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Abstract: Technological advancement has transformed traditional vehicles into autonomous vehicles.
Autonomous vehicles play an important role since they are considered an essential component of
smart cities. The autonomous vehicle is an intelligent vehicle capable of maintaining safe driving
by avoiding crashes caused by drivers. Unlike traditional vehicles, which are fully controlled and
operated by humans, autonomous vehicles collect information about the outside environment using
sensors to ensure safe navigation. Autonomous vehicles reduce environmental impact because
they usually use electricity to operate instead of fossil fuel, thus decreasing the greenhouse gasses.
However, autonomous vehicles could be threatened by cyberattacks, posing risks to human life. For
example, researchers reported that Wi-Fi technology could be vulnerable to cyberattacks through
Tesla and BMW autonomous vehicles. Therefore, further research is needed to detect cyberattacks
targeting the control components of autonomous vehicles to mitigate their negative consequences.
This research will contribute to the security of autonomous vehicles by detecting cyberattacks in
the early stages. First, we inject False Data Injection (FDI) attacks into an autonomous vehicle
simulation-based system developed by MathWorks. Inc. Second, we collect the dataset generated
from the simulation model after integrating the cyberattack. Third, we implement an intelligent
symmetrical anomaly detection method to identify false data cyber-attacks targeting the control
system of autonomous vehicles through a compromised sensor. We utilize long short-term memory
(LSTM) deep networks to detect False Data Injection (FDI) attacks in the early stage to ensure the
stability of the operation of autonomous vehicles. Our method classifies the collected dataset into two
classifications: normal and anomaly data. The experimental result shows that our proposed model’s
accuracy is 99.95%. To this end, the proposed model outperforms other state-of-the-art models in the
same study area.

Keywords: autonomous vehicles (A.V.); anomaly detection (A.D.); deep learning (DL); symmetry;
long short-term memory (LSTM); False Data Injection (FDI) attacks

1. Introduction

Recently, the market value for autonomous vehicles (AVs) has been growing rap-idly,
and it is estimated to reach 100 billion in the near future [1]. In India, fossil fuel cars will
be prohibited by 2030 because of their negative impact on the environment [2]. While the
production and demand for the green energy source is an increase with the addition of
renewable energy capacity in the subsequent years [3], A.V. is one such technology that
uses renewable energy sources instead of fossil fuel sources which reduces greenhouse gas
emissions produced by conventional fossil fuel vehicles [4].
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Similar to any cyber-physical system (C.P.S.), A.V.s imply communication network
infrastructure to transmit critical information in real-time. Therefore, integrating com-
munication networks in A.V. introduces many benefits, such as exchanging information
between embedded devices, sensors, actuators, and other technology. This is important to
ensure the requirement for high connectivity between such synchronous cyber-physical
systems [5]. In addition, integrating a communication network into physical components
allows remote control and resource management [6]. This will enhance energy efficiency
and consumption and make it much more convenient for A.V. owners to find available
charging stations [6]. However, A.V.s can be exposed to cyber-attacks which cause negative
impacts on the stability of the system. Cyberattacks can be launched stochastically anytime
and anywhere [7] to target the connected devices of the A.V. whenever attackers find
vulnerabilities in the system. Their impact is not limited to a single component of A.V.,
such as the control system but can involve the whole powertrain [8]. Besides, the effect of
the attack can be observed in the short and long term.

Like any man-made object, in which symmetry is one of its main signatures [9], a
typical A.V. includes symmetrical sensors to perceive the nearby environment, which must
communicate effectively [10,11]. Therefore, sensors are the eyes of the A.V. onboard com-
puter, which regularly provide the location, speed, and updates on nearby environments. In
addition to that, A.V. is capable of exchanging data with other vehicles (V2V), pedestrians
(V2P), and Infrastructures (V2I) [12]. The electronic control unit (E.C.U.) processes the
measurements coming from sensors and transmits commands to actuators to control the
devices nearby the vehicles [13]. E.C.U. Processes those measurements via software, which
is vulnerable to an adversary. Imagine that E.V. contains many E.C.U.s, making it harder
now to detect flaws in the software. Such adversaries, with their diversity, are collectively
known as cyber-attacks or intrusions.

Network-based attacks, communication-based attacks, cyber-based attacks, and
physical-based attacks are the taxonomy of Cyber-physical (C.P.) attacks, as displayed
in Figure 1 [14]. The network-based attack involves passive and active attacks. A threat
actor can compromise network security by gaining access to a node or nodes other than
those under hijack. A.V.s networks also are susceptible to different types of attacks, such
as access attacks, ransomware (RANSOM) attacks [15], denial of service (DoS) attacks,
and reconnaissance attacks [14]. In communication-based attacks, the A.V.s rely heavily
on sensors to exchange data with other sensors through a compromised communication
channel. The attacker compromises the communication channel utilized for data exchange
and transmits false data. Suppose the false data is shared over a network and reaches the
relayed data node to the controller. In that case, a network-based attack takes place and
affects the whole nodes associated with the relayed data node [13]. This kind of attack leads
to cyber and physical catastrophic impacts. Therefore, it breaches the data integrity and
shares false data with the affected nodes [13,16]. The cyber-based attack involves changing
the system’s code to a new code that can serve the adversary’s plan. The most common
attacks in A.V.s are malware injection attacks, FDI attacks, supply chain attacks, database
manipulation attacks, and password cracking attacks [17]. In a physical-based attack, the
adversary attempts to provide abnormal measurements to damage the physical device,
such as the control system of an A.V. Many types of research have been conducted in
anomaly detecting cyber-physical attacks and can be found in [18]. Understanding how a
physical system works is crucial to building a predictive model to detect any malicious data
that can damage the system. For instance, the programmable logic controller is widely used
in A.V.s and is susceptible to an attack on Iran’s nuclear power, known as the Stuxnet attack.

An intrusion detection system (I.D.S.) can be implemented into the onboard computer
to detect any security flaws, monitor the system’s events, and report incidents that violate
the security policy [19]. However, in cybersecurity, more than 99% of new intrusions are
symmetrical with very small mutations of previously existing ones [20]. This requires the
development of very accurate I.D.S.s with high sensitivity in detecting cyber-attacks.
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Advances have greatly influenced the development of self-driving vehicles in com-
puting. For safety and speed reasons, all constraints must be considered when simulating
the self-driving vehicle model. This simulation extensively uses deep learning models and
strategies, making it possible to test an automated driving model. An approach such as
long short-term memory (LSTM) has efficiently simulated the system. The LSTM is based
on the symmetry of recurrent neural networks (R.N.N.).

As a result, academics in the autonomous system have quickly adopted it as a
problem-solving method using deep learning. For example, LSTM can be used to pre-
dict a pedestrian’s path and vehicle destination at an intersection. The effectiveness of
LSTMs in time series prediction has been well established [11]. The ability of an LSTM
network to predict the path of on-road vehicles is required for safe autonomous overtaking
or lane changes. Furthermore, as shown in [12–14], several research articles investigated
the advantages of using the LSTM in various systems.

One of the most common C.P. attacks is the FDI attack, which involves fabricating the
data and keeping the system’s code the same. FDI attack is present in all classifications
of C.P. attacks and can threaten A.V.s’ applications, systems, and network layers [11].
Generally, it is challenging to detect the FDI attack because, for example, some of its effects
cannot be noticed in the short term [20].

1.1. Our Contributions

This research aims to develop a resilient cybersecurity method to mitigate the impact
of False Data Injection (FDI) attacks on autonomous vehicles by detecting such attacks at
earlier stages of communication. The main contribution of this research can be summarized
as follows:

• We present a new dataset to simulate the False Data Injection (FDI) attacks on au-
tonomous vehicles. The dataset was generated from the simulation model after
integrating the cyberattack. False Data Injection (FDI) attacks were injected into an
autonomous vehicle (A.V.) simulation-based system developed by MathWorks Inc. for
research purposes. We assumed an attacker compromised a smart sensor.

• We propose an intelligent anomaly detection method based on long short-term mem-
ory (LSTM) neural networks to identify False Data Injection (FDI) attacks targeting
the control system of the autonomous vehicle through a compromised sensor. The
proposed anomaly detection system can classify communication traffic of autonomous
vehicles into normal or anomaly data.

• We provide extensive experimental evaluation results using standard performance
indication factors such as detection accuracy, precision, recall, and F Score. Ultimately
the prosed system achieved an overall accuracy equal to 99.95%.

1.2. Paper Organization

This paper is organized as follows: the recent literature review is represented in
Section 2. Section 3 discusses the autonomous vehicle simulation model used in this



Symmetry 2022, 14, 1450 4 of 16

research. Then, Section 4 explains the system development and specifications. Finally,
Section 5 provides conclusions and future work related to this research.

2. Literature Review

Due to the rapid development in engineering and technology, cities have become
increasingly smart. This can be achieved while relying on data and technology to improve
several sectors such as mobility and transportation. As such, autonomous vehicles are an
indispensable part of smart mobility that emerged to improve the life quality inside smart
cities. Nevertheless, autonomous vehicles are vulnerable to a wide range of cyberattack
vectors that might severely impact humans’ life quality and safety. Therefore, several
research studies have been conducted to analyze, identify, and mitigate autonomous
vehicle cyberattacks and defense mechanisms.

2.1. Existing Related Models

For instance, in [21], the authors suggested a preemptive classification scheme for the
cyber risk categories of connected and autonomous vehicles. Their predictive model uses
Bayesian Networks (BN) to utilize the variables and fundamental relationships from the
Common Vulnerability Scoring Scheme (CVSS) to parameterize the cyber risk of connected
and autonomous vehicles. As a result of evaluating their model on an out-of-sample test,
their B.N. predictive scheme exhibited high prediction accuracy for several risk scores and
levels, scoring approximately 100%.

Also, in [22], the authors proposed a conceptual framework to classify the potential
vulnerabilities of connected and autonomous vehicle systems. The suggested concep-
tual framework was developed using Uniform Modeling Language (UML) using the
KDD99 dataset to produce a new dataset modeling the cyberattacks targeting the com-
munication processes of connected and autonomous vehicles, known as CAV-KDD-2020.
CAV-KDD-2020 dataset is a communication-oriented dataset covering several types of
attacks targeting different possible attack points of the connected and autonomous vehicle’s
systems, including the hardware parts of the autonomous vehicle such as LIDAR sensor,
Camera, power system, software parts of the autonomous vehicle such as in-vehicle system,
data processing system, and decision-making system, the data itself of the autonomous
vehicle such as vehicle id, vehicle’s speed, users personal information, and brake status,
and the communication network protocols of the autonomous vehicle such as the vehicle
to infrastructure communication, vehicle to cloud communication and vehicle to vehicle
communication. To evaluate the new dataset, the authors employed two supervised ma-
chine learning classifiers, including a Decision Tree Classifier (D.T.C.) and a Naive Bayes
Classifier (N.B.C.), to classify the cyberattacks on the autonomous vehicles into four attack
groups, including probe Dos attacks, Root to Local (R2L) attacks, and User to Root (U2R)
attacks. Accordingly, the experimental results revealed that the D.T.C. model scored higher
accuracy and precision proportions with a shorter runtime and thus is more applicable for
the attack detection of autonomous vehicle communication.

Moreover, in [23], the authors proposed a real-time multi-stage deep-learning-based
I.D.S. structure designed to recognize cyberattacks from the Intelligent Transportation
Systems (ITS) to generate minimal False Alarm Rates (FAR). Their system employs the
normal state-based and the Long Short-Term Memory (LSTM) deep learning model in a
bidirectional mode to detect the potential attacks of connected and autonomous vehicle
systems. To assess their implemented method’s performance, the authors evaluated their
model on two standard datasets: the UNSWNB-15 dataset and the CAR-HACK dataset.
Consequently, their empirical investigations pointed out that their proposed multi-stage
I.D.S. system surpassed other models scoring higher accuracy levels with 98.88% and 99.11%
for UNSWNB-15 and CAR-HACK datasets, respectively. Such outcomes may enhance the
cybersecurity for autonomous vehicles at both levels, the in-vehicle communications and
out-vehicle communications (exterior).
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Similarly, in [24], the authors developed a deep learning-based I.D.S. for autonomous
vehicles in a real-time fashion. The proposed system is composed of two main stages.
The first stage is responsible for features extraction leveraging auto-encoder-based long
short-term memory. The second stage is responsible for anomaly detection and classifica-
tion for every signal sequence using a Convolutional Neural Network (CNN) in a real-time
environment. Their experimental results reported 95.5% and 94.2% for model accuracy and
precision, respectively.

Furthermore, in [25], the authors researched the cyber-security vulnerabilities of au-
tonomous vehicles under sensor attacks. Specifically, they proposed a new rule-based
I.D.S. system to identify the sensor attacks and sources for connected and autonomous
vehicles. The proposed I.D.S. uses a combination of an extended Kalman filter (E.K.F.) to
estimate the vehicle’s location and a Cumulative Sum (CUSUM) discriminator to identify
the possible variation of the sensor measurement. For higher resiliency against intrusion,
multiple sensors were deployed to deliver real-time postures of the autonomous vehicle
states. Besides, an auxiliary detector to examine the irregularity between multiple sensor
measurements. Finally, a rule-based separation system is employed to analyze the detec-
tors’ results and provide information about the abnormal sensor. Extensive experimental
results were reported, showing the developed model’s usefulness in actual autonomous
vehicle data.

Besides, in [26], the authors investigated and studied the threat classification con-
cerning autonomous vehicles targeting three major security services: authentication, ac-
countability, and availability. The authors elaborated on the various countermeasures for
autonomous vehicle intrusions and their developmental aspects in this study. Specifically,
the authors emphasized the vital role of blockchain to prevail over and mitigate such secu-
rity and privacy concerns (for autonomous vehicles). Lastly, they end their investigational
study by delving into the genuine concerns and questions of blockchain-based security
systems for autonomous vehicles.

The authors in [27] proposed two deep learning algorithms to detect Denial of Service
(DoS) attacks committed to the Electric Vehicle Charging Station (EVCS). The authors used
python’s Long-Short Term Memory (LSTM) and Deep Neural Network (D.N.N.) algorithms
to classify the DoS attacks. It was assumed that attackers could use any weak network link
to establish the DoS attack. The D.N.N. and LSTM algorithms were trained, tested, and
validated. 50% of the data was used for training, 20% for validation, and 30% for testing.
According to the authors, the accuracy of both deep learning algorithms has recorded high
accuracy rates.

Finally, another noticeable work was observed in [28]. In this paper, the authors
investigated the prospective and pragmatic encounters in the use of artificial intelligence
(AI) to analyze the cyber threat and risks (AI-enabled dynamic cyber risk analytics at the
edge), to enhance toughness against risks and threats in connected devices such as Internet
of Things (IoT) and Cyber-Physical System (CPS) devices. Besides, the authors have applied
the grounded theory to group the requirements for AI in CPS risk analytics which was then
constructed into a conceptual diagram, representing a cascading hierarchy of processes.

2.2. Research Gap and Novelty

Unlike the studies mentioned above, where the presented models are developed
through the learning-based scheme (training and testing) using predefined systematic
Attack-Aware datasets [28] that contain features of common cyber-attacks (intrusions).
However, such models lack to detect newly developed false data injected against the
control system of the autonomous vehicle. This research contributes to the cybersecurity
of autonomous vehicles by detecting the False Data Injection (FDI) attacks developed in
this research. First, we develop and inject new FDI attacks into an autonomous vehicle
simulation-based system developed by MathWorks. Second, we collect the dataset gen-
erated from the simulation model after integrating the cyberattack. Third, we implement
an intelligent symmetrical anomaly detection method to identify FDI attacks targeting
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the control system of the autonomous vehicle. through a compromised sensor. We use
long short-term memory (LSTM) deep networks to detect FDI attacks in the early stage
to ensure the stability of the operation of the autonomous vehicle. Our method classifies
the collected dataset into two classifications: normal and anomaly data. The experimental
result revealed a high-performant model outperforming other state-of-the-art models in
the same study area.

3. Autonomous Vehicles Simulation Model

MathWorks developed the A.V. software system used in this research. Inc. It is a
simulation based-model built using MATLAB, and Simulink focuses on using adaptive
cruise control (A.C.C.) to regulate the A.V. velocity. It consists of two cars (1) the ego car
and (2) the lead car. The ego car is a self-driving car that needs to maintain its speed and
distance from the lead car in the same lane. Therefore, the ego car relies on an A.C.C. to
regulate speed and distance. The A.C.C. system composes speed control and distance
control to adjust the dynamic of the ego car to be symmetrically commensurate with the
lead car [29].

The ego car uses sensors such as radar to collect information about the position of
the ego car and the lead car. The sensor readings are fed to the A.C.C. system to regulate
the speed of the ego car to maintain its position according to the lead car. The default safe
distance between the ego and lead car is symmetrically set to 10 m. Therefore, if the safe
distance between the ego and the lead car is smaller than or equal to the relative distance
(i.e., Asymmetric), the ego car needs to increase its speed (Drel ≥ DSa f e), as shown in
Figure 2. However, if the safe distance is larger than the relative distance, the ego car needs
to decrease its speed (Drel < DSa f e), as shown in Figure 3.
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Figure 4 shows the velocity of the ego car and the lead car. The initial velocity of the
ego car is 20 m/s, and the initial velocity of the lead car is 25 m/s. The desired velocity, in
this case, is 30 m/s. It can be observed that the ego car symmetrically maintains its speed
according to the lead car during the entire simulation time. Therefore, when the lead car
reduces or increases its speed, the ego car follows accordingly.
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Figure 5 illustrates the actual distance and the safe distance between the ego car and
the lead car measured in meters during 81 s of the simulation. The red line in the figure
refers to the actual distance between the two cars. The blue line refers to the safe distance,
which is the distance the ego car should maintain while following the lead car. Overall,
we can observe that the actual and safe distance have comparable results, which means
the distance between the two cars is maintained symmetrically. Furthermore, we notice
that when the actual distance decreases, the safe distance also decreases, whereas when the
actual distance increases, the safe distance increase accordingly. That is because when the
actual distance is larger than the safe distance, the ego car accelerates its speed to follow
the lead car, as shown in Figure 4. Also, when the actual distance is smaller than the safe
distance, the ego car decelerates its speed to avoid collision with the lead car. As mentioned
earlier, the ACC controller is responsible for adjusting the distance and velocity of the ego
car to safely follow the lead car.
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4. System Development and Specifications

This section discusses generating the dataset used in this research and provides
information about the data preprocessing procedure. In addition, it provides a detailed
description of the implementation of the LSTM model used for the classification’s procedure.
Finally, it evaluates the performance of the LSTM model. Figure 6 illustrates the overall
architecture of the system model used in this research.



Symmetry 2022, 14, 1450 8 of 16
Symmetry 2022, 14, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 6. System Model. 

4.1. A Scheme for Generating Dataset 
This section will discuss the testbed used to generate a dataset for anomaly detection 

for the A.V. system. First, the development and integration of the cyberattack are ex-
plained. Second, it shows the collected dataset features. Third, it discusses the calculation 
of the anomaly detection feature. 

4.1.1. Implementation of Cyberattack 
The MATLAB/Simulink simulation model used in this research does not include 

cyberattacks. Therefore, FDI attacks were implemented and injected into the sensor re-
sponsible for measuring the position of the ego car. The equation of the FDI attack is 
shown in Equation (1). The 𝑫𝒂𝒄𝒕 refers to the relative distance between the ego car and 
the lead car measured by the sensor. The attack percentage refers to the strength of the 
attack in percentage. The value of the attack percentage starts from 0.00001% to 100% to 
include a maximum number of possible attack strengths. 

Figure 7 showed the velocity performance of the ego car and the lead car when the 
FDI attack was injected into the sensor responsible for reading the position of the ego car. 
The simulation ran for 81 s, and the velocity was measured in meters per second. The 
attack percentage value was 60%. That means the actual position of the ego car read by 
the sensor was increased by 60% from the original value. 

 
Figure 7. Velocity performance under FDI attack. 

Figure 6. System Model.

4.1. A Scheme for Generating Dataset

This section will discuss the testbed used to generate a dataset for anomaly detection
for the A.V. system. First, the development and integration of the cyberattack are explained.
Second, it shows the collected dataset features. Third, it discusses the calculation of the
anomaly detection feature.

4.1.1. Implementation of Cyberattack

The MATLAB/Simulink simulation model used in this research does not include
cyberattacks. Therefore, FDI attacks were implemented and injected into the sensor respon-
sible for measuring the position of the ego car. The equation of the FDI attack is shown
in Equation (1). The Dact refers to the relative distance between the ego car and the lead
car measured by the sensor. The attack percentage refers to the strength of the attack in
percentage. The value of the attack percentage starts from 0.00001% to 100% to include a
maximum number of possible attack strengths.

Figure 7 showed the velocity performance of the ego car and the lead car when the FDI
attack was injected into the sensor responsible for reading the position of the ego car. The
simulation ran for 81 s, and the velocity was measured in meters per second. The attack
percentage value was 60%. That means the actual position of the ego car read by the sensor
was increased by 60% from the original value.
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As a result, the ACC reduced the ego car speed, which is a normal response of the
controller because the position value read by the sensor fed to the ACC controller was risen
by 60% due to the attack. Therefore, the ACC reduced the ego car speed because the ACC
assumed that the distance between the two car was very close. According to Figure 7, the
velocity of the ego car was not stable due to the impact of the FDI attack, and the ego car
velocity could not reach the desired speed (30 m/s) compared with Figure 4.

Therefore, the actual sensor value can be modeled according to the following Algorithm 1
(Calculating Actual Sensor Value Under FDI):

Algorithm 1. Calculating Actual Sensor Value Under FDI

Input_1: Original Sensor Reading (Dact ) in meter
Input_2: Attack Percentage (0.00001% to 100%)
Processing: Get Original Sensor Reading (Dact )

Assume Attack Percentage = (Att% )
Compute: Temp = (Att% × Dact )

Then: Dact+1 = Dact + Temp
Output: Actual Sensor Value (Dact+1) in meter

Figure 8 depicts the safe distance and actual distance between the two cars under
the same attack percentage (60%). Comparing Figure 8 with Figure 4, we found that they
no longer have comparable performance because the ACC has a different response in
each figure. The reason is that the values of the sensor measuring the position of the
ego car given to the controller were alike. As a result, the ACC responded differently
when calculating the actual and the safe distance between the ego car and the lead car. In
Figure 4, the actual and safe distances have very close results because there was no attack.
However, in Figure 8, during the first 20 s of driving, the actual and safe distances were not
similar. Also, the actual and safe distances have zigzag waves, which means the ego car
performance was not stable due to the attack.
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4.1.2. Dataset Features

The dataset used in this research was collected from a real-time simulation using the
A.V. model with the integrated FDI attacks. We collected the response of the following
parameters: the actual position of the ego car, the actual velocity of the ego car, the actual
position of the lead car, and the actual velocity of the lead car. In addition, we extracted a
new feature we called the anomaly detection label with two classifications label normal
and anomaly, using the last four features. Therefore, our dataset consists of five features
listed in Table 1.
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Table 1. Dataset Features.

Feature No. Feature Name Unit Data Type

1 Actual position of the ego car m Double
2 Actual velocity of the ego car m/s Double
3 Actual position of the lead car m Double
4 Actual velocity of the lead car m/s Double
5 Anomaly detection label Normal, Anomaly Binary

4.1.3. Anomaly Detection Label

The anomaly detection label was calculated using features 1, 2, 3, and 4. We injected
FDI attacks into the sensor responsible for measuring the actual position of the ego car.
According to our observation, the ego car has a stable performance when the attacks’
strength is between 0.00001% to 0.01%. For this reason, this anomaly detection label is
marked as normal. The size of the normal dataset is 10,000 records, and each record has
four features with 81 data lengths. However, when the strength of the FDI attack is larger
than 0.01%, the ego car’s performance is considered unstable. Therefore, we inject FDI
attacks into the actual position of the ego car, but the strength of the FDI attack this time is
between 0.011% to 100%. The size of the injected dataset (anomaly) is 10,000 records, and
each record has four features with 81 data lengths. Therefore, the total size of the dataset is
20,000 records.

4.2. Implementation of LSTM

LSTM is a deep neural network first proposed by Hochreiter in 1997 [30,31]. LSTM
uses time-series data for classification by keeping track of cell states to preserve certain
memory trends across time [32]. LSTM block consists of three gates: forget, update, and
output, which works with the input for a time series, as shown in Figure 9 [33,34]. The
model decides whether to forget, update, or output new data at each state stage. Therefore,
LSTM is made to avoid the issue of long-term dependence. The forget gate determines
whether a piece of data should be saved. In the LSTM, the input gate refreshes the cells,
while the output gate always determines the hidden state. As a result, they determine which
data should be shared with other cells and which should be ignored based on the outcome,
which ranges from zero to one. Zero indicates rejection, but one indicates inclusion.
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The component of the LSTM architecture used for classification is illustrated in Figure 10.
Initially, the data is fed to the sequence input layer, followed by the LSTM layer. Next,
the prediction procedure is performed in the fully connected Softmax layers. Finally, the
output is produced in the classification layer [35].
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4.3. Training Procedure

After preprocessing the dataset, we trained it using the LSTM model. We split our
dataset into two groups; the first group is used for training with 70% of the dataset, and the
second group is 30%, which will be used for testing. Therefore 17,000 records were used
for training, and 3000 were used for testing. We used the Adam optimization algorithm
to train our LSTM networks, as discussed in the following section [36]. To evaluate or
training procedure, we used the Cross-Validation technique [35]. It is a technique that
can be used as a validation scheme to solve over-fitting problems. Basically, the dataset is
randomly subsetted into groups of data. Specifically, in the training procedure, we used
5-fold cross-validation, meaning the entire dataset is divided into 5 sets of almost equal
size. Each set of the 5 sets is trained and tested separately. Also, the error is calculated for
each set to avoid overfitting problems.

Adaptive Moment Estimation Optimization (ADAM)

Classification can be difficult when dealing with problems relating to the learning pro-
cess. Several approaches have been proposed to help us arrive at an optimal learning level.
The Adaptive moment estimation (ADAM) optimization algorithm is a recent deep learning
extension of the stochastic gradient descent algorithm, which has recently been used in
a variety of applications like on the Internet of Things, text detection, and so on [37–40].
According to empirical outcomes, the method has performed well in practice and compares
favorably to other stochastic optimization approaches [40]. Stochastic gradient descent
is an efficient and effective optimization technique that has played an important role in
many machines learning. According to the concept of the method, individual adaptive
learning rates for distinct parameters are calculated using estimates of the gradient’s first
and second moments based on combining both RmsProp and AdaGrad [39]. RmsProp
computes the average of recent changes in the magnitude of the internal signal gradient,
while AdaGrad handles sparse gradients with uncentered variance [38]. These algorithms
can be calculated according to the following Equations, Equations (1) and (2) [38]:

mt = βmt − 1 + (1 − beta1)gt (1)
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vt = β2vt − 1 + (1 − beta2)g2
t (2)

4.4. Testing Procedure

To ensure the high validity of our experimental evaluation, we have performed the
following techniques:

• K-Fold Cross-Validation (already discussed in Section 4.3)
• Confusion matrix
• Evaluation metrics (precision, recall, and F1-score)
• Comparison with existing methods.

We evaluated our model using the confusion matrix shown in Figure 11, which
depends on the True Positive (TP), False Positive (FP), False Negative (FN), and True
Negative (TN). Then the accuracy is calculated using Equation (4) [41]. TP refers to the
number of positive data classified correctly. FN refers to the number of positive misclassified
data. Meanwhile, FP refers to the number of negative misclassified data, and TN refers to
the number of negative data classified correctly. As was mentioned above, 30% of the data
was used for testing. Figure 12 illustrates the confusion matrix of our proposed models.
We can observe that majority of observations were correctly classified with only three
observations are incorrectly classified.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 16 
 

 

first and second moments based on combining both RmsProp and AdaGrad [39]. 
RmsProp computes the average of recent changes in the magnitude of the internal signal 
gradient, while AdaGrad handles sparse gradients with uncentered variance [38]. These 
algorithms can be calculated according to the following Equations, Equations (1) and (2) 
[38]: 𝑚௧ = 𝛽𝑚௧ − 1 + ሺ1 − 𝑏𝑒𝑡𝑎ଵሻ𝑔௧ (1)𝑣௧ = 𝛽ଶ𝑣௧ − 1 + ሺ1 − 𝑏𝑒𝑡𝑎ଶሻ𝑔ଶ௧  (2)

 

4.4. Testing Procedure 
To ensure the high validity of our experimental evaluation, we have performed the 

following techniques: 
• K-Fold Cross-Validation (already discussed in Section 4.3) 
• Confusion matrix 
• Evaluation metrics (precision, recall, and F1-score) 
• Comparison with existing methods. 

We evaluated our model using the confusion matrix  shown in Figure 11, which de-
pends on the True Positive (TP), False Positive (FP), False Negative (FN), and True Nega-
tive (TN). Then the accuracy is calculated using Equation (4) [41]. TP refers to the number 
of positive data classified correctly. FN refers to the number of positive misclassified data. 
Meanwhile, FP refers to the number of negative misclassified data, and TN refers to the 
number of negative data classified correctly. As was mentioned above, 30% of the data 
was used for testing. Figure 12 illustrates the confusion matrix of our proposed models. 
We can observe that majority of observations were correctly classified with only three 
observations are incorrectly classified. 

 
Figure 11. Two Class Confusion Matrix for Calculation Accuracy. 

 
Figure 12. Confusion Matrix of Proposed Model. 

In addition, we evaluated our test method using detection accuracy, detection preci-
sion, detection recall, and the F1-score  metrics, as represented in Table 2 [42]. The accuracy 
of our model reached 99.95%. The detection accuracy, precision, recall and the F1-Score 
are calculated using the standard Equations (Equations (3)–(6)) [41]. 

Figure 11. Two Class Confusion Matrix for Calculation Accuracy.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 16 
 

 

first and second moments based on combining both RmsProp and AdaGrad [39]. 
RmsProp computes the average of recent changes in the magnitude of the internal signal 
gradient, while AdaGrad handles sparse gradients with uncentered variance [38]. These 
algorithms can be calculated according to the following Equations, Equations (1) and (2) 
[38]: 𝑚௧ = 𝛽𝑚௧ − 1 + ሺ1 − 𝑏𝑒𝑡𝑎ଵሻ𝑔௧ (1)𝑣௧ = 𝛽ଶ𝑣௧ − 1 + ሺ1 − 𝑏𝑒𝑡𝑎ଶሻ𝑔ଶ௧  (2)

 

4.4. Testing Procedure 
To ensure the high validity of our experimental evaluation, we have performed the 

following techniques: 
• K-Fold Cross-Validation (already discussed in Section 4.3) 
• Confusion matrix 
• Evaluation metrics (precision, recall, and F1-score) 
• Comparison with existing methods. 

We evaluated our model using the confusion matrix  shown in Figure 11, which de-
pends on the True Positive (TP), False Positive (FP), False Negative (FN), and True Nega-
tive (TN). Then the accuracy is calculated using Equation (4) [41]. TP refers to the number 
of positive data classified correctly. FN refers to the number of positive misclassified data. 
Meanwhile, FP refers to the number of negative misclassified data, and TN refers to the 
number of negative data classified correctly. As was mentioned above, 30% of the data 
was used for testing. Figure 12 illustrates the confusion matrix of our proposed models. 
We can observe that majority of observations were correctly classified with only three 
observations are incorrectly classified. 

 
Figure 11. Two Class Confusion Matrix for Calculation Accuracy. 

 
Figure 12. Confusion Matrix of Proposed Model. 

In addition, we evaluated our test method using detection accuracy, detection preci-
sion, detection recall, and the F1-score  metrics, as represented in Table 2 [42]. The accuracy 
of our model reached 99.95%. The detection accuracy, precision, recall and the F1-Score 
are calculated using the standard Equations (Equations (3)–(6)) [41]. 

Figure 12. Confusion Matrix of Proposed Model.

In addition, we evaluated our test method using detection accuracy, detection preci-
sion, detection recall, and the F1-score metrics, as represented in Table 2 [42]. The accuracy
of our model reached 99.95%. The detection accuracy, precision, recall and the F1-Score are
calculated using the standard Equations (Equations (3)–(6)) [41].

Accuarcy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 − Score = 2 × Precision × Recall
Precision + Recall

(6)
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Table 2. Precision, recall, and F1-score metrics.

Accuracy Parameter Value

Precision 99.93%
Recall 99.97%

F1-Score 99.95%
Accuracy 99.95%

Table 3 lists the accuracy of current existing deep learning methods developed by
researchers compared with our results. According to the table which considers the perfor-
mance comparison between our proposed model against several state-of-the-art models.
The comparisons revealed the supremacy of our proposed model in terms of accuracy and
the data generation process. In addition, it shows the number of features that were used
in each study, and it can be observed that our proposed method used a lower number
of features (only four) compared with other models. Generally, training a deep learning
model with a few features can be challenging since most deep learning models require a
sufficient number of features to reach higher accuracy [43]. While deep learning models’
accuracy could also suffer from many number features [44].

Table 3. Comparing our proposed model’s accuracy with existing deep learning models’ accuracy.

Research Task No. of Features ML Model Accuracy

Hamza et al. [45] Detection NA COSBO-BiLSTM 98.81%
Almasoud et al. [46] Detection 24 RNN-GLSTM 96.7%

Roh et al. [47] Detection 64 CNN-LSTM 92.03%
Sarwar et al. [48] Detection 83 Random Forest 83%
Song et al. [49] Classification 77 Deep-learning 97.4%

Alkahtani et al. [50] Classification 80 CNN-LSTM 98.90
Al-Haija et al. [51] Classification 43 CNN 98.2%

Ullah et al. [52] Detection 83 SVM 80%
Proposed method Detection 4 LSTM 99.95%

5. Conclusions

Rapid computing advances have significantly impacted the study and development
of autonomous vehicles in various fields. Autonomous vehicles are broadly deemed as an
indispensable system of smart city development due to their significant roles in improving
the lifestyle in developed cities. Nevertheless, autonomous vehicles are susceptible to a
range of cyberattack vectors that endanger human lives. Hence, an intelligent anomaly
detection system for autonomous vehicles is proposed, developed, and evaluated in this
paper. In this system, we developed and presented a new simulated dataset for False
Data Injection (FDI) attacks on autonomous vehicles. Then, we implemented an intelligent
anomaly detection method based using a symmetrical LSTM neural network to detect the
injected FDI attacks targeting the control system of the autonomous vehicles through a
compromised sensor. Finally, to certify the trustworthiness of the validation process, the
evaluation process has undergone 5-fold cross-validation and the average performance
indicators have been observed and recorded using the confusion matrix, the detect accuracy,
the detect precision, the detect recall, and the F1-Score measurements to gain more insights
into the solution approach. Accordingly, the performance evaluation of our anomaly-based
LSTM model exhibits outstanding results. Specifically, the d model recoded an average
detection accuracy of 99.95%, average detection precision of 99.93%, average detection sen-
sitivity (recall) of 99.97%, and average detection F-Score of 99.95%. Thus, the comparison
with existing recent models revealed the supremacy of our model in terms of detection
performance and detection ability for new false data attacks.
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