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Abstract: We consider a new failure time distribution by combining three Weibull distributions. The
proposed distribution exhibits decreasing, increasing, and bathtub-shaped failure rate functions.
Some statistical properties of the proposed distribution are presented. The maximum likelihood
method is used to estimate the parameters, reliability, and failure rate functions of the proposed
distribution, and the uncertainties of the estimates are obtained by using asymptotic confidence inter-
vals. The cross-entropy method, a stochastic optimization procedure, is used to find the maximum
of the log-likelihood function. The superiority of the proposed distribution is demonstrated on two
benchmark datasets.
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1. Introduction

The additive Weibull (AddW) distribution [1] is a distribution in reliability proposed
for fitting bathtub-shaped failure rate data. The purpose of the AddW distribution is to
provide a single model that can be used to model simultaneously all three phases of a
bathtub curve. It combines two Weibull distributions [2], and its cumulative distribution
function (CDF) is given by

F(x) = 1− exp
[
−(θx)α − (λx)β

]
, x ≥ 0,

where θ and λ are non-negative and 0 < β < 1 < α. The shape parameters are re-
stricted by β < 1 < α so that its failure rate function is bathtub-shaped only. Later,
Lemonte et al. [3] has provided a detailed study on the AddW and has modified the
conditions for the parameters as θ, λ > 0, 0 < β < α which allows the AddW to have
an increasing failure rate if 1 < β < α, a decreasing failure rate if β < α < 1, and a
bathtub-shaped failure rate if β < 1 < α. Although the AddW distribution has bathtub-
shaped failure rate functions, it is not flexible enough for fitting datasets with complex
bathtub-shaped failure rates.

Many proposed distributions which result from combining different distributions,
rather than purely from two Weibull distributions, have outperformed the AddW distribu-
tion. The new modified Weibull (NMW) distribution [4] combines the Weibull distribution
and the modified Weibull distribution [5]. It has five parameters and its CDF is given by:

F(x) = 1− e−(αxθ+βxγeλx), x ≥ 0,

where α, β, γ, θ > 0, and λ ≥ 0. A Bayes study of the improved NMW by using Hamil-
tonian Monte Carlo simulation is given in [6]. The additive modified Weibull (AMW)
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distribution [7] combines the modified Weibull distribution and the Gompertz
distribution [8]. This distribution has five parameters and its CDF is given by:

F(x) = 1− e−(αxθ eγx+eλx−β−e−β), x ≥ 0,

where α, β, θ > 0, and γλ ≥ 0. The very flexible Weibull distributions [9] results from
a linear combination of two logarithms of cumulative hazard functions. Its failure rate
function can be monotone, bathtub-shaped, modified bathtub-shaped, or even upside-
down bathtub-shaped. The log-normal modified Weibull distribution [10] results from
combining the log-normal distribution and the modified Weibull distribution, and this
distribution also has five parameters. The additive Chen–Weibull distribution [11] is a four-
parameter distribution that combines the Weibull distribution and the Chen distribution.
Recently, a generalization of the AddW distribution, called the generalized additive Weibull
(GAW) distribution [12], has been proposed. Its CDF is given by:

F(x) =
[
1− exp

(
−αxβ − γxλ

)]θ
, x ≥ 0,

where α, θ, γ, β, λ > 0. This distribution comprises a set of distributions, such as modified
generalized linear failure rate, exponentiated exponential, exponentiated Weibull, modified
Weibull distributions, and additive Weibull, among others.

In addition to the combined distributions that provide a flexible bathtub-shaped failure
rate, other distributions also have a bathtub-shaped failure rate function. Some of them can be
mentioned as the modified Weibull distribution [5], exponentiated Weibull distribution [13],
Hjorth distribution [14], generalized modified Weibull distribution [15], beta modified Weibull
distribution [16], upper truncated Weibull distribution [17], new three-parameter exponential-
type distribution [18], beta Generalized Weibull distribution [19], Alpha logarithmic trans-
formed Weibull distribution [20], logistic exponential distribution [21], and five-parameter
spline distribution [22]. However, these distributions cannot provide bathtub-shaped failure
rate functions with a long flat region.

More recently, the logarithmic transformed Weibull distribution was introduced by
using a logarithm transformation method [23]. It has constant, increasing, decreasing, uni-
modal, and unimodal then bathtub-shaped hazard rates. Shakhatreh et al. [24] introduced
the generalized extended exponential-Weibull distribution for fitting non-monotonic failure
rate data. This model includes the Weibull, generalized Weibull, exponentiated generalized
linear exponential, and exponential-Weibull distributions. A new bounded distribution,
called bounded weighted exponential distribution is introduced by Mallick et al. [25]. The
proposed distribution exhibits increasing and bathtub-shaped failure rate functions.

In this study, we go one step further beyond the AddW distribution by introducing a
distribution which combines three Weibull distributions. This distribution will be referred
to as the three-component additive Weibull distribution (3CAW). The 3CAW distribution
exhibits increasing, decreasing, and bathtub-shaped failure rate functions. It provides a
flexible failure rate function, especially a bathtub-shaped failure rate with a long flat region,
and it will be demonstrated to provide good fits to given well-known datasets. The 3CAW
is useful for modeling either a series system with three independent components where
each component follows a Weibull distribution or a component that is affected by three
major failure modes, each following a Weibull distribution.

In fact, the combination of three Weibull components has already been proposed by
Khalil et al. [26]. The model was named the flexible additive Weibull distribution and its
CDF is given by:

F(x) = 1− e−axb−cxd−gxk
, x > 0,

where a, b, c, d, g, and k > 0. However, it is clear that this model cannot be identifiable,
meaning that the same model might be produced by different sets of parameters’ values.
The identifiability of a distribution is a very important property of statistical models. It
allows us to obtain precise estimates of the parameters’ values. Without identifiability, we
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cannot estimate the true parameters’ values, even with an infinite number of observations.
Although the idea of combining three Weibull distributions was already proposed by
Khalil et al. [26], our independent study will differ from [26] in many aspects. Firstly, our
proposed model will have a different parameterized form. Secondly, and most importantly,
our proposed model will be proved to be identifiable. Thirdly, our study will use a
stochastic optimization method that is more likely to find the global maximum since the
log-likelihood function of the 6-parameter model is usually highly multimodal. Lastly, in
the Applications section, we will carry out the assessments of all the uncertainties of the
parameter estimates.

The rest of the paper is organized as follows. Section 2 introduces the 3CAW distribu-
tion and its reliability characteristics. Section 3 studies some statistical properties of the
3CAW distribution. Section 4 discusses the methods of maximum likelihood and asymp-
totic confidence interval estimations for parameters, reliability, and failure rate functions.
Section 5 offers the simulation study. Section 6 brings applications of the 3CAW to two
well-known data sets. Finally, Section 7 concludes the paper.

2. The 3CAW Distribution

In our previous studies [6,11] we realized that if we combine a model which has a
bathtub-shaped failure rate function with a model which has an increasing failure rate func-
tion, we might obtain a model which has a very flexible bathtub-shaped failure rate function
with a long flat region. In fact, we encountered such distribution in the literature, such
as [4,7,10,11]. In this study, the 3CAW is formed by combining three Weibull components,
where the first two components form a model which possibly exhibits a bathtub-shaped
failure rate function and the last component can provide an increasing failure rate function.
The CDF of the 3CAW which combines three Weibull distributions is given by:

F(x) = 1− exp
[
−(θx)α − (λx)β − (ηx)γ

]
, x > 0, (1)

where θ, λ, η > 0, and 0 < α < β < γ. The restriction of the shape parameters, i.e.,
α < β < γ, leads to a very important property of the proposed model which will be stated
in the following theorem.

Theorem 1 (Identifiability theorem). The 3CAW distribution with the CDF given by
Equation (1) is identifiable.

Proof. The proof of Theorem 1 is given in Appendix A.

The corresponding probability density function (PDF) is given by:

f (x) =
[
αθ(θx)α−1 + βλ(λx)β−1 + γη(ηx)γ−1

]
exp

[
−(θx)α − (λx)β − (ηx)γ

]
.

It has the cumulative failure rate function given in the following form:

H(x) = (θx)α + (λx)β + (ηx)γ.

Its reliability and failure rate functions are, respectively, given by:

R(x) = exp
[
−(θx)α − (λx)β − (ηx)γ

]
,

and
h(x) = αθ(θx)α−1 + βλ(λx)β−1 + γη(ηx)γ−1. (2)

From the CDF of the 3CAW distribution, it is clear that it includes many other distri-
butions as its sub-models. Table 1 shows a list of distributions that can be derived from the
3CAW distribution.
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Table 1. The sub-models of the 3CAW.

Distribution α β γ θ λ η F(x) Reference

Flexible additive Weibull b d h b
√

a d
√

c k
√

g 1− e−axb−cxd−gxk Khalil et al. [26]
Additive Weibull - - 0 - - 0 1− e−(θx)α−(λx)β Xie and Lai [1]
Non-linear failure rate 1 - 0 - - 0 1− e−θx−(λx)β Salem [27]
Linear failure rate 1 2 0 - - 0 1− e−θx−(λx)2 Bain [28]
Weibull - 0 0 - 0 0 1− e−(θx)α Weibull [2]
Rayleigh 2 0 0 - 0 0 1− e−(θx)2 Bain [28]
Exponential 1 0 0 - 0 0 1− e−θx Bain [28]

The expression of the failure rate function in Equation (2) is the sum of three Weibull
failure rate functions. It is decreasing if α < β < γ < 1, increasing if 1 < α < β < γ, and
bathtub-shaped if α < 1 < β < γ or α < β < 1 < γ. Figure 1 shows the plots of the PDF
and failure rate function of the 3CAW at selected parameter values. The 3CAW distribution
has the PDF and failure rate function with flexible curves, and more importantly it has
a long flat region of the bathtub-shaped failure rate function which is very important in
reliability and biological studies.
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Figure 1. Plots of (a) PDF and (b) corresponding failure rate functions of the 3CAW.

3. Properties of the 3CAW Model

In this section, some statistical properties of the 3CAW distribution including the
behavior of the failure rate function, the moments, order statistics, quantiles, and mean
residual life are discussed.

3.1. The Failure Rate Function

We study the limiting behavior of h(x) as x tend to 0 or +∞.

• If γ < 1, then limx→0 h(x) = +∞ and limx→+∞ h(x) = 0. In this case, the failure rate
function is decreasing;

• If α > 1, then limx→0 h(x) = 0 and limx→+∞ h(x) = +∞. In this case, the failure rate
function is increasing;

• If α < 1 < β or β < 1 < γ then limx→0 h(x) = +∞ and limx→+∞ h(x) = +∞. In this
case, the failure rate function is bathtub-shaped.

3.2. The Moments

In mathematical analysis we know that:∫ +∞

0
xre−Axs

dx < +∞, for all A, s > 0 and r ∈ Z+.
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Therefore, from the expression of the CDF of the 3CAW, we see that the rth non-central
moment µr (the rth moment about the origin) of the 3CAW always exists for all r ∈ Z+. It
can be derived as follows:

µr =
∫ +∞

0
xrdF(x)

= −
∫ +∞

0
xrde−(θx)α−(λx)β−(ηx)γ

= r
∫ +∞

0
xr−1e−(θx)α−(λx)β−(ηx)γ

dx, (3)

for r = 1, 2, . . .. Since (3) can not be obtained in closed form, some suitable numerical
method, such as Gauss–Kronrod quadrature method, can be used to obtain this integral.

3.3. Order Statistics

Let a random sample X1, X2, . . . , Xn from the 3CAW distribution and Xk:n is the kth
order statistic of the sample, then the PDF of Xk:n is given by:

fk:n(x) =
1

B(k, n− k + 1)
F(x)k−1(1− F(x))n−k f (x),

where B(·, ·) is the beta function. Since:

(1− F(x))n−k = e−(n−k)H(x),

and

F(x)k−1 = (1− e−H(x))k−1 =
k−1

∑
l=0

(
k− 1

l

)
(−1)le−lH(x).

The PDF of Xk:n is derived as:

fk:n(x) =
1

B(k, n− k + 1)

k−1

∑
l=0

(
k− 1

l

)
(−1)lh(x)e−(n+l+1−k)H(x)

= n
(

n− 1
k− 1

) k−1

∑
l=0

(
k− 1

l

)
(−1)l

n + l + 1− k
f (x; α, β, γ, θ′, λ′, η′),

where θ′ = θ α
√

n + l + 1− k, λ′ = λ β
√

n + l + 1− k and η′ = η γ
√

n + l + 1− k.

3.4. Quantiles, Median, and Mode

The quantile xq is the solution of the following non-linear equation

(θxq)
α + (λxq)

β + (ηxq)
γ + log(1− q) = 0. (4)

If q = 1/2, the quantile xq is the median.
The mode is the value of x for which the PDF f (x) attains its maximum. Therefore,

the mode is the solution of the following non-linear equation:

h′(x)R(x) + h(x)R′(x) = 0 (5)

where R(x) and h(x) are the reliability failure rate functions, respectively, and R′(x) and
h′(x) are their corresponding derivatives with respect to x. Solving (4) and (5) requires
some suitable numerical methods.

Data x1, . . . , xn can be simulated from the 3CAW distribution by using a simple
algorithm as follows:

1: Generate ui ∼ U(0, 1), for i = 1, . . . , n;
2: Solve (θxi)

α + (λxi)
β + (ηxi)

γ = log 1
1−ui

.
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3.5. Mean Residual Life

The mean residual life at time x of a random variable X ∼ 3CAW distribution is the
expectation of the conditional random variable X− x|X > x. It is the mean time to failure
of an object that has survived to time x, and it is defined as:

M(x) = E[X− x|X > x] =
1

R(x)

∫ +∞

x
R(u)du =

1
R(x)

∫ +∞

0
R(u + x)du

= e(θx)α+(λx)β+(ηx)γ
∫ +∞

0
e−(θ(u+x))α−(λ(u+x))β−(η(u+x))γ

du. (6)

In order to obtain the integral in (6), suitable numerical methods need to be used.

4. Parameter Estimation
4.1. Maximum Likelihood Estimation

Let D : x1, . . . , xn be an observed sample from the 3CAW distribution with unknown
parameter vector θ = (α, β, γ, θ, λ, η)T . The likelihood function of the 3CAW is defined as:

L(θ) =
n

∏
i=1

f (xi; θ)

=
n

∏
i=1

[(
αθ(θxi)

α−1 + βλ(λxi)
β−1 + γη(ηxi)

γ−1
)

e−(θxi)
α−(λxi)

β−(ηxi)
γ
]
.

Then, the log-likelihood function is derived as:

l =
n

∑
i=1

log
[
αθ(θxi)

α−1 + βλ(λxi)
β−1 + γη(ηxi)

γ−1
]
−

n

∑
i=1

[
(θxi)

α + (λxi)
β + (ηxi)

γ
]
. (7)

We maximize this function to obtain the maximum likelihood estimates (MLEs)
θ̂ML = (α̂, β̂, γ̂, θ̂, λ̂, η̂)T of the parameter vector θ = (α, β, γ, θ, λ, η)T . This can be written
in mathematical form as:

θ̂ML = arg max
θ∈Θ

l(θ),

where Θ = {(α, β, γ, θ, λ, η)T : θ, λ, η > 0 and 0 < α < β < γ}.
One way to do so is to first calculate the first-order partial derivatives of the log-

likelihood function with respect to the parameters:

∂l
∂α

=
n

∑
i=1

θ(θxi)
α−1(1 + α log(θxi))

αθ(θxi)α−1 + βλ(λxi)β−1 + γη(ηxi)γ−1 −
n

∑
i=1

(θxi)
α log(θxi),

∂l
∂β

=
n

∑
i=1

λ(λxi)
β−1(1 + β log(λxi))

αθ(θxi)α−1 + βλ(λxi)β−1 + γη(ηxi)γ−1 −
n

∑
i=1

(λxi)
β log(λxi),

∂l
∂γ

=
n

∑
i=1

η(ηxi)
γ−1(1 + γ log(ηxi))

αθ(θxi)α−1 + βλ(λxi)β−1 + γη(ηxi)γ−1 −
n

∑
i=1

(ηxi)
γ log(ηxi),

∂l
∂θ

=
n

∑
i=1

−(αθ)2(θxi)
α−1

αθ(θxi)α−1 + βλ(λxi)β−1 + γη(ηxi)γ−1 + αθ
n

∑
i=1

(θxi)
α,

∂l
∂λ

=
n

∑
i=1

−(βλ)2(λxi)
β−1

αθ(θxi)α−1 + βλ(λxi)β−1 + γη(ηxi)γ−1 + βλ
n

∑
i=1

(λxi)
β,

∂l
∂η

=
n

∑
i=1

−(γη)2(ηxi)
γ−1

αθ(θxi)α−1 + βλ(λxi)β−1 + γη(ηxi)γ−1 + γη
n

∑
i=1

(ηxi)
γ,
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and then set these partial derivatives equals zero and solve the system of non-linear
equations by using some suitable numerical methods, such as Newton–Raphson or quasi-
Newton methods.

Another better way to maximize the log-likelihood function in Equation (7) is to use
the stochastic optimization procedure, called cross-entropy (CE) method [29], to maximize
the log-likelihood function. The reason why CE works better than gradient-type methods
is that the likelihood function is usually highly multimodal (that is, there are many local
maxima and minima). For such multi-extremal optimization problems, a gradient-type
method would typically find a local maximum rather than a global maximum. CE, on the
other hand, is a global optimization technique that does not require local (i.e., gradient)
information, and so is more likely to find the global maximum.

We prefer the latter due to its advantages in searching for a global maximum, and it is
easy to implement by using the CE package in R or Matlab. All users need to do is to define
the log-likelihood function, define the parameter space, specified algorithm’s initial values,
and run the algorithm through trial and error until we find the best optimizer which has
the largest log-likelihood. The CE algorithm and R code for continuous optimization are,
respectively, given in Appendices E and F.

After obtaining the MLEs of the model parameters, using the invariant property of
MLEs, we obtain the MLEs of R(x) and h(x) at a certain time x as:

R̂(x) = exp
[
−(θ̂x)α̂ − (λ̂x)β̂ − (η̂x)γ̂

]
,

ĥ(x) = α̂θ̂(θ̂x)α̂−1 + β̂λ̂(λ̂x)β̂−1 + γ̂η̂(η̂x)γ̂−1.

4.2. Asymptotic Confidence Interval

To obtain the asymptotic confidence intervals (CIs) for the parameters, and the relia-
bility and failure rate functions, we first calculate the symmetric matrix of second-order
partial derivatives.

∇2l =



∂2l
∂α2

∂2l
∂α∂β

∂2l
∂α∂γ

∂2l
∂α∂θ

∂2l
∂α∂λ

∂2l
∂α∂η

· ∂2l
∂β2

∂2l
∂β∂γ

∂2l
∂β∂θ

∂2l
∂β∂λ

∂2l
∂β∂η

· · ∂2l
∂γ2

∂2l
∂γ∂θ

∂2l
∂γ∂λ

∂2l
∂γ∂η

· · · ∂2l
∂θ2

∂2l
∂θ∂λ

∂2l
∂θ∂η

· · · · ∂2l
∂λ2

∂2l
∂λ∂η

· · · · · ∂2l
∂η2


,

where the expressions for second-order partial derivatives are provided in Appendix C.
Then, the observed (Fisher) information matrix is defined as

I(θ) = −∇2l.

The matrix I can be evaluated at θ̂ML, the MLE of θ, by using the plug-in method

I(θ̂ML) = −∇2l
∣∣∣
θ=θ̂ML

.

The approximate variance matrix is obtained by

V̂ =



Var(α̂) Cov(α̂, β̂) Cov(α̂, γ̂) Cov(α̂, θ̂) Cov(α̂, λ̂) Cov(α̂, η̂)
· Var(β̂) Cov(β̂, γ̂) Cov(α̂, θ̂) Cov(β̂, λ̂) Cov(β, η̂)
· · Var(γ̂) Cov(γ̂, θ̂) Cov(γ̂, λ̂) Cov(γ̂, η̂)
· · · Var(θ̂) Cov(θ̂, λ̂) Cov(θ̂, η̂)
· · · · Var(λ̂) Cov(λ̂, η̂)
· · · · · Var(η̂)


≈ I−1(θ̂ML).
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Then, the CIs for the MLEs can be constructed by using the following approxima-
tion [30].

θ̂ML ≈ N
(
θ, V̂.

)
The 100(1− ξ)% CIs for α, β, γ, θ, λ, and η are, respectively, defined as:

α̂± z1− ξ
2

√
Var(α̂), β̂± z1− ξ

2

√
Var(β̂),

γ̂± z1− ξ
2

√
Var(γ̂), θ̂ ± z1− ξ

2

√
Var(θ̂),

λ̂± z1− ξ
2

√
Var(λ̂), η̂ ± z1− ξ

2

√
Var(η̂),

where z1−ξ/2 is the 100(1− ξ/2) percentage point of N(0, 1).
The delta method which was discussed in [31] and used recently by [32] is used to

approximate the variance of R̂(x) and ĥ(x).

σ̂2
R̂(x) =

[
∇R̂(x)

]T[V̂][∇R̂(x)
]
, σ̂2

ĥ(x) =
[
∇ĥ(x)

]T[
V̂
][
∇ĥ(x)

]
,

where ∇R̂(x) and ∇ĥ(x) are, respectively, the gradient of R(x) and h(x) with respect to
α, β, γ, θ, λ, and η evaluated at α̂, β̂, γ̂, θ̂, λ̂, and η̂. The gradient of h(x) and R(x) with
respect to α, β, γ, θ, λ, and η are, respectively, given in Appendices B and D. Then, the
100(1− ξ)% CIs for R(x) and h(x) at time x are, respectively, defined as:

R̂(x)± z1− ξ
2

√
σ̂2

R̂(x)
, ĥ(x)± z1− ξ

2

√
σ̂2

ĥ(x)
.

Although the parameters are positive, the CIs may result in a negative lower bound.
In this regard, we can replace the negative values by zero. Another way is to use the normal
approximation of log-transformed MLE [33]. Then, the 100(1− ξ)% CIs for α, β, γ, θ, λ, and
η, are, respectively, defined as:

α̂ exp

± z1− ξ
2

√
Var(α̂)

α̂

, β̂ exp

± z1− ξ
2

√
Var(β̂)

β̂

,

γ̂ exp

± z1− ξ
2

√
Var(γ̂)

γ̂

, θ̂ exp

± z1− ξ
2

√
Var(θ̂)

θ̂

,

λ̂ exp

± z1− ξ
2

√
Var(λ̂)

λ̂

, η̂ exp

± z1− ξ
2

√
Var(η̂)

η̂

.

Likewise, the 100(1− ξ)% CIs for R̂(x) and ĥ(x) are, respectively, defined as:

R̂(x) exp

± z1− ξ
2

√
σ̂2

R̂(x)

R̂(x)

, ĥ(x) exp

± z1− ξ
2

√
σ̂2

ĥ(x)

ĥ(x)

.

5. Simulation Results

We conduct a Monte Carlo simulation study to assess the performances of the proposed
estimation methods for the proposed model. We first select five different sets of parameters’
values. For simplicity, we set all scale parameters to unity, i.e., θ = λ = η = 1, in all cases,
and vary the values of the shape parameters as given in Table 2. For each set of parameters’
values, we simulate 1000 datasets with sample sizes n = 25, 50, 100, and 200, respectively,
from the 3CAW distribution by using the algorithm given in Section 3.4. Then, we find the
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MLEs of the parameters for fitting the 3CAW to each dataset, and calculate the biases and
standard deviations (SDs) for the parameter estimates.

The results of the simulation study are listed in Table 2. The outcomes show that the
MLEs of the parameters (except β and γ) have low bias and SD in virtually all the cases,
demonstrating that the estimated values are close to the parameters’ true values. In the
results, we see that γ̂ has the largest biases and SDs compared with the other estimators.
The biases and SDs of β̂ and γ̂ increase as we increase the values of β and γ. This can be
understandable because, with relatively small sample sizes, it is hard to estimate exactly the
value of the Weibull shape parameter when it becomes larger and larger. In that case, the
shape of the Weibull distribution does not change much when slightly varying the value of
the shape parameter. The biases of λ̂ are always negative in all cases which means that the
MLE underestimates the parameter λ. In almost all instances, the biases and SDs decrease
as the sample size increases, indicating the consistency of the proposed estimators.

Table 2. Biases and standard deviations of the 3CAW parameter estimates for some selected parame-
ters’ values at different sample sizes.

n Bias Standard Deviation

α̂ β̂ γ̂ θ̂ λ̂ η̂ α̂ β̂ γ̂ θ̂ λ̂ η̂

α = 0.1, β = 2, γ = 10, θ = 1, λ = 1, η = 1
25 0.0042 0.0877 1.3684 0.3379 −0.0195 0.0236 0.0288 1.1173 1.7485 1.3094 0.4039 0.1128
50 −0.0004 0.0645 1.0510 0.2783 −0.0094 0.0058 0.0185 0.9055 1.7630 1.2177 0.2560 0.0588
100 0.0001 0.0832 0.7688 0.3036 −0.0038 −0.0006 0.0126 0.7241 1.5956 1.0784 0.1810 0.0495
200 0.0000 0.0328 0.5359 0.1946 −0.0085 −0.0009 0.0087 0.5193 1.4143 0.9082 0.1399 0.0320

α = 0.2, β = 4, γ = 20, θ = 1, λ = 1, η = 1
25 0.0065 0.1413 1.3990 0.2191 −0.0448 0.0138 0.0548 1.6876 2.1558 1.0436 0.2270 0.0420
50 0.0046 0.0337 0.8171 0.2309 −0.0276 0.0042 0.0376 1.4517 2.2321 0.9281 0.1360 0.0291
100 0.0029 0.0137 0.5407 0.1184 −0.0119 0.0015 0.0251 1.1596 1.9485 0.6962 0.0888 0.0204
200 0.0004 0.0100 0.4517 0.0693 −0.0034 0.0001 0.0181 0.9421 1.7966 0.5369 0.0585 0.0141

α = 0.4, β = 6, γ = 30, θ = 1, λ = 1, η = 1
25 0.0263 0.1721 1.3080 0.1419 −0.0714 0.0075 0.1143 2.0221 2.3351 0.7280 0.2273 0.0274
50 0.0122 0.0848 0.8988 0.0682 −0.0208 0.0030 0.0770 1.6977 2.3738 0.5192 0.1039 0.0174
100 0.0048 0.0987 0.6592 0.0582 −0.0096 0.0002 0.0532 1.4810 2.2169 0.3873 0.0608 0.0126
200 −0.0001 0.0268 0.4164 −0.0049 −0.0028 0.0003 0.0352 1.2605 2.0607 0.2644 0.0395 0.0087

α = 0.6, β = 8, γ = 40, θ = 1, λ = 1, η = 1
25 0.0332 0.2336 1.4777 0.0530 −0.0541 0.0054 0.1727 2.1670 2.4230 0.5059 0.1903 0.0191
50 0.0130 0.1410 0.8352 0.0288 −0.0171 0.0021 0.1190 1.8803 2.5656 0.3610 0.0906 0.0129
100 0.0084 0.1571 0.6749 0.0145 −0.0060 0.0012 0.0817 1.6897 2.4045 0.2641 0.0449 0.0091
200 0.0019 0.0820 0.4934 0.0069 −0.0022 0.0001 0.0546 1.4847 2.1561 0.1843 0.0295 0.0067

α = 0.8, β = 10, γ = 50, θ = 1, λ = 1, η = 1
25 0.0536 0.1830 1.2681 0.0337 −0.0608 0.0049 0.2244 2.2711 2.5538 0.3692 0.1741 0.0167
50 0.0213 0.1323 1.0219 0.0051 −0.0144 0.0017 0.1527 2.0815 2.6315 0.2800 0.0776 0.0107
100 0.0030 0.0653 0.7603 0.0074 −0.0071 0.0008 0.1022 1.8486 2.5559 0.2047 0.0370 0.0077
200 0.0084 0.0476 0.4831 0.0038 −0.0021 0.0004 0.0766 1.6348 2.3628 0.1417 0.0247 0.0053

6. Applications

We use two real-life datasets known as the Aarset data [34] and Meeker and Escobar
data [33] to investigate the performance of the 3CAW distribution. We also compare this
distribution to some distributions, such as the AddW, NMW, AMW, and GAW. The log-
likelihood (log(L)) value, Kolmogorov–Smirnov (K-S) test statistic, Akaike information
criterion (AIC), bias-corrected Akaike information criterion (AICc) (the adjusted version
of AIC for small dataset), and Bayesian information criterion (BIC) are used for model
selection. Among a set of alternative models, the model with the largest log(L) value and
smallest K-S, AIC, BIC, and AICc values can be considered to be the best approximation
model. Notice that K-S and AIC (as well as the AICc and BIC) values do not necessarily
follow the same trend (i.e., the model with the smallest K-S may not have the smallest AIC).



Symmetry 2022, 14, 1455 10 of 21

We calculate the CIs for the MLEs of the parameters, reliability, and failure rate functions of
the 3CAW by using the log-transformed MLE method mentioned above.

6.1. Aarset Data

Data in Table 3 represent the times to failure of 50 devices (in weeks) [34]. The empirical
scaled TTT-transform plot [35] indicated that this dataset has a bathtub-shaped failure rate
because it is first convex and then concave, as shown in Figure 2b, which matches the
blue-dashed line in Figure 2a.

Table 3. Times to failure of n = 50 devices put on life test (in weeks) [34].

0.1 0.2 1.0 1.0 1.0 1.0 1.0 2.0 3.0 6.0
7.0 11.0 12.0 18.0 18.0 18.0 18.0 18.0 21.0 32.0

36.0 40.0 45.0 46.0 47.0 50.0 55.0 60.0 63.0 63.0
67.0 67.0 67.0 67.0 72.0 75.0 79.0 82.0 82.0 83.0
84.0 84.0 84.0 85.0 85.0 85.0 85.0 85.0 86.0 86.0

Decreasing

Increasing

Constant Bathtub

Unimodal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

u

G
(u
)

(a)
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0.25
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r/n

G
(r
/n
)

(b)

Figure 2. (a) Types of failure rate identify by shapes of the TTT-plot and (b) the empirical TTT-plot

(blue) for Aarset data, where G(u) = K−1(u)/K−1(1) for 0 < u < 1, where K−1(u) =
∫ F−1(u)

0 R(t)dt,
and its empirical version is Gn(r/n) = (∑r

i=1 xi:n + (n− r)xr:n)/ ∑n
i=1 xi:n for r = 1, . . . , n, where xi:n

denote the i-th ordered observation.

The MLEs of the parameters of the 3CAW, GAW, AMW, NMW, and AddW, for fitting
to Aarset data, are given in Table 4, and Table 5 provides a numeric comparison between
3CAW, GAW, AMW, NMW, and AddW in terms of log(L) value, Kolmogorov–Smirnov
(K-S) statistic, AIC, BIC, and AICc.

Table 4. The MLEs of parameters for Aarset data.

Model α̂ β̂ γ̂ θ̂ λ̂ η̂

3CAW 0.49874 4.06058 97.88702 0.00748 0.01088 0.01175
GAW 5.53451× 10−15 7.53436 4.89809 0.05455 324.645 -
AMW 0.0763 90.1357 0.0104 0.4579 1.0604 -
NMW 0.0710 7.0150× 10−8 0.0160 0.5950 0.1970 -
AddW 0.7025 82.3350 - 0.0162 0.0118 -
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Table 5. Log-likelihood, K-S statistic, AIC, BIC, and AICc for Aarset data.

Model log(L) K-S
(p-Value) AIC BIC AICc

3CAW −202.53 0.057 (0.997) 417.06 428.53 419.02
GAW −215.93 0.121 (0.457) 441.86 451.42 443.22
AMW −203.57 0.068 (0.976) 417.14 426.70 418.50
NMW −212.90 0.088 (0.838) 435.80 445.36 437.16
AddW −206.10 0.111 (0.568) 420.19 427.84 421.08

From this table, we can see that the 3CAW has largest log(L) value and smallest K-S
and AIC values. The AMW model performs similarly to the 3CAW and even has smaller
BIC and AICc value. This is because it has one less parameter than the 3CAW. However, its
model form has a more complicated structure than the 3CAW.

We also provide a visual comparison by plotting the estimated reliability and failure
rate functions of the 3CAW, GAW, AMW, NMW, and AddW along with the empirical
estimates of reliability and failure rate functions in Figure 3. Once again this figure supports
our conclusion that the 3CAW distribution provides the best fit for this dataset because the
estimated reliability and failure rate functions of the 3CAW are closer to the corresponding
empirical curves. In Figure 3b, the step function is a non-parametric estimation of the
failure rate function performed by dividing the time domain into bins of equal width, and
then estimating the failure rate in each bin as the number of events in that bin divided by
the number of items at risk. This estimate is completed by using the “pehaz” function in
the “muhaz” R package [36].
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Figure 3. The estimated (a) reliability and (b) failure rate functions of 3CAW, GAW, AMW, NMW,
and AddW for fitting to Aarset data.

Table 6 provides the MLEs of the parameters and their corresponding CIs for fitting
3CAW to Aarset data. The estimates of the shape parameters show that the first Weibull
component has a decreasing failure rate which models the decreasing part of the bathtub
curve; the second component has an increasing failure rate with slight change which models
the middle part of the bathtub curve; the third component has an increasing failure rate
with sharped change which models the sharped wear out of the bathtub curve. The 90%
and 95% confidence intervals also support these claims. Table 7 provides the MLEs of the
reliability and failure functions and their corresponding 95% confidence intervals at each
given failure time. Figure 4 displays the results in Table 7 visually.
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Table 6. MLEs and confidence intervals for the parameters of the 3CAW for fitting to Aarset data.

Parameter MLE 90% CI 95% CI

α (shape) 0.49874 [0.34723, 0.71637] [0.32396, 0.76783]
β (shape) 4.06058 [1.82322, 9.04351] [1.56394, 10.5428]
γ (shape) 97.8870 [59.1332, 162.039] [53.6904, 178.465]
θ (scale) 0.00748 [0.00271, 0.02064] [0.00223, 0.02507]
λ (scale) 0.01088 [0.00911, 0.01300] [0.00880, 0.01345]
η (scale) 0.01175 [0.01168, 0.01182] [0.01166, 0.01184]

Table 7. MLEs and 95% confidence intervals for the estimated reliability and failure rate functions of
the 3CAW for fitting to Aarset data.

x R̂(x) 95% CI for R̂(x) ĥ(x) 95% CI for ĥ(x)

0.1 0.97278 [0.93988, 1.00683] 0.13765 [0.05822, 0.32544]
0.2 0.96175 [0.92103, 1.00428] 0.09725 [0.04646, 0.20356]
1 0.91666 [0.85448, 0.98335] 0.04340 [0.02593, 0.07264]
2 0.88430 [0.81239, 0.96257] 0.03066 [0.01922, 0.04893]
3 0.86026 [0.78273, 0.94547] 0.02502 [0.01580, 0.03963]
6 0.80840 [0.72113, 0.90624] 0.01769 [0.01092, 0.02866]
7 0.79477 [0.70518, 0.89574] 0.01638 [0.01001, 0.02680]
11 0.74981 [0.65271, 0.86136] 0.01311 [0.00778, 0.02211]
12 0.74025 [0.64155, 0.85414] 0.01258 [0.00743, 0.02130]
18 0.69129 [0.58457, 0.81749] 0.01049 [0.00618, 0.01782]
21 0.67049 [0.56071, 0.80176] 0.00992 [0.00589, 0.01669]
32 0.60416 [0.48815, 0.74775] 0.00939 [0.00549, 0.01606]
36 0.58157 [0.46482, 0.72765] 0.00971 [0.00549, 0.01716]
40 0.55882 [0.44180, 0.70683] 0.01029 [0.00566, 0.01872]
45 0.52941 [0.41247, 0.67949] 0.01140 [0.00621, 0.02096]
46 0.52333 [0.40646, 0.67381] 0.01168 [0.00637, 0.02141]
47 0.51718 [0.40039, 0.66805] 0.01197 [0.00655, 0.02187]
50 0.49822 [0.38178, 0.65017] 0.01296 [0.00722, 0.02327]
55 0.46467 [0.34944, 0.61791] 0.01500 [0.00871, 0.02583]
60 0.42845 [0.31564, 0.58159] 0.01755 [0.01047, 0.02942]
63 0.40541 [0.29477, 0.55757] 0.01935 [0.01146, 0.03264]
67 0.37323 [0.26626, 0.52319] 0.02206 [0.01250, 0.03895]
72 0.33105 [0.22912, 0.47834] 0.02601 [0.01319, 0.05131]
75 0.30499 [0.20566, 0.45230] 0.02870 [0.01333, 0.06177]
79 0.26963 [0.17264, 0.42111] 0.03350 [0.01437, 0.07810]
82 0.23714 [0.14461, 0.38889] 0.06727 [0.02709, 0.16702]
83 0.21538 [0.12866, 0.36056] 0.13852 [0.05370, 0.35734]
84 0.17123 [0.09605, 0.30525] 0.36197 [0.17828, 0.73493]
85 0.08976 [0.04106, 0.19623] 1.05836 [0.56081, 1.99736]
86 0.01296 [0.00176, 0.09529] 3.20497 [1.11010, 9.25304]
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Figure 4. The 95% confidence interval for the estimated (a) reliability and (b) failure rate functions
(red lines) of 3CAW for fitting to Aarset data. The blue line is the nonparametric estimate of the
reliability function.

6.2. Meeker and Escobar Data

Data in Table 8 represent failure and running times of 30 devices (in thousands of
cycles) ([33], p. 383). Two failure modes were observed for this dataset. These data are
shown also to have a bathtub-shaped failure rate as indicated by the scaled TTT-transform
plot given in Figure 5.

Table 8. Failure and running times of a sample of n = 30 devices (in thousands of cycles) [33].

2 10 13 23 23 28 30 65 80 88
106 143 147 173 181 212 245 247 261 266
275 293 300 300 300 300 300 300 300 300
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Figure 5. (a) Types of failure rate identify by shapes of the TTT-plot and (b) the empirical TTT-plot
(blue) for Meeker and Escobar data, where u and G(u) are explained in Figure 2.

We provide the MLEs of the parameters of the given distributions in Table 9, and the
numeric comparison between the given distributions, for fitting to Meeker and Escobar
data, in Table 10. Figure 6 displays the visual comparison of the mention distributions
by plotting the estimated reliability and failure rate functions. From these results, we see
that the 3CAW provides a good fit to Meeker and Escobar data. Again, we can see that
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AMW performs similar to 3CAW. Even though it has a smaller log(L) value and a larger
K-S value, its other values are still slightly less than that of 3CAW.

Table 9. The MLEs of parameters for Meeker and Escobar data.

Models α̂ β̂ γ̂ θ̂ λ̂ η̂

3CAW 0.55141 4.07734 133.13084 0.00178 0.00287 0.00333
GAW 4.72286× 10−8 3.06873 3.48132 0.05456 120.502 -
AMW 0.0142 116.9665 0.0019 0.6788 0.3902 -
NMW 0.024 5.991× 10−8 0.012 0.629 0.056 -
AddW 0.84960 41.25756 - 0.00368 0.00335 -

Table 10. Log-likelihood, K-S statistic, AIC, BIC, and AICc for Meeker and Escobar data.

Model log(L) K-S
(p-Value) AIC BIC AICc

3CAW −154.67 0.147 (0.533) 321.33 329.74 324.98
GAW −175.93 0.146 (0.545) 361.86 368.86 364.36
AMW −155.58 0.167 (0.374) 321.16 328.17 323.66
NMW −166.18 0.149 (0.522) 342.36 349.37 344.86
AddW −162.58 0.168 (0.365) 333.17 340.82 334.05
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Figure 6. The estimated (a) reliability and (b) failure rate functions of 3CAW, GAW, AMW, NMW,
and AddW for fitting to Meeker and Escobar data.

Table 11 provides the MLEs of the parameters and their corresponding CIs for fitting
3CAW to Meeker and Escobar data. We also calculate the MLEs of the reliability and failure
functions and their corresponding 95% confidence intervals at each given failure time in
Table 12. The results in Table 12 are displayed visually in Figure 7.

Table 11. MLEs and confidence intervals for the parameters of the 3CAW for fitting to Meeker and
Escobar data.

Parameter MLE 90% CI 95% CI

α (shape) 0.55141 [0.31596, 0.96231] [0.28399, 1.07064]
β (shape) 4.07734 [0.81092, 20.5010] [0.59513, 27.9348]
γ (shape) 133.130 [71.4311, 248.122] [63.4005, 279.553]
θ (scale) 0.00178 [0.00036, 0.00888] [0.00026, 0.01208]
λ (scale) 0.00287 [0.00221, 0.00372] [0.00211, 0.00391]
η (scale) 0.00333 [0.00331, 0.00335] [0.00331, 0.00335]
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Table 12. MLEs and 95% confidence intervals for the estimated reliability and failure rate functions
of the 3CAW for fitting to Meeker and Escobar data.

x R̂(x) 95% CI for R̂(x) ĥ(x) 95% CI for ĥ(x)

2 0.95633 [0.89780, 1.01868] 0.01231 [0.00507, 0.02989]
10 0.89722 [0.81043, 0.99329] 0.00598 [0.00306, 0.01167]
13 0.88219 [0.79072, 0.98425] 0.00532 [0.00271, 0.01045]
23 0.84223 [0.73971, 0.95897] 0.00412 [0.00199, 0.00854]
28 0.82581 [0.71885, 0.94870] 0.00377 [0.00177, 0.00803]
30 0.81970 [0.71105, 0.94495] 0.00366 [0.00170, 0.00786]
65 0.73675 [0.60423, 0.89832] 0.00265 [0.00122, 0.00573]
80 0.70903 [0.56979, 0.88229] 0.00248 [0.00122, 0.00506]
88 0.69527 [0.55344, 0.87345] 0.00242 [0.00122, 0.00481]

106 0.66598 [0.52075, 0.85171] 0.00237 [0.00120, 0.00470]
143 0.60852 [0.46353, 0.79885] 0.00257 [0.00102, 0.00645]
147 0.60224 [0.45748, 0.79281] 0.00261 [0.00102, 0.00672]
173 0.55996 [0.41565, 0.75437] 0.00302 [0.00110, 0.00829]
181 0.54623 [0.40157, 0.74299] 0.00319 [0.00118, 0.00860]
212 0.48863 [0.34233, 0.69744] 0.00406 [0.00181, 0.00910]
245 0.41867 [0.27729, 0.63213] 0.00538 [0.00259, 0.01120]
247 0.41414 [0.27341, 0.62733] 0.00548 [0.00260, 0.01153]
261 0.38169 [0.24618, 0.59180] 0.00619 [0.00257, 0.01494]
266 0.36980 [0.23628, 0.57877] 0.00647 [0.00251, 0.01672]
275 0.34805 [0.21784, 0.55609] 0.00700 [0.00235, 0.02085]
293 0.29242 [0.16971, 0.50387] 0.02534 [0.00796, 0.08069]
300 0.11930 [0.04987, 0.28540] 0.39711 [0.12714, 1.24030]
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Figure 7. The 95% confidence interval for the estimated (a) reliability and (b) failure rate functions
(red lines) of the 3CAW for fitting to Meeker and Escobar data. The blue line is the nonparametric
estimate of the reliability function.

7. Conclusions

In this study, we have introduced the 3CAW distribution by combining three Weibull
distributions. The properties of the model have been studied. The MLE method has been
exploited for estimating the parameters and the reliability characteristics of the 3CAW,
and the uncertainties of the estimates have been obtained by using asymptotic confidence
intervals. The cross-entropy method has been deployed to optimize the log-likelihood
function. Two sets of failure data have been used for testing the superiority of the 3CAW.
It is interesting to see a Bayesian analysis of this six-parameter distribution by using
Hamiltonian Monte Carlo simulation method, and to see more applications of the 3CAW to
real datasets arising from practice.
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Appendix A. Proof of Theorem 1

Let θ1 = (α1, β1, γ1, θ1, λ1, η1) where 0 < α1 < β1 < γ1 and θ1, λ1, η1 > 0, and
θ2 = (α2, β2, γ2, θ2, λ2, η2) where 0 < α2 < β2 < γ2 and θ2, λ2, η2 > 0. To prove the model
is identifiable, we show that: If Fθ1(x) = Fθ2(x) for all x ∈ R+, then θ1 = θ2. It means the
mapping θ 7→ Fθ is one-to-one.

Indeed, for every x ∈ R+, we have Fθ1(x) = Fθ2(x), so:

e−(θ1x)α1−(λ1x)β1−(η1x)γ1 = e−(θ2x)α2−(λ2x)β2−(η2x)γ2 . (A1)

Taking logarithm both side of (A1), we obtain:

(θ1x)α1 + (λ1x)β1 + (η1x)γ1 = (θ2x)α2 + (λ2x)β2 + (η2x)γ2 . (A2)

If α1 6= α2, i.e., α1 < α2 or α1 > α2, without lost of generality we assume that α1 < α2,
then dividing both side of (A2) by xα1 gives:

θα1
1 + λ

β1
1 xβ1−α1 + η

γ1
1 xγ1−α1 = θα2

2 xα2−α1 + λ
β2
2 xβ2−α1 + η

γ2
2 xγ2−α1 .

Letting x → 0, we have θα1
1 = 0, which is a contradiction since θ1, α1 > 0. Therefore,

α1 = α2. Now we have:

θα1
1 + λ

β1
1 xβ1−α1 + η

γ1
1 xγ1−α1 = θα1

2 + λ
β2
2 xβ2−α1 + η

γ2
2 xγ2−α1 .

Letting x → 0, we obtain θα1
1 = θα1

2 , and hence θ1 = θ2. Then (A2) reduces to:

(λ1x)β1 + (η1x)γ1 = (λ2x)β2 + (η2x)γ2 .

Using the same reasoning as above, we finally obtain θ1 = θ2.

Appendix B. The log-Likelihood Function and Its First-Order Partial Derivatives

We rewrite the log-likelihood in a compact form:

l =
n

∑
i=1

(log h(xi; θ)− H(xi; θ)),

where h(xi; θ) is the failure rate function and H(xi; θ) is the cumulative failure rate function.
Then its first-order partial derivatives can be derived as follows:

∂l
∂θk

=
n

∑
i=1

(
hθk (xi; θ)

h(xi; θ)
− Hθk (xi; θ)

)
, k = 1, 6,
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where:

h(xi; θ) = αθ(θxi)
α−1 + βλ(λxi)

β−1 + γη(ηxi)
γ−1,

hα(xi; θ) = θ(θxi)
α−1(1 + α log(θxi)),

hβ(xi; θ) = λ(λxi)
β−1(1 + β log(λxi)),

hγ(xi; θ) = η(ηxi)
γ−1(1 + γ log(ηxi)),

hθ(xi; θ) = α2(θxi)
α−1,

hλ(xi; θ) = β2(λxi)
β−1,

hη(xi; θ) = γ2(ηxi)
γ−1,

H(xi; θ) = (θxi)
α + (λxi)

β + (ηxi)
γ,

Hα(xi; θ) = (θxi)
α log(θxi),

Hβ(xi; θ) = (λxi)
β log(λxi),

Hγ(xi; θ) = (ηxi)
γ log(ηxi),

Hθ(xi; θ) = αxi(θxi)
α−1,

Hλ(xi; θ) = βxi(λxi)
β−1,

Hη(xi; θ) = γxi(ηxi)
γ−1.

Appendix C. The log-Likelihood Function and Its Second-Order Partial Derivatives

The second-order partial derivatives of the log-likelihood function are given as:

∂2l
∂θk∂θl

=
n

∑
i=1

(
hθkθl (xi; θ)h(xi; θ)− hθk (xi; θ)hθl (xi; θ)

h2(xi; θ)
− Hθkθl (xi; θ)

)
, k = 1, 6, l = k, 6,

where

hαα(xi; θ) = θ(θxi)
α−1 log(θxi)(2 + α log(θxi)),

hαθ(xi; θ) = α(θxi)
α−1(2 + α log(θxi)),

hθθ(xi; θ) = α2(α− 1)xi(θxi)
α−2,

hββ(xi; θ) = λ(λxi)
β−1 log(λxi)(2 + β log(λxi)),

hβλ(xi; θ) = β(λxi)
β−1(2 + β log(λxi)),

hλλ(xi; θ) = β2(β− 1)xi(λxi)
β−2,

hγγ(xi; θ) = η(ηxi)
γ−1 log(ηxi)(2 + γ log(ηxi)),

hγη(xi; θ) = γ(ηxi)
γ−1(2 + γ log(ηxi)),

hηη(xi; θ) = γ2(γ− 1)xi(ηxi)
γ−2,

hαβ(xi; θ) = hαγ(xi; θ) = hαλ(xi; θ) = 0,

hαη(xi; θ) = hβγ(xi; θ) = hβθ(xi; θ) = 0,

hβη(xi; θ) = hγθ(xi; θ) = hγλ(xi; θ) = 0,

hθλ(xi; θ) = hθη(xi; θ) = hλη(xi; θ) = 0,

Hαα(xi; θ) = (θxi)
α log2(θxi),

Hαθ(xi; θ) = xi(θxi)
α−1(1 + α log(θxi)),

Hθθ(xi; θ) = α(α− 1)x2
i (θxi)

α−2,

Hββ(xi; θ) = (λxi)
β log2(λxi),

Hβλ(xi; θ) = xi(λxi)
β−1(1 + β log(λxi)),
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Hλλ(xi; θ) = β(β− 1)x2
i (λxi)

β−2,

Hγγ(xi; θ) = (ηxi)
γ log2(ηxi),

Hγη(xi; θ) = xi(ηxi)
γ−1(1 + γ log(ηxi)),

Hηη(xi; θ) = γ(γ− 1)x2
i (ηxi)

γ−2,

Hαβ(xi; θ) = Hαγ(xi; θ) = Hαλ(xi; θ) = 0,

Hαη(xi; θ) = Hβγ(xi; θ) = Hβθ(xi; θ) = 0,

Hβη(xi; θ) = Hγθ(xi; θ) = Hγλ(xi; θ) = 0,

Hθλ(xi; θ) = Hθη(xi; θ) = Hλη(xi; θ) = 0.

Appendix D. First-Order Partial Derivatives of the Reliability Function

Given the reliability function,

R(x; θ) = exp
[
−(θx)α − (λx)β − (ηx)γ

]
,

its first-order partial derivatives with respect to the parameters α, β, γ, θ, λ, and η are,
respectively, given by:

Rα(x; θ) = −(θx)α log(θx)R(x; θ),

Rβ(x; θ) = −(λx)β log(λx)R(x; θ),

Rγ(x; θ) = −(ηx)γ log(ηxi)R(x; θ),

Rθ(x; θ) = −αx(θx)α−1R(x; θ),

Rλ(x; θ) = −βx(λx)β−1R(x; θ),

Rη(x; θ) = −γx(ηx)γ−1R(x; θ).

Appendix E. Cross-Entropy (CE) Algorithm for Continuous Optimization

In our previous study [37], we have described the CE algorithm in a generic case on
how it works. Here, we focus more on the specific case of this study. The objective is to
find θ̂ML that maximizes l(θ),

θ̂ML = arg max
θ∈Θ

l(θ), (A3)

where l(θ) is the log-likelihood function, and Θ = {(α, β, γ, θ, λ, η)T : θ, λ, η > 0 and 0 <
α < β < γ}. For this continuous optimization, let N6(µ, σ2) denotes the 6-dimensional nor-
mal distribution with independent components, mean vector µ = (µ1, . . . , µ6) and variance
vector σ2 = (σ2

1 , . . . , σ2
6 ). Then, the CE algorithm is proceeded as follows (Algorithm A1):
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Algorithm A1 CE algorithm

1: Choose µ̂0 and σ̂0. Set t := 0.
2: while maxj{σ̃tj} ≥ ε do
3: t = t + 1.
4: Generate θ1, . . . , θN from the N6(µ̂t−1, σ̂2

t−1) distribution.
5: Calculate the performances l(θk) for all k and order them from smallest to largest,

l(1) ≤ . . . ≤ l(N).
6: Find the sample (1− $)-quantile γ̂t = l(d(1−$)Ne), where 10−2 ≤ $ ≤ 10−1.
7: Let Et = {θk : l(θk) ≥ γ̂t} be best performing (=elite) samples.
8: for j = 1, . . . , 6 do

9: µ̃tj :=
∑θk∈Et θij

|Et | ,

10: σ̃tj :=

√
∑θk∈Et (θij−µ̃tj)2

|Et | .

11: end for
12: µ̂t := αµ̃t + (1− α)µ̂t−1,
13: σ̂t := βtσ̃t + (1− βt)σ̂t−1, where 0.5 ≤ α ≤ 0.9, βt = β− β(1− 1

t )
q, q is an integer

(typically between 5 and 10) and β is a smoothing constant (typically between 0.8 and
0.99).

14: end while

While applying the CE algorithm, the mean vector µ̂t should converge to θ̂ML and
the standard deviation vector σ̂t should converge to zero vector. We refer to [38] for more
details about the method. To solve (A3) with constraints on the parameters, we can apply
the acceptance-rejection (AR) approach. The AR method works as follows: Generate a
random vector θ from a normal distribution, then accept or reject it depending on whether
the sample falls or not in the constrained parameter space [39].

Appendix F. R Code for the Cross-Entropy Method

We provide R code for the cross-entropy method by using the “CEoptim” package [40].
Here, we show the R code for the Aarset data analyzed in Section 6.1. Since the log-
likelihood function is highly multi-model and CE method is a stochastic search algorithm,
we might need to run the CEoptim function several times in order to obtain the best result.

• Install and invoke the CEoptim package

install.packages("CEoptim")
library(CEoptim)

• Input the Aarset data into R

Aarsetdata <- c(
136, 246, 255, 376, 421, 565, 616, 617, 652, 655,
658, 660, 662, 675, 681, 734, 736, 737, 757, 769,
777, 800, 807, 825, 855, 857, 864, 868, 870, 870,
873, 882, 895, 910, 934, 943, 1015, 1019
)

• Define the log-likelihood function

LogLikelihood <- function(x,t) {
sum(log(x[1]*x[4]*(t*x[4])^(x[1]-1) + x[2]*x[5]*(t*x[5])^(x[2]-1) +
x[3]*x[6]*(t*x[6])^(x[3]-1))-((t*x[4])^x[1] + (t*x[5])^x[2]
+ (t*x[6])^x[3]))
}

• Choose initial values for mean and standard deviation
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mu0 <- c(0,5,90,0,0,0)
sigma0 <- c(1,10,10,1,1,1)

• Restrict the parameter space

A=matrix(c(-1,1,0,0,0,0, 0,-1,1,0,0,0, 0,0,-1,0,0,0,
0,0,0,-1,0,0, 0,0,0,0,-1,0, 0,0,0,0,0,-1), nrow = 6)
B=c(0,0,0,0,0,0)

• Execute the CEoptim function

opt <- CEoptim(
LogLikelihood, f.arg = list(t=Aarsetdata), maximize = T,
continuous = list(mean=mu0,sd=sigma0, conMat=A, conVec=B,
smoothMean=0.7, smoothSd=0.7, sdThr=0.00001), rho = 0.01, N=1000
)

• The optimum, optimizer (MLE), and AIC values are respectively given by

opt$optimum
opt$optimizer$continuous
AIC <- -2*opt$optimum+2*6
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