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Abstract: Along with automatic speech recognition, many researchers have been actively studying
speech emotion recognition, since emotion information is as crucial as the textual information for
effective interactions. Emotion can be divided into categorical emotion and dimensional emotion.
Although categorical emotion is widely used, dimensional emotion, typically represented as arousal
and valence, can provide more detailed information on the emotional states. Therefore, in this
paper, we propose a Conformer-based model for arousal and valence recognition. Our model uses
Conformer as an encoder, a fully connected layer as a decoder, and statistical pooling layers as a
connector. In addition, we adopted multi-task learning and multi-feature combination, which showed
a remarkable performance for speech emotion recognition and time-series analysis, respectively. The
proposed model achieves a state-of-the-art recognition accuracy of 70.0± 1.5 % for arousal in terms
of unweighted accuracy on the IEMOCAP dataset.

Keywords: speech emotion recognition; arousal; valence; spoken language understanding

1. Introduction

Speech is one of the richest sources of information for interactions such as context,
emotion, and speaker’s identification. In recent years, automatic speech recognition (ASR)
has significantly advanced, achieving a single-digit word error rate (WER) percentage even
without applying a language model [1,2]. In addition to ASR, speech emotion recognition
(SER) is also important because speech may carry a speaker’s emotional state, which may
provide information as significant as the textual information, for effective communication.
For example, there exist an anger detector [3] for sensing disgruntled customers and a
depression detector [4] for medical screenings.

In the SER field, emotion can be interpreted as categorical emotion or dimensional
emotion. Categorical emotion indicates emotions such as anger, happiness, and sadness.
Dimensional emotion represents emotions pertaining to arousal (or activation), valence,
and dominance on individual axes [5]. Categorical emotion is more intuitive and commonly
used than dimensional emotion, which may require additional interpretation. As such,
studies on categorical emotion have been conducted actively compared with dimensional
emotion. On the contrary, dimensional emotion can represent human emotion in a wider
range than that of categorical emotion. In addition, distinguishing categorical emotion
tends to cause confusion if arousal and valence levels are similar [6,7]. Therefore, in this
study, we focus on the arousal and valence of dimensional emotion, and, in particular, on
discrete arousal and valence tasks, since arousal and valence recognition can be designed
as a regression task [8–10] or as a categorical task [11–13].

To extract the essential representation of the speech feature, it is important for SER
models to focus on both local and global characteristics [1,14]. Conformer [1] is a model
devised to simultaneously represent local characteristics through a convolutional neural
network (CNN) and global characteristics through Transformer [15]. In recent ASR studies,
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Conformer-based models have shown significant performance improvements [1,16,17].
Furthermore, a Conformer-based model has shown a remarkable performance for categori-
cal SER in a recent study [18]. Due to the lack of existing work on using Conformer-based
models for dimensional SER, we adopted the Conformer network for dimensional emotion
recognition in terms of arousal and valence in this study.

Multi-task learning (MTL) refers to learning multiple relevant tasks at the same time,
and has an advantage in preventing a model from overfitting to a single task [12]. It has
been widely adopted for SER studies [12,13,19], dividing multiple tasks into a primary
task and auxiliary tasks and using weighted-sum-loss as the objective function. The main
contribution of this study is the adoption of the Conformer model for dimensional SER.
In particular, we reduced the number of parameters of the original Conformer model
and applied MTL to be suitable for the SER task because SER generally has fewer labels
than ASR. An additional contribution is the introduction of feature stacking [20] for the
SER task to further improve the accuracy. The proposed multi-task Conformer-based SER
(MTC-SER) model achieved a state-of-the-art (SOTA) performance in arousal recognition in
terms of unweighted accuracy (UA) on the Interactive Emotional Dyadic Motion Capture
(IEMOCAP) database [5].

2. Related Works

In this section, we describe recent studies on SER, especially the recognition of discrete
arousal and valence, the Conformer, and several topics relevant to SER.

2.1. Deep Learning-Based Speech Emotion Recognition

In recent years, with the emergence of deep neural networks, many SER models
have adopted deep learning networks, including Transformer-based models for categorical
emotion [21,22]; basic deep learning structures such as a CNN, recurrent neural network,
and dense network for regression-based dimensional emotion recognition [9,10]; and
adversarial autoencoders (AAE) [23] for discrete dimension emotion [13,24]. Unfortunately,
SER has a limitation, which is the lack of labeled emotion datasets [13]. Therefore, many
studies have attempted to solve the problem of limited labeled datasets. For instance,
semi-supervised learning with adversarial autoencoders [13,24] and transfer learning with
ASR datasets [25] have been proposed. Many studies [13,21,24] have typically adopted
the cross-validation strategy, which divides a dataset into k smaller subsets, called folds.
The folds for validation and testing are chosen k times, and the k performance results
are averaged. However, there exist subtle differences in the number of folds: 5-fold [21]
and 10-fold [11,13,24,26] and whether the fold is speaker-dependent [24] or not [11,26], or
both [13]. In this study, we selected the semi-supervised adversarial autoencoder model
from [24] as the previous SOTA model since it has the exactly same speaker-dependent
10-fold strategy for fair comparison. We also compare our model with [13] using the same
AAE model as [24] with speaker-independent 5-fold for discrete dimensional SER.

2.2. Conformer

Conformer was devised to combine the advantages of Transformer [15] and con-
volution capturing the global contexts and local contexts, respectively. It has achieved
significant performance improvements and has become the base model for several ASR
models, with exceptionally low WER [1,16,17]. Conformer has a sequence of modules as a
block. The conformer block comprises a feed forward module, multi-head self-attention
module, convolution module, and another feed forward module.

A feed forward module is composed of a normalization layer, two linear layers, one
activation function, and a dropout. The first linear layer expands the dimension by a
expansion factor. Then, the second linear layer decreases the dimensions to the original
value. A swish function [27] is used as an activation function. The multi-head self attention
module has a structure that places multi-head attention between the normalization layer
and the dropout. The convolution module contains three convolution layers; that is, two
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pointwise convolution layers and a 1D depthwise convolution layer; a normalization
layer, activation functions, and batch normalization. The first pointwise convolution layer
expands the channel by an expansion factor. All modules have a residual unit connecting
the module input to the module output without going through the module. An overview
of the Conformer structure is depicted in Figure 1.

In [1], the authors proposed three types of models—Conformer S, Conformer M,
and Conformer L—that consist of a Conformer encoder and recurrent neural networks
(RNNs) as the decoder. The models have the same structure but a different number of
hyperparameters to vary the model sizes from 10.3 M parameters to 118.8 M parameters.
The hyperparameters are the number of encoder layers, which is the number of Conformer
blocks, encoder dimension, attention heads, convolution kernel size, decoder layers, and
decoder dimension. However, the convolution kernel size and number of decoder layers
are consistently set to 32 and 1, respectively. The detailed values of the hyperparameters
for each of the three models are shown in Table 1. For all models, the number of attention
heads, convolution kernel size, and the number of decoder layers are set to 4, 32, and
1, respectively.

Figure 1. Overview of the Conformer block structure and block modules.

Table 1. Hyperparameters of Conformer models [1].

Model Conformer S Conformer M Conformer L

Number of Parameters 10.3× 106 30.7× 106 118.8× 106

Encoder Layers 16 16 17
Encoder Dimension 144 256 512
Decoder Dimension 320 640 640

2.3. Multi-Task Learning

Multi-task learning has shown successful improvement in SER [12,13,19]. This mit-
igates the overfitting problem [12] caused by small datasets and training with a single
task. It categorizes multiple tasks into two groups, the primary task for the main purpose
and auxiliary tasks for the overfitting problem. The loss for each task is summed with
different weights:

LT(W) = ∑
N

αnLn(W), (1)

where LT(·) is a loss function with network weights W, which is a summation of each loss
for task n, Ln(·), with a loss weight αn.
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2.4. Speech Features

A feature study is one of the main topics for SER research [28,29]. Therefore, many
features for SER tasks are studied and used, such as the short-time Fourier transform
(STFT) or spectrogram [13,21], Mel-spectrogram (Mel) [30,31], and Mel-frequency cepstral
coefficients (MFCCs) [31,32]. The STFT obtained by applying the fast Fourier transform
during short time intervals represents the frequency change over time [33]. Mel rescales the
STFT with the Mel-frequency scale modeling of human hearing [34]. Then, the MFCCs are
obtained by conducting a ceptral analysis of the Mel to acquire useful features to predict
the formant frequencies [35]. As STFT, Mel, and MFCCs are suitable for analyzing speech
information, these features are generally used for SER.

3. Proposed Method

We designed our MTC-SER model in consideration of three aspects: input feature,
structure, and loss function. Multi-feature stacking was applied for the input feature, and
the Conformer structure, which was designed for the ASR task, was redesigned for the
SER task. Finally, multi-task learning was adopted to boost the performance. The detailed
model structure consisting of these three aspects is explained in this section.

3.1. Multi-Feature Combination

Features are an important topic for SER [28,29]. Conventionally, a large amount of
research on SER uses only a single feature as the input [36]. However, a recent study on
appliance classification showed stacking multiple features extracted from sequential data
can improve the performance [20]. Thus, we conducted a multi-feature combination (MFC)
experiment with three general features, namely STFT, Mel, and MFCCs. In addition, to
analyze the temporal variations in the audio data, we added the velocity (∆MFCCs) and
acceleration (∆∆MFCCs) for the MFCCs. Finally, the MFC experiment was divided into
three stacking types: a single feature with STFT (FS1); a triple-feature with STFT, Mel, and
MFCCs (FS3); and the MFC of all (FS5), as shown in Figure 2. The input feature can be
represented as X = {x1, x2, ..., xL}, where xi ∈ Rd f eat . L is the temporal dimension of the
spectrogram, and d f eat denotes the dimension of stacked features, which is calculated as a
sum of the individual features’ dimensions.

Figure 2. Examples of FS1, FS3, and FS5.
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3.2. Conformer-Based Model

Our model consists of a Conformer encoder, statistical pooling layers, and fully
connected layers. The Conformer encoder extracts a meaningful hidden vector from a
given input. Then, the statistical pooling layer compresses the hidden vector into a fixed-
length hidden vector, and the fully connected layers link the fixed-length hidden vector
to each task. The connection between all layers and modules is described in Figure 3, and
details of the model structure are provided below.

Figure 3. MTC-SER structure, where B is the batch size, T is the longest temporal length in the batch,
and D is the hidden dimension.

In this study, we adopted the Conformer encoder for two reasons. First, our model
needs to take features extracted from the speech signal, such as ASR tasks, and second,
the SER model needs to capture not only the feature relationships within a short time
span but also speech features in a wider time span, such as intonations, to more accurately
predict arousal and valence. In addition, we set our model with the same encoder setting
as Conformer M and reduced the parameter size to 17.4 million, which is approximately
half the original size of 31.4 million in Table 1. This is because our model has fewer classes
than the original Conformer. The Conformer encoder can be represented as follows:

Hencoder = Conformer(X) (2)

where Hencoder ∈ RdEnc×L, and dEnc indicates the encoder dimension. After the Conformer
encoder, the statistical pooling layers first calculate the mean and standard deviation along
the frame dimension, and then concatenate the results.

Statistical pooling, such as mean pooling and standard derivation pooling, is widely
used for condensing features with variable frame length to fixed-length features [37–39].
In the proposed model, statistical pooling layers convert the Conformer encoder’s output
vector in variable sizes depending on the input speech length into a fixed-length vector
such that the layers connect the Conformer encoder to the fully connected (FC) layers. The
statistical pooling layers calculate the output as follows:
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Hmean = mean(Hencoder) (3)

Hstd = std(Hencoder) (4)

Hpooled = concatenate(Hmean, Hstd) (5)

where Hmean, Hstd ∈ RdEnc , and Hpooled ∈ R2dEnc .
Our model yields more than one output for several tasks because multi-task learning

is applied, which will be discussed in Section 3.3. All tasks needs to share a model but have
a different number of classes. Therefore, the FC layers decode a common hidden vector for
each task as follows:

YArousal = FCLayer(Hpooled) (6)

YValence = FCLayer(Hpooled) (7)

YID = FCLayer(Hpooled) (8)

YGender = FCLayer(Hpooled) (9)

where YArousal ∈ RdArousal , YValence ∈ RdValence , YID ∈ RdID , and YGender ∈ RdGender . dArousal,
dValence, dID, and dGender are the number of classes for arousal, valence, ID, and gender, respectively.

3.3. Multi-Task Learning

For the four tasks, we categorized arousal and valence recognition as two primary tasks
and the classification of ID and gender as auxiliary tasks. Two types of MTL experiments
were conducted: primary MTL and primary and auxiliary MTL using the weighted-sum
loss defined in Equation (1):

LP(W) = αArousal LArousal(W) + αValenceLValence(W) (10)

LAP(W) = αArousal LArousal(W) + αValenceLValence(W)

+αIDLID(W) + αGenderLGender(W)
(11)

where LP(·) and LAP(·) are the loss functions for the primary MTL and primary and
auxiliary MTL, respectively.

4. Experimental Setup

In this section, we define the experimental setup for the proposed model and features.
Then, the strategy for the comparative experiments and the results are presented.

4.1. Model

Our model shown in Figure 3 consists of a Conformer-based encoder, statistical
pooling layers as a connector, and FC layers as a decoder. Each FC layer for a single task is
constructed with an input size of 512 and an output size equivalent to the number of classes
for each classification task. We made significant changes to the original Conformer model
to make it appropriate for the SER task. We reduced the size of the original Conformer
encoder because our model needs fewer classes compared with typical ASR models. We
used eight Conformer blocks (or encoder layers) with hidden dimension D of 256, four
attention-heads, and a convolution kernel size of 31 for symmetric padding. We used an
expansion factor of 2 for the convolution module and an expansion factor of 4 for the feed
forward module, and the dropout rate was 0.1, equivalent to the original Conformer.

4.2. Dataset

We used IEMOCAP [5] to evaluate the performance of MTC-SER, which is a multi-
modal and multi-speaker database and contains approximately 12 hours of audio and video
recordings of 5 female and 5 male actors. The data are labeled with emotion, annotated
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into categorical and dimensional emotions, along with transcripts, speaker ID, gender,
and motion capture of the face. The categorical emotions include seven emotions, along
with other and neutral, and the dimensional emotions include activation, valence, and
dominance, ranging from 1 to 5. In accordance with the previous SOTA study [24], we
converted values from 1 to 5 into three levels by mapping [1, 2] to low/negative, (2, 3.5] to
medium/neutral, and (3.5, 5] to high/positive for arousal/valence labels.

4.3. Feature Extraction and MFC

We extracted all of the features after downsampling the audio data from 48 kHz
to 16 kHz sampling rate and applying a hamming window of size 400 (25 ms) and hop
size of 160 (10 ms) using the Librosa [40]. STFT, Mel, and MFCCs were represented with
512 frequency bins, 64 filters, and 32 filters, respectively. All of the features were scaled
in decibels and normalized before stacking. We stacked the features vertically in three
different combinations: FS1, FS3, and FS5, as shown in Figure 2. Then, a dimension of
input becomes the sum of feature dimensions. For example, in the case of FS3, d f eat is
353(257 + 64 + 32). In addition, to prevent overfitting and to augment the data, we applied
SpecAugmentation [41] with the parameters listed in Table 2.

Table 2. Parameters of SpecAugmentation. According to [41], SpecAugmentation is conducted with
a time warp parameter W, frequency mask parameter F, and time mask parameter T. The maskings
were applied mF and mT times for frequency masking and time masking, respectively. p is the upper
bound of the time mask.

W F mF T p mT

0 15 3 45 1.0 3

4.4. Training and Evaluation

In multi-task leaning, it is important to set the loss weights [12,13,19]. We conducted
two sets of experiments on MTL. First, we compared two cases of MTL, one being primary
MTL and the other primary and auxiliary MTL. Primary MTL refers to multi-task learning
with only two primary tasks: arousal and valence recognition; therefore, the weights of
each loss, αArousal and αValence, were set to 0.5. Primary and auxiliary MTL refers to multi-
task learning with two primary tasks and two auxiliary tasks (speaker ID and gender
recognition). The weights for the two primary tasks, αArousal and αValence, were set to 0.45,
and the weights for the two auxiliary tasks, αID and αGender, were set to 0.05 to make the
model focus on the primary tasks.

After comparing the two MTL types, we compared three different loss weights strate-
gies: major, neutral, and minor for the primary and auxiliary MTL that showed an improved
performance. Major puts heavier weights on the primary tasks with the same loss weight
used for the primary and auxiliary MTL as in the previous experiment. In the case of
neutral, all loss weights are equivalently set to 0.25. Minor puts less weight on the primary
tasks by setting the loss weights to 0.05, 0.05, 0.45, and 0.45 for arousal, valence, speaker
ID, and gender, respectively. Further, we used the Adam optimizer with a learning rate of
1× 10−5 and a weight decay of 5× 10−5 to optimize the model.

We adopted 10-fold cross-validation to train and evaluate MTC-SER and stratify
each fold to be based on speakers as in the previous SOTA study [24] to provide speaker
information for auxiliary task labeling. To evaluate our models, we selected the models
showing the best arousal or valence accuracy on the validation set for each experimented
model. We used unweighted accuracy (UA) as the evaluation metric and calculated the
mean and standard deviation of all UAs for each fold.

5. Results

The proposed MTC-SER, which is the best model among the combinations from
Section 3.3, outperforms the previous SOTA model [24] using adversarial autoencoders,
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as shown in Table 3, with a UA of 70.0 ± 1.5 %. In addition, it shows that our model
still outperforms the same AAE model [13] with a speaker-independent 5-fold strategy.
However, the valence recognition of MTC-SER showed a lower accuracy than the previous
SOTA model.

Table 3. Comparison with the previous models.

Model Arousal Valence

Semi-supervised AAE (2020) [13] 64.5± 1.5 62.2± 1.0

Semi-supervised AAE (2019) [24] 64.81 64.77

MTC-SER 70.0± 1.5 60.8± 1.3

To compare the performance dependency on the two MTL types, the primary MTL
and the primary and auxiliary MTL, and three MFC types, namely, FS1, FS3, and FS5, we
conducted experiments for all combinations. The results are shown in Table 4. With all MFC
types, the primary and auxiliary MTL shows higher UAs of arousal and valence than the
primary MTL. In addition, MFC showed an increased performance in arousal recognition.
For FS3 and FS5, the models could record higher arousal accuracies than models with a
single feature. However, it can be seen that valence accuracies are not significantly affected
by MFC.

Table 4. Experimental results of MTL types.

MTL Type

Primary Primary and Auxiliary

MFC Type Arousal Valence Arousal Valence

FS1 68.1± 2.5 60.0± 1.7 68.7± 2.2 60.0± 1.3
FS3 68.2± 1.7 60.0± 1.8 69.0± 2.1 60.7± 2.0
FS5 68.3± 2.3 58.8± 1.5 69.0± 2.8 59.7± 1.8

The primary and auxiliary MTL showed better arousal UAs than the primary MTL
and the best valence UA in Table 4. Therefore, we compared the three loss weight strategies
of the primary and auxiliary MTL type with all MFC types. The results for arousal and
valence are shown in Tables 5 and 6, respectively. It can be seen that MFC improved arousal
accuracies but did not affect the valence accuracies, as shown in Table 4. Additionally, the
best loss weights strategies for arousal and valence are different. Arousal accuracies are
improved when loss weights of primary tasks are equal to or less than auxiliary tasks. In
contrast, valence accuracies tend to improve when loss weights of primary tasks are higher
than auxiliary tasks.

Table 5. Arousal results depending on loss weight strategies for primary and auxiliary MTL.

Loss Weight Strategy Major Neutral Minor

FS1 68.7± 2.2 69.2± 3.1 68.7± 1.6
MFC Type FS3 69.0± 2.1 69.7± 1.7 69.1± 1.9

FS5 69.0± 2.8 69.9± 2.0 70.0± 1.5

Table 6. Valence results depending on loss weight strategies for primary and auxiliary MTL.

Loss Weight Strategy Major Neutral Minor

FS1 60.0± 1.3 59.4± 2.1 52.9± 1.8
MFC Type FS3 60.7± 2.0 60.8± 1.3 53.1± 1.7

FS5 59.7± 1.8 59.0± 2.0 59.0± 2.0
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6. Discussion

In this study, MTC-SER was proposed for dimensional speech emotion recognition.
MTC-SER with the primary and auxiliary tasks showed better UAs for arousal and valence
than with the primary tasks. However, the best arousal and valence recognition accuracies
were obtained with different loss weights strategies. It can be considered that, if the model
fits better to a specific task and a loss of the task is relatively lower than other tasks, the
model is trained better with a small loss weight for that task so that the model can focus
more on other less fitted tasks.

MTC-SER even without MFC showed a higher arousal accuracy than the previous
SOTA model. Furthermore, the results show that a combination of multiple unimodal fea-
tures as an input is effective for arousal recognition. Still, our model showed lower valence
recognition accuracies than the previous SOTA model, and it was shown that the valence
recognition accuracies were less affected by MFC. It can be regarded that statistical pooling
layers, the connector in MTC-SER, may not be adequate to carry contextual information for
valence recognition.

7. Conclusions

In this study, we proposed MTC-SER, consisting of Conformer, MTL, and MFC. The
proposed Conformer-based model achieved superior arousal recognition accuracies for all
sets of experiments compared with the previous SOTA model. In addition to Conformer,
the application of the auxiliary MTL and MFC further improved the arousal recognition
accuracy. Therefore, we can conclude that adopting the Conformer encoder is effective
for arousal recognition and has synergies with auxiliary multi-task learning and multi-
feature stacking.

For valence, we plan to study the design of better pooling layers and apply the output
of ASR as another auxiliary task for incorporating more contextual information. In addition,
a comparison with other datasets will be studied as future work.
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