proprietor then transmits the label codes to the service provider.
The service provider must verify that the block tags are on that data owner’s tag index
and will return the data manager’s results. Afterwards, the data user encrypts all unique
frames and sends the service supplier ciphertexts of blocks. We also consider the issue of
complex ownership governance and follow a lazy upgrade approach to minimize protection
update frequency.

In the proposed approach, we use a bilinear mapping model such as f : H × H → HU
with the bilinear model properties where H and HU are multiplicative cycle groups with
an order q which stands for the order as:

∀h1, h2, h3 ∈ H (1)

∀x, y ∈ Z∗q , f
(

ha
1, hb

2

)
= f (h1, h2)

aband (2)

f (h1, h2). f (h1, h3) = f (h1, h2.h3) (3)

A novel asymmetric encryption approach for making the transaction more secure has
also been proposed. A modern strategy is probabilistic encryption. Probabilistic encryption
is highly helpful when it comes to deduplication since the convergent encryption keys only
rely on the file and do not change the file itself. The file owner’s file serves as a source of
data that results in a file key and a file tag being generated. This file key is utilized in the
cryptography, while the file tag is just employed to aid with deduplication.

Our application-conscious direction-finding choice is influenced through the repetitive
study of applications. It distinguishes between various categories of implementation
information through taking the submission’s sensitivity with extension of the filename.
Also, it chooses a set of deduction storage nodes as applications that have processed the
same type of distributed applications with the file. This method relies on a route structure
which maps an application type to ID of a backup device. Here, the process knows the
routing process which carries out the director’s module of routing knowledge. Similarly, a
static data routing system is inspired by our super-scale resemblance research. The data
routing system is similar. It routes the same superficial processing node with just a few
nodes to find storage state information and manages a near-global load balancing without
a high overhead scheme.

A file is separated first into c smaller bits in the data splitting module, which are
combined into something like a super chunk T. Then, a hash function is used in chunk vul-
nerability scanning framework to compute all the component identifiers

{
g1

q , g2
q . . . , gd

q

}
.

In the client data routing node, the data routing algorithm is performed. For m applications,

Symmetry 2022, 14, 1392 9 of 20

our hand printing-based data network architecture will boost load balancing by adjusting
the least-loaded node for each super chunk in l candidate nodes. We also prove, since there
is a uniform distribution of randomized handprint by cryptographic hash functions, that
the global load equilibrium can be reached. Its stable hashing-based data classification is
scalable so the addition or deletion of nodes in the server cluster will prevent re-shuffling
all subsequently saved data.

The ciphertext and the members of the groups should be changed to ensure an
anonymity in future, and backward in the complex ownership management operations.
Comprehensive procedures are carried out under particular scenarios:

As the file is updated and then uploaded by µj to the service provider, the service
provider then attaches µj to Hj and changes the community key and re encodes cyphertexts
with the lazy upgrade technique. We create an update list for Lj using newly added µj
uploaders to minimize the overhead for the calculation of often upgraded operations. The
Community Key CKj doesn’t instantly upgrade after adding µj to the update list Lj. When
the service provider files Lj to the service provider, the service provider can first validate
Lj’s upgrade lists. If µj is present, the service provider will conduct updates and refocus
operations for the community key. It clears the list afterwards. This enables them to reduce
the scale of group operations while ensuring retroactive confidentiality. The following are
the comprehensive procedures for major upgrades and re-encryption operations:

CKj has been used for encrypting encrypted data C1
j
′ and the corresponding modified

data C1
j . An arbitrary community key CK′j has been chosen and the encryption process has

to be carried out.
The service provider then uses the encryption process for getting all the associated

data values found in the table associated with the users U1
j .

Then, the list is cleared by the service provider and the revised list has been obtained as:

CK′j =
{

El

(
C1

j
′
)}

l ∈ l(C1
j
′)

(4)

While µj tries to remove and free the data space of the cloud storage, µj transmits a
message for removing the data to the service provider. Note that the key used for encrypting
blocks must never be associated with the information of the file for complex ownership
control, so the updating level of the internal user block will alter the key at the file level.
This is distinct from cross-user deduplication of block levels, where chunks only belong to
µj in internal user deduplication, which makes control of possession much simpler.

In theory, we can generate tags with the necessary bit length to prevent a collision with
the cryptographic hash function. However, a huge proportion of hash tags would be created
for large volumes of data in the realistic cloud storage scheme. Thus, the possibilities of
various data having the same mark due to the hash-collision issue are slim, but possible.
There are approaches that have been proposed to handle this situation, they are outlined
as follows.

Specific files with the same tag will be saved together under the tag during file level
deduplication. For instance, if two separate data Di and Di have the same file tag Ti then
both Di and Di are stored in the Ti tag, in accordance with the order of the upload. In
addition, for each file, a command number v is assigned. The service provider shall return
the order number—however, according Ti to the data controller of the subsequent editor
passing the PoW operation. Therefore, the CSP may conveniently find this information,
however, according to Ti ||µ , mostly during upload or update phase.

This framework will store all blocks B[i] and B[j] in order for the deduplication at the
inside-user-level block levels, similar to the deduplication at the file-level, since separate
blocks B[i] and B[j] have the same block tag Ti, the order number β is then indicated to each
block. Our PoW system is used to determine the block it corresponds to for blocks with
the same tag. The service provider generates a sequence value based on Ti with the owner

Symmetry 2022, 14, 1392 10 of 20

of the data after the block deduplication procedure. Throughout the update or storage
progression, the service provider may simply locate the Ti ||γ block.

3.2. Deduplication Process

The deduplication of the client file can be safely enforced in our program. In partic-
ular, when a file TF is obtained by a data owner, the service provider first performs the
deduplication test. The user uploads the data if there is no TagF in the cloud and service
provider includes TF in its file tag list. If not, the service provider already has a copy, and
the administrator executes the service provider POW protocol as shown in Algorithm 1.
This user is allowed to access without uploading the file to this saved file, if the protocol
is passed. This saves both computing costs and connectivity costs for customer-side file
deduplication.

Algorithm 1: Proposed Deduplication Model

Step 1: Client file management with file tag list.
Step 2: Create authentication tag collection as {α1, α2, . . . , αm}.
Step 3: Estimate Service provider or user behavior modelling as Q = 1− (1− β)d.

Step 4: Service provider authentication setup phase:
〈

Gj, D2
j , F(GD), Public Key

〉
Step5: Compute Authentication key value as: L′j = F

(
Ej

)
and M′ = L′j ⊕ D2

j .

Step 6: Encrypt the file tag information and file chunks.
Step 7: Encryption of keys as E(PKj) =

Step 8: Authenticator thread generation α
wj

j = D2
j ⊕ F(GD).

Step 9: Execute query for deduplication Qd =
(

f ′j , G(i)
)

.

Step 10: Hash index generation with object indexing process.

Traditionally, the service provider stores the authentication tags created by all data
owners for all file blocks, except in that file, which places large O(Fm) storage burden on
the service provider over time. This is the standard method of carrying out data integrity
verification. Different to the methods above, the service provider will add a tag for the same
block and the authentication tag that can only be stored for a collection of authentication
tags {α1, α2, . . . , αm}.

Thus, our system will reduce the overhead storage for the service provider on O(Fm)
to O(m). In addition to ensuring the trust of the service provider in the data, the concept
of convergent encryption allows one to perform “known information” and compatibilist
encryption, which is often deducted encrypted data. Furthermore, the service provider
will mask the weighted linear D from the sampled blocks to auditor’s random masks S
and public key to further avoid privacy leakage against auditor in the course of producing
data evidence. Whilst an auditor knows the public key of S and the data owner, the private
contents of the data owner under hardness assumptions are computationally unfeasible
for an auditor. We explain whether the auditor or the service provider picks m or n blocks
arbitrarily in the honesty audit or in the PoW process, to challenge the entire n blocks of
file G.

In reality, all blocks for verifying the file’s credibility and accuracy are ineffective and
inadvisable, since the large volumes of external information are available in the storage
of the cloud. Herein, stratified arbitrary process, though, is cheaper and more convenient
to detect the wrongdoing of the service provider or the user’s dishonesty. The logic and
viability of this approach have been shown in previous studies. Assuming that Q is
the likelihood of identification for the malfunction of the service provider or consumer,
and d denotes quantity of blocks confronted, so the ratio of these quantities meets in
the calculation:

Q = 1− (1− β)d (5)

Symmetry 2022, 14, 1392 11 of 20

Also, total blocks confronted d, therefore depending on the fraction of chunks damaged
β as well as the chance of identification Q. For instance, if the service provider or an
unauthorized behaviour has one percent shady blocks, the auditor or the service provider
only requires 367 sections to detect broken blocks with 75 per cent likelihood.

f (µu, h). f

(
Y,

u−1

∏
k=0

zk

)
= f (Y, zk). ∏

j∈E
α

wj
j (6)

where, α
wj
j defines the service provider authentication threads. The service provider retains

only a single copy of the same file in a deduplication cloud storage system. The authenticity
of a single copy will be harmed if the equipment or program fails to store it. The data
owners must also establish, at all times, the credibility of their contracted file. In general,
the data owners may entrust an inspector with a separate integrity audit for file F, which is
restricted in computational capacity or limited capital.

To provide a maximum deduplication performance with a minimal overhead, the
application route table is maintained inside the manager, together with a chunk fingerprint
cache and two primary data structures: an application knowledge similarity index and bin.
The application route table supports high deduplication with reduced marginal system
overhead. In order to make system aware routing decisions, the application routing table is
integrated into the manager. Each table entry saves the application type mapping to the
node ID and the related capabilities in the storage node for this application. The director
will locate the storage node list of an application for a certain form of application and
measure the working power for data storage. In view of the system and node, the stage
remains together and can conveniently be fitted into the understanding of the server to
speed up query operations throughout the application route table. Similarity in-memory
data structure is an app-aware similarity index. It comprises of an object index and thin,
application-type, hash table-based indices.

The inbound block is referred to as a minor directory of the identical type according
to the proceeded type of the file. Separately, all of the access includes a symmetrical
correlation between a representative super chunk handprint fingerprint and the package
ID where it is stored. Given the very low sampling rate of our hand printing, the index is
significantly smaller than that of the conventional block pattern storage directory which
maps the corresponding containers from all the chunk fingerprints. To design the index, we
used a concurrent framework search index lookup design, as well as index monitoring, that
enables the allocation of a lock or a constant number of consecutive hash buckets, which
means we can monitor authentication schemes by apportioning a lock by a checksum or a
constant amount of successive hash buckets on multicore data storage node.

A container that consists of a data segment to keep data blocks, also a file information
tag field to preserve file information, like the signatures, offsets, and span of the chunk, is
an independent disk-detailed data structure that protects localities [29]. In parallel with
our server deduction architecture, we will assign, distribute, write, read, and efficiently
hold chunks simultaneously. During concurrent file storage, with every incoming file, a
dedicated open container is retained. As the container fills a new one is generated. The
fragment pattern caching similarly performs a major part in improving accuracy of the
deduplication process, apart from the above-described data structures. It maintains the
chunk of recent RAM container fingerprints. Since a representative fingerprint has been
linked to a search request in the application-aware sequence database, the cache pre-fills
the entire metadata portion of a mapped container to speed up the fingerprint search. If
the cache is complete, an appropriate cache substitution strategy is used to create time for
potential prefecture and caching, including Least-Recently Used (LRU) approach.

As shown in Figure 3 the client decides a member node as the path goal node for
storing the super-chunk and tells the manager of their node ID by request letter. To make
sure chunks are not duplicated, the customer bundles all the chunks from the super chunk
into a batch and delivers them to the destination node. The target storage node answers

Symmetry 2022, 14, 1392 12 of 20

the customer through a set of special components in the block while searching for chunks
of fingerprints. In addition, only the unique bits of the super-compact need to be sent by
batch to the target node. For each super-spar, the steps were repeated until the file ends. A
customer submission to the manager often serves the purpose of downloading a file. By
checking the file method, the manager responds to this request and sends the notification
to the user.

Figure 3. Timeline and communication.

The message includes the block array over a register as well as pointing of the block
into deduction cloud storage. The client would then order the required deduct storage
node with a super chunk message from any super-chunk in the file. The deduplication
server will extract a mega chunk from data warehouses and accelerate the performance of
the restoration process. The customer installs per super-chunk to validate the data integrity
with a super-chunk search and file ID. The entry data is locally duplicated by a data server.
The thread receives and processes the read and write demands from the client in a data
server. When the written request is received, the data server begins receiving and saving
the data from the thread Block Recipient. Throughout, the Block Receiver thread also
operates the deduplication engine as shown in Figure 4.

Figure 4. Process flow of deduplication approach.

Symmetry 2022, 14, 1392 13 of 20

Firstly, a server receives distinctive fingerprints and metadata from superblock. By
searching the hot index and index, the similarity index table decides on the matched
data container. Because the package is stored on disk, and an I/O read is needed. An
LRU storage caches are used to fit directly and will reduce, to a degree, the number of
I/O disk drives. The machine will check the index for the superblock by arranging the
container in the index subsets. If this is the case, the original data must not be preserved.
It will also opt to preserve the remaining data by choosing an open container. Finally, the
storage information of each chunk is written into the disk. After all the chunks have been
deduplicated in an extra cube, the remaining data are written in the package at once.

It will lower the quantity of I/O activities and improve server data receiving per-
formance compared to the deduplicated chunk approach. A request from the user for
metadata to the metadata server while reading a file. The metadata server then returns to
the client the superblock data server address and the superblock ID. The client connects to
the server, where each client checks the accompanying block. The superblock information
collects the signal, and it is reordered by the data server before returning the rest of the data
to the client for processing of the requested read. The machine begins the Block Sender
thread, which reads and sends the requested block, when the data transceiver thread
accepts read requests.

First, the Block Sender ensures that the metadata of the superblocks has been loaded
with the actual address of the information of the superblocks. Block Sender then restruc-
tures the superblock, as per the metadata of the superblock. Finally, the reorganized
superblock sends Block Sender to the customer. If the next data chunk wasn’t a file but
the location of the file, this triggers an arbitrary read operation if a data server performs
local read operations. In other words, a chunk reads from such data. It only performs
storage deduplication for some related containers to remove the bottleneck from a random
disk read.

Thus, there will not be so many I/O operations and many data reorganization files
will not be opened, thereby significantly lowering the probability of random reading. Based
on its LRU cache, the Hot Index is used to boost the deduplication ratio in a single node
built on the how often the fingerprints were accessed. With the proposed adaptation, we
will switch toward the index value for a secondary deduplication if the newly arriving
superblock has not been deduplicated in identical containers. In this cache, when the
fingerprint is matched in the memory, we set the frequency for the container fingerprint.

When selecting a matching container by similar fingerprint, a successful replication
outcome cannot be achieved since the similar fingerprint does not reflect the data charac-
teristics of the container properly. The data locality function collects duplicate data that
promises a strong device deduplication efficiency. Given the fact that such identifiers of a
container, in combination with the data locality, are constantly affected, there is no question
that there would be a greater likelihood for any other data to be found in the container as
duplicate data.

4. Performance Analysis and Results

So as to assess the deduplication effectiveness of a single node deducting server, we
use four processing servers. All were run on Ubuntu 14.10 and use a 4-core 8-thread,
2.53 GHz processor and 16GB RAM Intel X3440 CPU and 1TB storage Seagate ST1000DM.
Seven desktop computers act as client systems, one system has been a server that acts as the
manager and three other servers as the data backup nodes in our prototype deduplication
scheme. It uses the ethernet switch Huawei S5700 Gigabit to communicate internally. Our
client portion is based on a pipeline architecture powered by events, using an asylum-
sensitive RPC deployment by transmitting TCP streams through messages. In order to
reduce round trip overheads, all RPC applications are bundled. On one of our four servers,
we execute event-driven simulation for deduplication, load delivery, memory allocation,
and overhead communication on distributed deduplication techniques.

Symmetry 2022, 14, 1392 14 of 20

For our tests, we gather five types of practical data sets and 2 kinds of device traces.
The Linux dataset is an assembly that is imported from the open-source code (Linux from
versions 2.0 to 3.3.6). The VM database comprises of 2 consecutive monthly complete
backups of eight (three windows and five Linux) virtual machines. It is possible to extract
sound, video, and image data sets from consumer desktop and laptop computers. The mail
and network dataset are two traces that are obtained from the web server and mail server.
The column “size” reflects a dataset capability and the column “deduplication ratio” shows
the ratio of a logo to the physical size following deduplication with a static chunking fixed
chunk size of 4 KB, or an average of 4 KB chunk size in the Cumulus Optional chunks.
In our assessment, the preceding evaluation criteria are used to thoroughly evaluate the
success of the application of our prototype of the proposed method against the most
advanced deductible distributed systems.

• Performance of dumping (PD): It is initially specified by having a certain date set
to calculate the efficiency of various deduction schemes on the same network. The
discrepancy between logical size M and physical size U of the dataset is determined by
the time of deduplication Q. Thus, it can be represented by the deductibility efficiency.

PD =
M−U

Q
(7)

• Normalized ratio of deductions (NRD): This is a common distributed ratio of dedupli-
cation, an accurate deduplication method, and a single node deduplication ratio all re-
ferring to the same thing. This is an example of the closeness to an optimal distributed
deduplication ratio of the deduplication ratio obtained using a distributed system.

• Standardized deduplication ratio (SDR): This is equal to a standardized deduplication
ratio, separated into 1 plus a standard deviation ratio/versus mean consumption
of physical capacity on all deduplication servers, analogous to metrics used. This
corresponds to standardized deduplication ratio. In other words, the normalization of
the deduplication ratio yields a SDR. It demonstrates how effective the data routing
techniques are in eliminating the deduplication node’s information collection.

• Number of index fingerprint surveys: Due to its lack of intra-node communications,
this system uses simulated inter-node communications to perform a chunk fingerprint
search, which is easily accessible from our simulation.

• Intra-node RAM use: It is an integral overhead method associated with a deduction
server chunk index search. It demonstrates how effective it is to increase the efficiency
of the inner node deduplication by optimizing the index chunk lookup.

• Decentralized disk data tilt (DDT): In the deduplication storage server cluster, we
describe a measurement for data skewing. The variance between maximum volume
Lmax and minimum volume Lmin in a storage cluster, separated by Lmean, can be
expressed and is proportional to the difference.

DDT =
Lmax − Lmin

Lmean
(8)

Prior to the data routing choice, our system enables the customer to perform simul-
taneous data splitting and fingerprinting. In the case of program files, chunking may be
done in two ways. One way is to use SC chunking with fixed-size chunks for each kind of
program file, and the other way is to use CDC chunking with variable-size chunks. Hash
calculation is also possible for this type of file. Hundreds or thousands of successive little
bits are then organized into a super-business for route optimization. The OpenSSL library is
based on the implementation of the hash fingerprint. Deduplication outcomes for different
Application models are listed in Table 1.

Symmetry 2022, 14, 1392 15 of 20

Table 1. Deduplication outcomes for different Application models.

Application RAM Usage (MB) Bin Model (MB) Deduplication (MB)

VM 8.58 24.56 19.65
Mail 55 15.38 22.54

Audio 26.36 9.35 12.74
OS 48.21 14.98 11.35

Photo 11.56 12.55 10.25

We also create a parallel application-wise similitude index searches on individual
deduction servers to use the multi-core or multi-core capability of the deduct storage node.
With each data stream, we have a deduplication thread that we use for multi-data stream
deduplication, but we have an application-aware hash-table-based similitude index that is
common to all deduction servers. By splitting the index into the granularity at which the
application operates, we allow it to be scanned concurrently. While in the application-aware-
similarity-index search, there are as many data streams as CPU logical cores, and there are
more locks than digital data, due to the thread context transfer penalty, which forces the
data to be loaded into and unloaded from the cache in every thread context transition.

Figure 5 shows the throughput analysis between existing and proposed method. In
one deduction storage node, with several data sources, we equate our applications’ average
likeliness directory over the standard likeliness index for parallel deduplication. The
findings demonstrate the concurrent deduplication output of the VM data set with RAMFS
data input to minimize storage I/O block performance interference. We are aware of the
similarity index and are using a cold cache to measure output and an application to measure
output. In this case, “cold cache” refers to the segment fingerprint cache being empty when
we first concurrently deduplicate multiple strings on the VM dataset. We revert back to a
dataset if we execute parallel deduplication with several streams; “warm cache” refers to
duplicate chunk fingerprint processing that has already occurred.

Figure 5. Throughput Comparison analysis.

Figure 6 shows the space complexity analysis. We note that parallel duplication
systems with application-aware correlation probably work well over the naive similar du-
plication approaches, and parallel warm-cache deduplication schemes will achieve higher
performance than cold-cache regimes. For both an application-conscious similarity index
and a warm supply, the performance of the similar deduplication increases to 5.9 GB/s, and
the rapid growth of mobile data flows. With thirteen synchronized channels, the percentage
is down by 5.5GB/s because of the overhead competition for Index Location and Disk I/O.

Symmetry 2022, 14, 1392 16 of 20

Our scientific findings in each backup session, the providers would need the combined
cloud storage capability of each customer for the six online cloud schemes.

Figure 6. Space Complexity.

Except from origin deduplication systems, Jungle Disk struggles to protect high-cloud
storage because it does not erase file copies written at other locations in its incremental
backup system. The BackupPC gross graining system cannot find greater consistency than
other fine graining mechanisms in the source deduplication schemes. The fine-grained
Cumulus carries out a local replication scan only and restricts the quest for unaltered data to
blocks in the earlier models of the file, thus saving less space than the local deductible-only
AA Dedupe. With more levers of global deduplication with cloud computing, ALG-Dedupe
increases the deductible ratio of AA-Dedupe. It also enhances SAM, which blends local
chunk-level and global file source deduplication by raising framework knowledge with an
overall deductive performance as shown in Figure 7.

Figure 7. Data transfer cost.

Thanks to the framework architecture and world-wide duplication detection, the
Jungle Disc will surpass 64%, save 43% of Cumulus space and minimize the use of SAM
for third storage. It achieves a 27 percent improved space utilization, compared with the

Symmetry 2022, 14, 1392 17 of 20

current implementations. The high efficiency of the deduplication of data from finely
grained or world-wide deductibility systems is greatly hampering system success. As
shown in Figure 8 our method, the mutual Hash Table application- based archive layout
that is stored on the client’s side in RAM is parallel to local duplication detectors. We
use a horizontal division model to separate the entire unpredicted index into several tiny,
individual domains, which are divided by a file-type application category.

Figure 8. Deduplication process performance.

Including high parallel global replication checks, we apply Despite the large WAN
latency, through batch I/O and parallel query, we greatly increase the system’s overall
deduplication efficiency as shown in Figure 9. In the same cloud-related storage network,
we compare the five cloud backup systems and use our current metric to calculate the
performance of various deduplication methods.

Figure 9. Deduplication throughput analysis.

The deduplication performance measurement as shown in Figure 10 is much better
than other backup systems with a low overhead. The main benefit of this is the knowledge
of its use and the global identification of duplicates in the deduplication process. Because

Symmetry 2022, 14, 1392 18 of 20

of its benefits in global architecture, it is approximately 1.6 times the application-informed
SAM and 1.9 times the local dumping Cumulus quality, which is 14% higher than the
existing local system, AA-Dedupe.

Figure 10. Distributed deduplication effectiveness.

5. Conclusions

In this article, we defined an application-conscious flexible inline decentralized large-
data management deduplication architecture, which achieves a balance between scalable
efficiency and deduplication efficiencies through the use of application sensitivity, data
uniqueness, and localization. In order to minimize cross-node information duplication
with controlled overhead and strong load balancing, a two-level information redirection
organization is adopted to optimize the routing data on the super-chunk granularity, and
use an application-aware sequence index to increase the performance of deduplication in
each node with low RAM use. Initially, it surpasses the stateful close coupling framework in
the large deduplication ratio of the cluster with a marginally larger overhead organization
compared to the strongly mountable slack groupings. Secondly, it greatly increases the
loose stateless connectiveness strategies in the powerful deductibility ratio across the
cluster, while preserving the latter’s high overhead scalability. Furthermore, we use the
user-supported framework to subtract internal block amounts. The analyses of security
reveals that our proposed system will ensure security conditions, other than a side channel
assault, as we use the PoW check mechanism to achieve reciprocal PoW checking when
bandwidth is being saved. The study of the performance reveals only a five percent excess
overhead, compared with the others, is essential for the proposed scheme when joint PoW
verification and management is allowed. Finally, we officially demonstrated the efficiency
of the proposed technique and numerical analysis and experimental findings are proof that
our scheme is effective by compared communications, calculation, and storage costs with
modern schemes.

Author Contributions: Conceptualization, P.M.K.; Visualization, J.G.J.; Writing—original draft, J.G.J.;
Writing—review & editing, P.M.K. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Symmetry 2022, 14, 1392 19 of 20

References
1. Premkamal, P.K.; Pasupuleti, S.K.; Singh, A.K.; Alphonse, P.J.A. Enhanced attribute based access control with secure deduplication

for big data storage in cloud. Peer-to-Peer Netw. Appl. 2021, 14, 102–120. [CrossRef]
2. Shynu, P.G.; Nadesh, R.K.; Menon, V.G.; Venu, P.; Abbasi, M.; Khosravi, M.R. A secure data deduplication system for integrated

cloud-edge networks. J. Cloud Comput. 2020, 9, 61. [CrossRef]
3. TMalleswari, Y.J.N.; Vadivu, G. Adaptive deduplication of virtual machine images using AKKA stream to accelerate live migration

process in cloud environment. J. Cloud Comput. 2019, 8, 3. [CrossRef]
4. Saharan, S.; Somani, G.; Gupta, G.; Verma, R.; Gaur, M.S.; Buyya, R. QuickDedup: Efficient VM deduplication in cloud computing

environments. J. Parallel Distrib. Comput. 2020, 139, 18–31. [CrossRef]
5. Jiang, S.; Jiang, T.; Wang, L. Secure and Efficient Cloud Data Deduplication with Ownership Management. IEEE Trans. Serv.

Comput. 2020, 13, 1152–1165. [CrossRef]
6. Begum, B.R.; Chitra, P. ECC-CRT: An Elliptical Curve Cryptographic Encryption and Chinese Remainder Theorem based

Deduplication in Cloud. Wirel. Pers. Commun. 2021, 116, 1683–1702. [CrossRef]
7. Zheng, Y.; Yuan, X.; Wang, X.; Jiang, J.; Wang, C.; Gui, X. Toward Encrypted Cloud Media Center with Secure Deduplication.

IEEE Trans. Multimed. 2017, 19, 251–265. [CrossRef]
8. Wang, Y.; Miao, M.; Wang, J.; Zhang, X. Secure deduplication with efficient user revocation in cloud storage. Comput. Stand.

Interfaces 2021, 78, 103523. [CrossRef]
9. Zhang, Y.; Mao, Y.; Xu, M.; Xu, F.; Zhong, S. Towards Thwarting Template Side-Channel Attacks in Secure Cloud Deduplications.

IEEE Trans. Dependable Secur. Comput. 2021, 18, 1008–1018. [CrossRef]
10. Kan, G.; Jin, C.; Zhu, H.; Xu, Y.; Liu, N. An identity-based proxy re-encryption for data deduplication in cloud. J. Syst. Archit.

2021, 121, 102332. [CrossRef]
11. Saraswathi, S.S.; Malarvizhi, N. Distributed deduplication with fingerprint index management model for big data storage in the

cloud. Evol. Intell. 2021, 14, 683–690. [CrossRef]
12. Prajapati, P.; Shah, P. A Review on Secure Data Deduplication: Cloud Storage Security Issue. J. King Saud Univ. Comput. Inf. Sci.

2020, 34, 3996–4007. [CrossRef]
13. Hou, H.; Yu, J.; Hao, R. Cloud storage auditing with deduplication supporting different security levels according to data

popularity. J. Netw. Comput. Appl. 2019, 134, 26–39. [CrossRef]
14. Tan, Y.; Jiang, H.; Sha, E.H.M.; Yan, Z.; Feng, D. SAFE: A source deduplication framework for efficient cloud backup services. J.

Signal Process. Syst. 2013, 72, 209–228. [CrossRef]
15. Gao, X.; Yu, J.; Shen, W.T.; Chang, Y.; Zhang, S.B.; Yang, M.; Wu, B. Achieving low-entropy secure cloud data auditing with file

and authenticator deduplication. Inf. Sci. 2021, 546, 177–191. [CrossRef]
16. Kaur, R.; Chana, I.; Bhattacharya, J. Data deduplication techniques for efficient cloud storage management: A systematic review.

J. Supercomput. 2018, 74, 2035–2085. [CrossRef]
17. Shen, W.; Su, Y.; Hao, R. Lightweight Cloud Storage Auditing with Deduplication Supporting Strong Privacy Protection. IEEE

Access 2020, 8, 44359–44372. [CrossRef]
18. Wu, J.; Li, Y.; Wang, T.; Ding, Y. CPDA: A Confidentiality-Preserving Deduplication Cloud Storage with Public Cloud Auditing.

IEEE Access 2019, 7, 160482–160497. [CrossRef]
19. Wang, S.; Wang, Y.; Zhang, Y. Blockchain-based fair payment protocol for deduplication cloud storage system. IEEE Access 2019,

7, 127652–127668. [CrossRef]
20. Fu, Y.; Xiao, N.; Jiang, H.; Hu, G.; Chen, W. Application-Aware Big Data Deduplication in Cloud Environment. IEEE Trans. Cloud

Comput. 2019, 7, 921–934. [CrossRef]
21. Li, X.; Li, J.; Huang, F. A secure cloud storage system supporting privacy-preserving fuzzy deduplication. Soft Comput. 2016, 20,

1437–1448. [CrossRef]
22. ElkanaEbinazer, S.; Savarimuthu, N.; Bhanu, S.M.S. ESKEA: Enhanced Symmetric Key Encryption Algorithm Based Secure Data

Storage in Cloud Networks with Data Deduplication. Wirel. Pers. Commun. 2021, 117, 3309–3325. [CrossRef]
23. Li, S.; Xu, C.; Zhang, Y. CSED: Client-Side encrypted deduplication scheme based on proofs of ownership for cloud storage. J. Inf.

Secur. Appl. 2019, 46, 250–258. [CrossRef]
24. Liang, X.; Yan, Z.; Deng, R.H. Game theoretical study on client-controlled cloud data deduplication. Comput. Secur. 2020,

91, 101730. [CrossRef]
25. Luo, S.; Zhang, G.; Wu, C.; Khan, S.U.; Li, K. Boafft: Distributed Deduplication for Big Data Storage in the Cloud. IEEE Trans.

Cloud Comput. 2020, 8, 1199–1211. [CrossRef]
26. Wu, H.; Wang, C.; Fu, Y.; Sakr, S.; Lu, K.; Zhu, L. A differentiated caching mechanism to enable primary storage deduplication in

clouds. IEEE Trans. Parallel Distrib. Syst. 2018, 29, 1202–1216. [CrossRef]
27. Tian, G.; Ma, H.; Xie, Y.; Liu, Z. Randomized deduplication with ownership management and data sharing in cloud storage. J. Inf.

Secur. Appl. 2020, 51, 102432. [CrossRef]
28. Fan, Y.; Lin, X.; Liang, W.; Tan, G.; Nanda, P. A secure privacy preserving deduplication scheme for cloud computing. Future

Gener. Comput. Syst. 2019, 101, 127–135. [CrossRef]
29. Hovhannisyan, H.; Qi, W.; Lu, K.; Yang, R.; Wang, J. Whispers in the cloud storage: A novel cross-user deduplication-based

covert channel design. Peer-to-Peer Netw. Appl. 2018, 11, 277–286. [CrossRef]

http://doi.org/10.1007/s12083-020-00940-3
http://doi.org/10.1186/s13677-020-00214-6
http://doi.org/10.1186/s13677-019-0125-z
http://doi.org/10.1016/j.jpdc.2020.01.002
http://doi.org/10.1109/TSC.2017.2771280
http://doi.org/10.1007/s11277-020-07756-7
http://doi.org/10.1109/TMM.2016.2612760
http://doi.org/10.1016/j.csi.2021.103523
http://doi.org/10.1109/TDSC.2019.2911502
http://doi.org/10.1016/j.sysarc.2021.102332
http://doi.org/10.1007/s12065-020-00395-8
http://doi.org/10.1016/j.jksuci.2020.10.021
http://doi.org/10.1016/j.jnca.2019.02.015
http://doi.org/10.1007/s11265-013-0775-x
http://doi.org/10.1016/j.ins.2020.08.021
http://doi.org/10.1007/s11227-017-2210-8
http://doi.org/10.1109/ACCESS.2020.2977721
http://doi.org/10.1109/ACCESS.2019.2950750
http://doi.org/10.1109/ACCESS.2019.2939492
http://doi.org/10.1109/TCC.2017.2710043
http://doi.org/10.1007/s00500-015-1596-6
http://doi.org/10.1007/s11277-020-07989-6
http://doi.org/10.1016/j.jisa.2019.03.015
http://doi.org/10.1016/j.cose.2020.101730
http://doi.org/10.1109/TCC.2015.2511752
http://doi.org/10.1109/TPDS.2018.2790946
http://doi.org/10.1016/j.jisa.2019.102432
http://doi.org/10.1016/j.future.2019.04.046
http://doi.org/10.1007/s12083-016-0483-y

Symmetry 2022, 14, 1392 20 of 20

30. Joe, C.V.; Raj, J.S.; Smys, S. Mixed Mode Analytics Architecture for Data Deduplication in Wireless Personal Cloud Computing.
Wirel. Pers. Commun. 2021, 116, 939–954. [CrossRef]

31. Zhang, G.; Yang, Z.; Xie, H.; Liu, W. A secure authorized deduplication scheme for cloud data based on blockchain. Inf. Process.
Manag. 2021, 58, 102510. [CrossRef]

32. Yang, X.; Lu, R.; Shao, J.; Tang, X.; Ghorbani, A.A. Achieving Efficient and Privacy-Preserving Multi-Domain Big Data Deduplica-
tion in Cloud. IEEE Trans. Serv. Comput. 2021, 14, 1292–1305. [CrossRef]

33. Yu, C.M.; Gochhayat, S.P.; Conti, M.; Lu, C.S. Privacy Aware Data Deduplication for Side Channel in Cloud Storage. IEEE Trans.
Cloud Comput. 2020, 8, 597–609. [CrossRef]

34. Zheng, X.; Zhou, Y.; Ye, Y.; Li, F. A cloud data deduplication scheme based on certificateless proxy re-encryption. J. Syst. Archit.
2020, 102, 101666. [CrossRef]

35. Keke, G.; Meikang, Q.; Xiaotong, S.; Hui, Z. Smart data deduplication for telehealth systems in heterogeneous cloud computing. J.
Commun. Inf. Netw. 2016, 1, 93–104. [CrossRef]

36. Geeta, C.M.; Shreyas Raju, R.G.; Raghavendra, S.; Buyya, R.; Venugopal, K.R.; Iyengar, S.S.; Patnaik, L.M. SDVADC: Secure
Deduplication and Virtual Auditing of Data in Cloud. Procedia Comput. Sci. 2020, 171, 2225–2234. [CrossRef]

37. Jeslin, J.G.; Kumar, P.M. Implementing an Efficient Data Deduplication Framework for Cloud Storage. Indian J. Comput. Sci. Eng.
2022, 13, 136–144. [CrossRef]

http://doi.org/10.1007/s11277-020-07943-6
http://doi.org/10.1016/j.ipm.2021.102510
http://doi.org/10.1109/TSC.2018.2881147
http://doi.org/10.1109/TCC.2018.2794542
http://doi.org/10.1016/j.sysarc.2019.101666
http://doi.org/10.11959/j.issn.2096-1081.2016.051
http://doi.org/10.1016/j.procs.2020.04.240
http://doi.org/10.21817/indjcse/2022/v13i1/221301046

	Introduction
	Literature Review
	Reducing Data Redundancy
	Main Characteristics of Data Deduplication
	Security in Deduplication

	Proposed Approach
	Overview of Framework
	Deduplication Process

	Performance Analysis and Results
	Conclusions
	References

