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Abstract: Over the years, researches have shown that fixed (constant) step-size methods have been
efficient in integrating a stiff differential system. It has however been observed that for some stiff
differential systems, non-fixed (variable) step-size methods are required for efficiency and for accuracy
to be attained. This is because such systems have solution components that decay rapidly and/or
slowly than others over a given integration interval. In order to curb this challenge, there is a
need to propose a method that can vary the step size within a defined integration interval. This
challenge motivated the development of Non-Fixed Step-Size Algorithm (NFSSA) using the Lagrange
interpolation polynomial as a basis function via integration at selected limits. The NFSSA is capable
of integrating highly stiff differential systems in both small and large intervals and is also efficient in
terms of economy of computer time. The validation of properties of the proposed algorithm which
include order, consistence, zero-stability, convergence, and region of absolute stability were further
carried out. The algorithm was then applied to solve some samples mildly and highly stiff differential
systems and the results generated were compared with those of some existing methods in terms of
the total number of steps taken, number of function evaluation, number of failure/rejected steps,
maximum errors, absolute errors, approximate solutions and execution time. The results obtained
clearly showed that the NFSSA performed better than the existing ones with which we compared our
results including the inbuilt MATLAB stiff solver, ode 15s. The results were also computationally
reliable over long intervals and accurate on the abscissae points which they step on.

Keywords: algorithm; first-order; non-fixed step-size; numerical integration; stiff differential systems

1. Introduction

According to the authors in [1], a fixed step-size numerical integrator performs poorly
if the solution (to the problem under consideration) varies rapidly at some points in the
integration interval and slowly at other points of the integration interval. This major
challenge motivated the conception of the idea of using non-fixed step-size strategy to
propose an algorithm for the numerical integration of stiff differential systems of the form,

y′(x) = f (x, y(x))
y(x0) = y0

}
(1)

where x ∈ [a, b] ⊂ <, f : <×<2m → <m ; y(x), y0 ∈ <m, m being the dimension of the
differential system and the Jacobian

(
∂ f
∂y

)
with the negative real parts of its eigenvalues

varies slowly. The functions y(x) and f (x, y(x)) are assumed to satisfy the existence and
uniqueness theorem stated in Theorem 1.
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Theorem 1. [2] “Let

y(n)(x) = f
(

x, y(x), y′(x), . . . , y(n−1)(x)
)

, y(k)(x0) = ck (2)

where k = 0, 1, . . . , (n− 1) and let < be the region defined by the inequalities x0 ≤ x ≤ x0 + a,∣∣sj − cj
∣∣ ≤ b, j = 0, 1, . . . , (n− 1), a > 0 and b > 0. Suppose the function f (x, s0, s1, . . . , sn−1)

is defined in < and in addition,

i f is non-negative and non-decreasing in each x, s0, s1, . . . , sn−1 in <,
ii f (x, c0, c1, . . . , cn−1) > 0 for x0 ≤ x ≤ x0 + a, and
iii ck ≥ 0, k = 0, 1, . . . , n− 1.

Then the initial value problem (2) has a unique solution in <”.

For the Proof of Theorem 1, see [2].
Stiff differential systems of the Form (1) are special problems that arise most often in

different areas of science and engineering. These systems find applications in chemical
kinetics, mechanics, lasers, control systems, molecular dynamics, biological models and
electronic circuits [3,4]. Stiffness does not have a unique definition; some definitions of
stiffness are found in [5–8]. In study [5], a chemist was the first to identify stiff systems. The
author stated that implicit methods perform better than explicit methods on stiff differential
systems. In fact, the explicit methods do not work on some stiff systems. Suffice to say
that the proposed NFSSA will be implicit in nature. It is also hoped that the proposed
NFSSA will efficiently integrate highly stiff differential systems of the Form (1) over large
intervals. One of the ways to integrate a stiff differential system efficiently and accurately
is by developing the implicit block method. Block methods have been known to have
the capability of generating multiple solutions simultaneously in a single integration.
Moreover, block methods require a fewer number of function evaluations per step and also
reduce computational time. The proposed NFSSA (which is a modification of the block
method) will be implemented in a hybrid mode, with the insertion of two off-grid points at
selected points.

Different methods have been proposed by authors for the numerical integration of
mildly stiff differential systems of the Form (1). These methods include direct methods, vari-
ation methods, nonstandard finite difference methods, Adomian decomposition methods,
linear multistep methods, Second Derivative Methods (SDMs), Block Backward Differentia-
tion Formulas (BBDFs), among others. These methods are mostly derived using the fixed
(constant) step-size strategy [9–16]. Highly stiff large systems were also integrated numeri-
cally using different methods [17–22]. On the other hand, the authors in [23–38] formulated
different methods using the non-fixed (variable) step-size strategy for the solution of stiff
differential systems. These methods have shown to be more efficient and accurate than the
fixed step-size methods. For instance, study [1] proposed a variable step-size block method
for the solution of stiff systems. The A-stable method which is of order 6 is in the form of
Simpson’s type block variable step-size method. The method simultaneously generated
results of the stiff system at defined grid points. The authors in [33] further formulated
a variable step hybrid block method (via the block backward differentiation approach)
for solving stiff chemical kinetics problems. The authors used the step-size ratios r = 1,
r = 2 and r = 10/19. They further analysed the properties of the method. The method
formulated was found to be computationally reliable on chemical kinetics problems.

The literature reviewed above motivated this study, which has to do with the develop-
ment of an NFSSA for the numerical integration of stiff differential systems of the Form (1).
It is hoped that the new algorithm will be computationally reliable over long intervals and
accurate on the abscissae points they step on.

This paper is organized as follows: Section 2 clearly explains the derivation of the
NFSSA. In Section 3, the properties of the newly derived NFSSA are validated. The pseu-
docode and step-size selection for the NFSSA are presented in Section 4 while numerical
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examples are given in Section 5. Section 6 highlights the results and discussion. Finally, the
conclusions are drawn in Section 7.

2. Derivation of the NFSSA

In this section, the derivation of the proposed NFSSA is discussed in detail. For clarity,
Figure 1 shows the points xn−2, xn−1 and xn (each having the step-size rh) as starting values
and the off-step points xn+1/2 and xn+3/2 (each having half step-size h/2). Note that r is the
step-size ratio. The predictor formulae will involve the set of points (xn−2, xn−1, xn) while the
corrector formulae will involve the set of points (xn−2, xn−1, xn, xn+1/2, xn+1, xn+3/2, xn+2).
In order to optimize the total number of steps, ensure zero-stability and minimize the number
of formulae stored in the code, the step-size ratio r is maintained (r = 1), halved (r = 2) or
doubled (r = 1/2). This approach is sometimes called the Milne device [39]. This strategy
was first suggested by [40,41].
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Consider the k-step Linear Multistep Method (LMM) defined as,

k

∑
j=1

αjyn+j = hµ
k

∑
j=1

β j fn+j (3)

where α′js and β′js are real constant coefficients and µ is the order of the differential equation.
Equation (3) is explicit if βk = 0 and implicit if βk 6= 0. The proposed NFSSA shall consist
of LMMs (at the grid points xn+1/2, xn+1, xn+3/2 and xn+2) which will be implemented in
a block form. To derive the NFSSA at the points xn+r, r = 1

2 , 1, 3
2 and 2, Equation (1) is

integrated in the interval (xn, xn+r),

xn+r∫
xn

y′(x)dx =

xn+r∫
xn

f (x, y(x))dx (4)

The Lagrange polynomial Pq(x) is used in approximating the function f (x, y(x)) in
Equation (1). That is,

Pq(x) =
k

∑
j=0

Lq,j(x) f (xn+2−j) (5)

where

Lq,j(x) =
k−1

∏
i = 0
i 6= j

x− xn+2−i
xn+2−j − xn+2−i

, j = 0,
1
2

, 1, 2, . . . , k

The corrector formulae for yn+1/2, yn+1, yn+3/2 and yn+2 are obtained using the
Lagrange interpolation polynomial,
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P2(x) =
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+3/2)
(xn+2−xn−2)(xn+2−xn−1)(xn+2−xn)(xn−xn+1/2)(xn+2−xn+1)(xn+2−xn+3/2)

]
f (xn+2)

+
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+2)
(xn+3/2−xn−2)(xn+3/2−xn−1)(xn+3/2−xn)(xn+3/2−xn+1/2)(xn+3/2−xn+1)(xn+3/2−xn+2)

]
f (xn+3/2)

+
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+1/2)(x−xn+3/2)(x−xn+2)
(xn+1−xn−2)(xn+1−xn−1)(xn+1−xn)(xn+1−xn+1/2)(xn+1−xn+3/2)(xn+1−xn+2)

]
f (xn+1)

+
[

(x−xn−2)(x−xn−1)(x−xn)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn+1/2−xn−2)(xn+1/2−xn−1)(xn+1/2−xn)(xn+1/2−xn+1)(xn+1/2−xn+3/2)(xn+1/2−xn+2)

]
f (xn+1/2)

+
[

(x−xn−2)(x−xn−1)(x−xn+1/2)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn−xn−2)(xn−xn−1)(xn−xn+1/2)(xn−xn+1)(xn−xn+3/2)(xn−xn+2)

]
f (xn)

+
[

(x−xn−2)(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn−1−xn−2)(xn−1−xn)(xn−1−xn+1/2)(xn−1−xn+1)(xn−1−xn+3/2)(xn−1−xn+2)

]
f (xn−1)

+
[

(x−xn−1)(x−xn)(x−xn+1/2)(x−xn+1)(x−xn+3/2)(x−xn+2)
(xn−2−xn−1)(xn−2−xn)(xn−2−xn+1/2)(xn−2−xn+1)(xn−2−xn+3/2)(xn−2−xn+2)

]
f (xn−2)

(6)

at the interpolation points (xn−2, yn−2), (xn−1, yn−1), (xn, yn),(xn+1/2, yn+1/2), (xn+1, yn+1),
(xn+3/2, yn+3/2) and (xn+2, yn+2).

The corrector NFSSA at yn+1/2, yn+1, yn+3/2 and yn+2 are derived by integrating
Equation (1) with respect to s, s = (x− xn+2)/h, replacing dx by hds and taking the limits
of integration at (−2, −3/2), (−2, −1), (−2, −1/2) and (−2, 0), respectively. This gives,

yn+ 1
2
= yn +

[(
h

5376r2

)(
189r+41

32r4+80r3+70r2+25r+3

)]
fn−2 −

[(
h

1344r2

)(
378r+41

4r4+20r3+35r2+25r+6

)]
fn−1

+
[(

h
80,640r2

)(
14, 056r2 + 2835r + 205

)]
fn +

[(
h

2520

)(
9044r2+3948r+453

8r2+6r+1

)]
fn+ 1

2

−
[(

h
6720

)(
2464r2+861r+82

2r2+3r+1

)]
fn+1 +

[(
h

2520

)(
1484r2+504r+47

8r2+18r+9

)]
fn+ 3

2
−
[(

h
80,640

)(
1064r2+357r+33

r2+3r+2

)]
fn+2

(7)

yn+1 = yn +
[(

h
336r2

)(
7r−1

32r4+80r3+70r2+25r+3

)]
fn−2 −

[(
h

84r2

)(
14r−1

4r4+20r3+35r2+25r+6

)]
fn−1

+
[(

h
5040r2

)(
812r2 + 105r− 5

)]
fn +

[(
4h
315

)(
434r2+273r+48

8r2+6r+1

)]
fn+ 1

2

+
[(

h
420

)(
112r2+273r+86

2r2+3r+1

)]
fn+1 −

[(
4h
315

)(
−14r2+21r+8

8r2+18r+9

)]
fn+ 3

2
+
[(

h
5040

)(
−28r2+21r+9

r2+3r+2

)]
fn+2

(8)

yn+ 3
2
= yn +

[(
9h

1792r2

)(
7r+3

32r4+80r3+70r2+25r+3

)]
fn−2 −

[(
9h

448r2

)(
14r+3

4r4+20r3+35r2+25r+6

)]
fn−1

+
[(

9h
8960r2

)(
168r2 + 35r + 5

)]
fn +

[(
3h
280

)(
476r2+252r+27

8r2+6r+1

)]
fn+ 1

2

+
[(

9h
2240

)(
224r2+441r+162

2r2+3r+1

)]
fn+1 +

[(
3h
280

)(
196r2+336r+153

8r2+18r+9

)]
fn+ 3

2
−
[(

3h
8960

)(
56r2+63r+27

r2+3r+2

)]
fn+2

(9)

yn+2 = yn +
[(
−h

21r2

)(
1

32r4+80r3+70r2+25r+3

)]
fn−2 +

[(
4h

21r2

)(
1

4r4+20r3+35r2+25r+6

)]
fn−1

+
[(

h
315r2

)(
49r2 − 5

)]
fn +

[(
64h
315

)(
28r2+21r+6
8r2+6r+1

)]
fn+ 1

2

+
[(

4h
105

)(
14r2+21r+2
2r2+3r+1

)]
fn+1 +

[(
64h
315

)(
28r2+63r+34
8r2+18r+9

)]
fn+ 3

2
+
[(

h
315

)(
49r2+147r+93

r2+3r+2

)]
fn+2

(10)

Substituting r = 1, r = 2 and r = 1/2 into Equations (7)–(10) gives the NFSSA
displayed in Table 1.

The newly derived NFSSA shall be implemented in predictor-corrector mode. The
predictor formulae which were derived using the same procedure with that of the corrector
formulae are thus given as,

yn+ 1
2
= yn +

[(
h

48r2

)
(3r + 1)

]
fn−2 −

[(
h

24r2

)
(6r + 1)

]
fn−1 +

[(
h

48r2

)(
24r2 + 9r + 1

)]
fn (11)

yn+1 = yn +

[(
h

12r2

)
(3r + 2)

]
fn−2 −

[(
h

3r2

)
(3r + 1)

]
fn−1 +

[(
h

12r2

)(
12r2 + 9r + 2

)]
fn (12)

yn+ 3
2
= yn +

[(
3h

16r2

)(
8r2 + 9r + 3

)]
fn−2 −

[(
9h
8r2

)
(2r + 1)

]
fn−1 +

[(
9h

16r2

)
(r + 1)

]
fn (13)

yn+2 = yn +

[(
h

3r2

)
(3r + 4)

]
fn−2 −

[(
4h
3r2

)
(3r + 2)

]
fn−1 +

[(
h

3r2

)(
6r2 + 9r + 4

)]
fn (14)
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Substituting the step-size ratios r = 1, r = 2 and r = 1/2 into Equations (11)–(14) gives
the explicit formulae of the predictor NFSSA with the interpolation points (xn−2, fn−2),
(xn−1, fn−1) and (xn, fn) as presented in Table 2.

Table 1. Formulae of the NFSSA.

Step-Size
FormulaeRatio

r = 1

yn+ 1
2
= yn + h

(
23

112,896 fn−2 − 419
120,960 fn−1 +

2137
10,080 fn + 2689

7560 fn+ 1
2
− 3407

40,320 fn+1 +
407

17,640 fn+ 3
2
− 727

241,920 fn+2

)
yn+1 = yn + h

(
1

11,760 fn−2 − 13
7560 fn−1 +

19
105 fn + 604

945 fn+ 1
2
+ 157

840 fn+1 − 4
735 fn+ 3

2
+ 1

15,120 fn+2

)
yn+ 3

2
= yn + h

(
3

12,544 fn−2 − 17
4480 fn−1 +

117
560 fn + 151

280 fn+ 1
2
+ 2481

4480 fn+1 +
411
1960 fn+ 3

2
− 73

8960 fn+2

)
yn+2 = yn + h

(
− 1

4410 fn−2 +
2

945 fn−1 +
44
315 fn + 704

945 fn+ 1
2
+ 74

315 fn+1 +
320
441 fn+ 3

2
+ 289

1890 fn+2

)

r = 2

yn+ 1
2
= yn + h

(
419

31,933,440 fn−2 − 797
2,257,920 fn−1 +

62,099
322,560 fn + 1781

4536 fn+ 1
2
− 583

5040 fn+1 +
6991

194,040 fn+ 3
2
− 5003

967,680 fn+2

)
yn+1 = yn + h

(
13

1,995,840 fn−2 − 3
15,680 fn−1 +

1151
6720 fn + 1864

2835 fn+ 1
2
+ 6

35 fn+1 +
8

8085 fn+ 3
2
− 61

60,480 fn+2

)
yn+ 3

2
= yn + h

(
17

1,182,720 fn−2 − 93
250,880 fn−1 +

6723
35,840 fn + 487

840 fn+ 1
2
+ 291

560 fn+1 +
4827

21,560 fn+ 3
2
− 377

35,840 fn+2

)
yn+2 = yn + h

(
− 1

124,740 fn−2 +
1

8820 fn−1 +
191
1260 fn + 2048

2835 fn+ 1
2
+ 16

63 fn+1 +
17,408
24,255 fn+ 3

2
+ 583

3780 fn+2

)

r = 1
2

yn+ 1
2
= yn + h

(
271

120,960 fn−2 − 23
1008 fn−1 +

10,273
40,320 fn + 293

945 fn+ 1
2
− 2257

40,320 fn+1 +
67

5040 fn+ 3
2
− 191

120,960 fn+2

)
yn+1 = yn + h

(
1

1512 fn−2 − 1
105 fn−1 +

167
840 fn + 586

945 fn+ 1
2
+ 167

840 fn+1 − 1
105 fn+ 3

2
+ 1

1512 fn+2

)
yn+ 3

2
= yn + h

(
13

4480 fn−2 − 3
112 fn−1 +

1161
4480 fn + 17

35 fn+ 1
2
+ 2631

4480 fn+1 +
111
560 fn+ 3

2
− 29

4480 fn+2

)
yn+2 = yn + h

(
− 4

945 fn−2 +
8

315 fn−1 +
29
315 fn + 752

945 fn+ 1
2
+ 64

315 fn+1 +
323
315 fn+ 3

2
+ 143

945 fn+2

)

Table 2. Predictor formulae of the NFSSA.

Step-Size Ratio Predictor Formulae

r = 1

yp
n+ 1

2
= yn + h

12

(
fn−2 − 7

2 fn−1 +
17
2 fn

)
yp

n+1 = yn + h
3

(
5
4 fn−2 − 4 fn−1 +

23
4 fn

)
yp

n+ 3
2
= yn + h

4

(
9
2 fn−2 − 27

2 fn−1 + 15 fn

)
yp

n+2 = yn + h
3 (7 fn−2 − 20 fn−1 + 19 fn)

r = 2

yp
n+ 1

2
= yn + h

96

(
7
2 fn−2 − 13 fn−1 +

115
2 fn

)
yp

n+1 = yn + h
6

(
fn−2 − 7

2 fn−1 +
17
2 fn

)
yp

n+ 3
2
= yn + h

32

(
27
2 fn−2 − 45 fn−1 +

159
2 fn

)
yp

n+2 = yn + h
3

(
5
2 fn−2 − 8 fn−1 +

23
2 fn

)

r = 1
2

yp
n+ 1

2
= yn + h

3

(
5
8 fn−2 − 2 fn−1 +

23
8 fn

)
yp

n+1 = yn + h
3

(
7
2 fn−2 − 10 fn−1 +

19
2 fn

)
yp

n+ 3
2
= yn + h

8 (27 fn−2 − 72 fn−1 + 57 fn)

yp
n+2 = yn + h

3 (22 fn−2 − 56 fn−1 + 40 fn)

3. Validation of Properties of the NFSSA

The properties of the proposed NFSSA shall be validated in this section.
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3.1. Order and Error Constant

Definition 1. [42] “The LMM (3) and its associated difference operator L defined by

L{y(x); h} =
k

∑
j=0

[
αjy(x + jh)− hβ jy′(x + jh)

]
(15)

are said to be of order p if c0 = c1 = c2 = . . . = cp = 0, cp+1 6= 0”.

The term cp+1 6= 0 is the error constant of the method. The general form for the
constant cp is defined as,

c0 =
k
∑

j=0
αj

c1 =
k
∑

j=0

(
jαj − β j

)
.
.
.

cp =
k
∑

j=0

[
1
p! jpαj − 1

(p−1)! jp−1β j

]
, p = 2, 3, . . . , q + 1



(16)

Equation (16) is applied to the NFSSA at the step ratio r = 1. This produces

c0 = c1 = c2 = c3 = c4 = c5 = c6 = c7 =


0
0
0
0

 (17)

Thus, the NFSSA is of the seventh order with the error constant,

c8 =


1.8901× 10−5

5.3146× 10−5

2.6282× 10−5

−4.7241× 10−5

 (18)

The same approach applies to the NFSSA at r = 2 and r = 1/2.

3.2. Zero-Stability

Definition 2. [43] “If no root of the characteristic polynomial has a modulus greater than one and
every root with modulus one is simple, then such a method is called zero-stable”.

The zero-stability of a method controls the propagation of errors as the integration
progresses. It is determined by using the linear scalar test equation given by [40] as,

y′(x) = λy(x) (19)

where Re(λ) < 0, λ being a complex constant. Substituting Equation (19) into the NFSSA
at r = 1 gives,

yn+ 1
2
= yn + h

(
23

112,896 λyn−2 − 419
120,960 λyn−1 +

2137
10,080 λyn +

2689
7560 λyn+ 1

2
− 3407

40,320 λyn+1 +
407

17,640 λyn+ 3
2
− 727

241,920 λyn+2

)
yn+1 = yn + h

(
1

11,760 λyn−2 − 13
7560 λyn−1 +

19
105 λyn +

604
945 λyn+ 1

2
− 157

840 λyn+1 − 4
735 λyn+ 3

2
+ 1

15,120 λyn+2

)
yn+ 3

2
= yn + h

(
3

12,544 λyn−2 − 17
4480 λyn−1 +

117
560 λyn +

151
280 λyn+ 1

2
+ 2481

4480 λyn+1 +
411

1960 λyn+ 3
2
− 73

8960 λyn+2

)
yn+2 = yn + h

(
− 1

4410 λyn−2 +
2

945 λyn−1 +
44
315 λyn +

704
945 λyn+ 1

2
+ 74

315 λyn+1 +
320
441 λyn+ 3

2
+ 289

1890 λyn+2

)


(20)
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In matrix form, we rewrite Equation (20) as,


1− 2689

7560 hλ 3407
40,320 hλ −407

17,640 hλ 727
241,920 hλ

−604
945 hλ 1− 157

840 hλ 4
735 hλ −1

15,120 hλ
−151
280 hλ −2481

4480 hλ 1− 411
1960 hλ 73

8960 hλ
−704
945 hλ −74

315 hλ −320
441 hλ 1− 289

1890 hλ





yn+ 1
2

yn+1

yn+ 3
2

yn+2


=


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1




yn−3
yn−2
yn−1
yn



+h


0 23

112,896 λ −419
120,960 λ 2137

10,080 λ

0 1
11,760 λ −13

7560 λ 19
105 λ

0 3
12,544 λ −17

4480 λ 117
560 λ

0 −1
4410 λ 2

945 λ 44
315 λ





yn−3

yn−2

yn−1

yn



(21)

Equation (21) is of the form,

AYm = (B + Ch)Ym−1 (22)

where

A =


1− 2689

7560 hλ 3407
40,320 hλ −407

17,640 hλ 727
241,920 hλ

−604
945 hλ 1− 157

840 hλ 4
735 hλ −1

15,120 hλ
−151
280 hλ −2481

4480 hλ 1− 411
1960 hλ 73

8960 hλ
−704
945 hλ −74

315 hλ −320
441 hλ 1− 289

1890 hλ

, B =


0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1



C =


0 23

112,896 λ −419
120,960 λ 2137

10,080 λ

0 1
11,760 λ −13

7560 λ 19
105 λ

0 3
12,544 λ −17

4480 λ 117
560 λ

0 −1
4410 λ 2

945 λ 44
315 λ

, Ym =


yn+ 1

2
yn+1
yn+ 3

2
yn+2

 and Ym−1 =


yn−3
yn−2
yn−1

yn


The stability polynomial at r = 1 denoted by R1(t, H) is obtained by taking H = hλ;

this gives,

R1(t, H) = t4
(

44,017
7,056,000 H4 − 8963

129,600 H3 + 66,299
190,512 H2 − 47,903

52,920 H + 1
)
− t3

(
174,287

6,272,000 H4 + 449,129
3,175,200 H3 + 162,518

297,675 H2 + 307,417
282,240 H + 1

)
−t2

(
59,587

677,376,000 H4 + 368,287
406,425,600 H3 + 224,557

60,963,840 H2 + 4741
846,720 H

)
+ t
(

1
677,376,000 H4 + 1

58,060,800 H3 + 17
304,819,200 H2

) (23)

Additionally, at r = 2 and r = 1/2, the respective stability polynomials R2(t, H) and
R1/2(t, H) are,

R2(t, H) = t4
(

1,406,429
174,636,000 H4 − 8,503,673

104,781,600 H3 + 29,966,323
78,586,200 H2 − 822,697

873,180 H + 1
)

−t3
(

56,183,129
2,794,176,000 H4 + 1,729,701,877

13,412,044,800 H3 + 41,207,981
82,790,400 H2 + 236,352,769

223,534,080 H + 1
)

−t2
(

1,136,791
178,827,264,000 H4 + 1,061,777

15,328,051,200 H3 + 877,951
2,980,454,400 H2 + 104,959

223,534,080 H
)

+t
(

1
178,827,264,000 H4 + 1

15,328,051,200 H3 + 17
80,472,268,800 H2

) (24)

R1/2(t, H) = t4
(

9283
2,016,000 H4 − 205,591

3,628,800 H3 + 841,627
2,721,600 H2 − 12,979

15,120 H + 1
)

−t3
(

269,617
6,048,000 H4 + 515,707

3,628,800 H3 + 9409
14,400 H2 + 8273

7560 H + 1
)

−t2
(

5753
6,048,000 H4 + 6449

725,760 H3 + 3389
100,800 H2 + 143

3024 H
)

+t
(

1
6,048,000 H4 + 1

518,400 H3 + 17
2,721,600 H2

) (25)

The zero-stability of the NFSSA is computed by letting H = 0 into Equations (23)–(25),

R1(t, H) = R2(t, H) = R1/2(t, H) = t4 − t3 (26)



Symmetry 2022, 14, 1575 8 of 17

Table 3 presents the roots of the NFSSA.

Table 3. Roots of the NFSSA.

Step-Size Ratio Roots

r = 1 t1 = t2 = t3 = 0, t4 = 1

r = 2 t1 = t2 = t3 = 0, t4 = 1

r = 1/2 t1 = t2 = t3 = 0, t4 = 1

In Table 3, all the roots satisfy |t| ≤ 1. Therefore, the NFSSA is zero-stable, refer to
Definition 2.

3.3. Consistency

Definition 3. [42] “The LMM (3) is said to be consistent if it is of order p ≥ 1”.

Suffice to say that consistency controls the magnitude of the local truncation error
committed at each stage of the computation.

Therefore, the NFSSA is consistent because it is of order 7.

3.4. Convergence

Theorem 2. [43] “The necessary and sufficient conditions for the LMM (3) to be convergent are
that it is consistent and zero-stable.”

For the Proof of Theorem 2, see [41].
It is important to state that convergence also emphasizes how close the approximate

solution of a problem is to its exact solution. The NFSSA is thus convergent because it
satisfies the properties of consistence and zero-stability.

3.5. Regions of Absolute Stability

Definition 4. [44] “If the region of absolute stability of a method contains the whole left half-plane
Re(hλ) < 0, such a method is referred to as A-stable”.

Figure 2 shows the regions of absolute of the NFSSA.
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The region of absolute stability of the NFSSA at r = 1, r = 2 and r = 1/2 is the
interior of the red-, blue- and magenta-colored regions, respectively. This implies that
the region of absolute stability is largest when the step-size is halved (r = 2) followed by
when the step-size remains the same (r = 1). The smallest stability region occurs when the
step-size is doubled (r = 1/2). Table 4 shows the stability intervals of the NFSSA at the
three step-size ratios.

Table 4. Stability intervals of the NFSSA.

Step-Size Ratio Stability Interval

r = 1 (−9.6, 0)

r = 2 (−17.2, 0)

r = 1/2 (−5.0, 0)

Table 4 clearly shows that NFSSA at r = 2 has the largest stability interval, followed
by the NFSSA at r = 1. NFSSA at r = 1/2 has the smallest stability interval in relation to
the other two.

4. Pseudocode and Step-Size Selection for Implementation of the NFSSA
4.1. Pseudocode

To implement the newly derived NFSSA, the pseudocode for the method is briefly
explained in this subsection. Finding the initial points in the starting block is the first step in
the code. The value of r is taken as one in the starting block (see Figure 1). The Euler method
is used to determine the three additional points xn−2, xn−1 and xn. The starting block can be
applied after the points yn+1/2, yn+1, yn+3/2, yn+2 for the next block has been determined.
It is important to state here that each point in the predictor and the corrector formulae can
perform the computations simultaneously within the block because they are independent of
each other. Therefore, the values of yn+1/2, yn+1, yn+3/2, yn+2 are approximated using the
predictor-corrector formulae. Let s be the number of iterations needed, then the sequence
of computations at a mesh point is (PE)(CE)1(CE)2(CE)3 . . . (CE)s, where P and C are the
predictor and corrector formulae. The function evaluation f of the problem is denoted by
E. The starting/back values xn−2, xn−1 and xn are determined using the truncated Taylor
series method at j = 0, 1(otherwise called the Euler method).

Step 1: Set the following data input: initial conditions, tolerance level and step-size
Step 2: The approximate solution of the stiff system in Equation (1) is determined

using the newly derived NFSSA simultaneously at points xn+1/2, xn+1, xn+3/2 and xn+2
with the solution information available at the back (previous) values xn−2, xn−1 and xn.
The initial step-size is taken as h old = h initial .

Step 3: Initiate the Euler method algorithm yn =
1
∑

j=0

hjy(j)
n−1
j! = yn−1 + h f (xn−1, yn−1).

Step 4: Set the equations of the predictor

P : yp
n+1/2 =

2

∑
j=0

αn+j fn−j + αn+1/2 fn+1/2 + αn+3/2 fn+3/2

yp
n+1 =

2

∑
j=0

βn+j fn−j + βn+1/2 fn+1/2 + βn+3/2 fn+3/2

yp
n+3/2 =

2

∑
j=0

γn+j fn−j + γn+1/2 fn+1/2 + γn+3/2 fn+3/2

yp
n+2 =

2

∑
j=0

µn+j fn−j + µn+1/2 fn+1/2 + µn+3/2 fn+3/2
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E : f p
n+1/2 =

(
xn+1/2, yp

n+1/2

)
f p
n+1 =

(
xn+1, yp

n+1

)
f p
n+3/2 =

(
xn+3/2, yp

n+3/2

)
f p
n+2 =

(
xn+2, yp

n+2

)
Step 5: Set the equations of the corrector

C : yc
n+1/2 =

4

∑
j=0

ϕn+j fn+2−j + ϕn+1/2 fn+1/2 + ϕn+3/2 fn+3/2

yc
n+1 =

4

∑
j=0

ρn+j fn+2−j + ρn+1/2 fn+1/2 + ρn+3/2 fn+3/2

yc
n+3/2 =

4

∑
j=0

ζn+j fn+2−j + ζn+1/2 fn+1/2 + ζn+3/2 fn+3/2

yc
n+2 =

4

∑
j=0

ωn+j fn+2−j + ωn+1/2 fn+1/2 + ωn+3/2 fn+3/2

E : f c
n+1/2 =

(
xn+1/2, yc

n+1/2
)

f c
n+1 =

(
xn+1, yc

n+1
)

f c
n+3/2 =

(
xn+3/2, yc

n+3/2
)

f c
n+2 =

(
xn+2, yc

n+2
)

Step 6: Compute the Local Truncation Error (LTE) defined by LTE = ‖yn+2 − y∗n+2‖.
Note that yn+2 is the value obtained by the Euler method while y∗n+2 is the value obtained
by NFSSA at xn+2.

Step 7: The solution is acceptable if LTE < TOL. At this point, maintain (r = 1) or
double (r = 1/2) the previous step size. Further, proceed with the integration process
using the new step size hnew provided hminimum ≤ hnew ≤ hmaximum.

Step 8: If LTE > TOL, halve the previous step size (r = 2) and repeat the computation
using hnew in as much as hminimum ≤ hnew ≤ hmaximum.

Step 9: Stop.

4.2. Step-Size Selection

The importance of the choice of step-size cannot be overemphasized in the numerical
integration of stiff differential systems [45,46]. In fact, according to study [47], one of the
most vital concepts in numerical integration of systems of differential equations is step-size
selection because it is not practical to use constant step size in numerical integration. Proper
step-size selection enhances accuracy, reduces computation time and minimizes the number
of iterations. The approximations yn+1/2, yn+1, yn+3/2 and yn+2 are successful if the LTE is
less than the tolerance level. Thus, the previous step-size is maintained (that is r = 1) or
doubled (that is r = 1/2). After a successful step, the step-size increment denoted by hnew
is given by,

hnew = υ ∗ hold ∗ p
√
(TOL/LTE) (27)

where p is the order of the method, hold is the step size of the previous block and hnew
is the step size of the current block. The safety factor υ ensures that the failure steps are
minimized to the barest minimum.
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If, however, LTE is greater than the tolerance level, then the approximations yn+1/2,
yn+1, yn+3/2 and yn+2 fail. The previous step is repeated with r = 2 (that is, halving the
previous step size).

5. Numerical Examples

The following stiff differential systems shall be studied.

5.1. Problem 1

Consider the well-known highly stiff Robertson’s chemical differential system,

y′1(x) = −0.04y1(x) + 104y2(x)y3(x), y1(0) = 1
y′2(x) = 0.04y1(x)− 104y2(x)y3(x)− 3× 107y2

2(x), y2(0) = 0
y′3(x) = 3× 107y2

2(x), y3(0) = 0

 (28)

A lot of researchers believe that this problem is a fairly hard test problem for numerical
integrators [1,48–50]. Hence, the need to test the performance of the proposed NFSSA on
the problem in Equation (28). The problem is solved in the interval x ∈ [0, 40] and the
numerical results are to be obtained by considering,

(hinitial , TOL) =
(

10−j, 10−(j+3)
)

, j = 7, 8, 9, 10 (29)

5.2. Problem 2

Consider the highly stiff differential system,

y′1(x) = −107y1(x) + 0.075y2(x), y1(0) = 1
y′2(x) = 7500y1(x)− 0.075y2(x), y2(0) = −1

}
(30)

The eigenvalues of the Jacobian of the differential system in Equation (30) are approx-
imately λ1 = −1.000000000562500× 106 and λ2 = −0.0743749995813. The problem is
solved in the range x ∈ [0, 40].

5.3. Problem 3

Consider the mildly stiff differential system,

y′1(x) = y2(x), y1(0) = 1.01
y′2(x) = −100y1(x)− 101y2(x), y2(0) = −2

}
(31)

defined over the interval x ∈ [0, 20]. The exact solution of the differential system is,

y1(x) = 0.01e−100x + e−x

y2(x) = −e−100x − e−x

}
(32)

The Jacobian matrix of the differential system in Equation (31) has the eigenvalues
λ1 = −1 and λ2 = −100. This problem is solved by varying the tolerances and taking
h initial = 10−3. The tolerances have been selected in order to have the same number of
steps for all methods considered for computation.

5.4. Problem 4

Consider the highly stiff second-order nonlinear Van der Pol equation of the form,

y′′ (x) + µ
(

1 + y2(x)
)

y′(x) + y(x) = 0, y(0) = 2, y′(0) = 0 (33)

Equation (33) is transformed to its equivalent system of first-order differential equa-
tions of the form,
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y′1(x) = y2(x), y1(0) = 2
y′2(x) =

[
−y1(x) +

(
1− y2

1(x)
)
y2(x)

]
/ ∈, y2(0) = 0

}
(34)

This transformation is achieved by substituting y1(x) = ϕ(x), y2(x) = µϕ′(x) and
x = x/µ, where ∈= 1/µ2 is a parameter that controls stiffness. The value of ∈= 500 and
the problem is solved in the range x ∈ [0, 70] and h = 0.1. Equation (34) is a highly stiff
differential system.

6. Results and Discussion

The NFSSA derived is applied in integrating the stiff differential problems listed in
Section 5. Codes were written in MATLAB R2021a (version 9.10, MathWorks, Natick,
MA, USA) for the implementation of the proposed NFSSA. This is aimed at testing the
computational reliability, efficiency and accuracy of the proposed algorithm.

Table 5 presents the implementation of the NFSSA on Problem 1 by taking (hinitial , TOL)
=
(
10−07, 10−10), (10−08, 10−11), (10−09, 10−12) and

(
10−10, 10−13). It was observed that

the NFSSA performed better than the VSSM and ode 15s in terms of maximum errors,
number of steps, number of function evaluations and execution time. The efficiency curves
presented in Figure 3 clearly show that the NFSSA is more efficient in terms of economy
of execution time than the VSSM and the ode 15s. This implies that the NFSSA generates
results faster than the two methods. It is also important to mention here that the NFSSA
recorded no failed/rejected steps.

Table 5. Numerical results for Problem 1.

hinitial TOL Method MAXERR (y1) MAXERR (y2) MAXERR (y3) NST FNE FLS EXECT

10−7 10−10 NFSSA 4.1983 × 10−19 3.1041 × 10−23 5.0013 × 10−19 3902 7110 00 9.05

VSSM 4.4408 × 10−16 3.3881 × 10−21 5.5511 × 10−17 3730 14,920 00 13.88

ode 15s 7.7561 × 10−9 5.4664 × 10−12 8.2009 × 10−10 2006 56,090 00 43.98

10−8 10−11 NFSSA 6.3923 × 10−19 1.1680 × 10−23 3.0361 × 10−19 6960 16,780 00 19.12

VSSM 8.8817 × 10−16 1.8634 × 10−20 4.9960 × 10−16 6626 26,504 00 24.46

ode 15s 9.5637 × 10−9 7.9259 × 10−12 8.9771 × 10−10 4344 60,020 00 68.46

10−9 10−12 NFSSA 2.5256 × 10−19 3.7445 × 10−22 1.0927 × 10−18 12,002 28,080 00 34.81

VSSM 3.2196 × 10−15 3.2187 × 10−20 2.7755 × 10−15 11,766 47,064 00 45.10

ode 15s 6.0929 × 10−9 4.3587 × 10−12 4.7460 × 10−10 7608 64,030 00 82.22

10−10 NFSSA 6.1523 × 10−18 4.1914 × 10−22 9.2440 × 10−17 21,228 56,024 00 69.02

VSSM 4.3298 × 10−15 2.3716 × 10−20 8.3266 × 10−16 20,916 83,664 00 84.63

ode 15s 7.2701 × 10−9 6.2401 × 10−12 6.4396 × 10−10 15,018 72,670 00 103.47

Table 6 displays the performance of the NFSSA on Problem 2 in comparison with
the seventh order HSDBBDF developed by [11], eleventh order SDM developed by [50]
as well as the MATLAB inbuilt stiff solver, ode 15s. The problem was solved at the end
points, X = 5, X = 40, X = 70 and X = 100. The results obtained showed that the NFSSA
of order seven performed better than the seventh-order HSDBBDF, eleventh order SDM
and the ode 15s.

The performance of the NFSSA on Problem 3 is displayed in Table 7. The NFSSA
performed better than the VSSM and ode 15s in terms of absolute errors, number of function
evaluations and execution time. In Figure 4, the efficiency curves for Problem 3 in terms of
number of steps versus execution time show that the prescribed number of steps is attained
in shorter time using the NFSSA compared to both the VSSM and ode 15s. In other words,
the VSSM and ode 15s take longer time to attain results with the same number of steps
than the newly derived NFSSA.
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Table 6. Absolute errors for Problem 2.

X yi SDM ode 15s HSDBBDF NFSSA

5 y1 1.9196 × 10−02 5.4044 × 10−12 1.0123 × 10−17 3.0145 × 10−19

y2 3.1501 × 10−2 7.4701 × 10−8 3.3881 × 10−21 5.5511 × 10−17

40 y1 7.9295 × 10−10 1.9841 × 10−13 5.8776 × 10−18 7.7121 × 10−21

y2 9.7003 × 10−6 3.9544 × 10−9 7.8381 × 10−10 5.2001 × 10−13

70 y1 1.8759 × 10−13 2.2934 × 10−14 4.0276 × 10−18 4.1291 × 10−21

y2 9.1528 × 10−8 7.0561 × 10−10 5.3701 × 10−10 3.9866 × 10−13

100 y1 1.7835 × 10−18 6.4358 × 10−16 5.3649 × 10−19 1.9087 × 10−21

y2 4.4647 × 10−10 3.0223 × 10−10 7.1532 × 10−11 1.2781 × 10−13

Table 7. Numerical results for Problem 3.

NST Method ABERR
(y1)

ABERR
(y2) FNE FLS EXECTM

44 NFSSA 6.4244 × 10−15 8.1479 × 10−14 156 00 0.0781

VSSM 3.3229 × 10−11 7.5785 × 10−11 176 00 0.1248

ode 15s 2.2775 × 10−9 5.9313 × 10−9 198 00 0.1934

46 NFSSA 7.1241 × 10−14 9.7146 × 10−14 164 00 0.0899

VSSM 5.7434 × 10−11 8.4486 × 10−10 184 00 0.1404

ode 15s 4.0301 × 10−9 8.3121 × 10−9 208 00 0.2018

50 NFSSA 4.6218 × 10−12 5.0121 × 10−12 180 00 0.0914

VSSM 2.5632 × 10−10 3.9818 × 10−10 200 00 0.1440

ode 15s 7.1131 × 10−9 1.5736 × 10−8 228 00 0.2186

The result of Problem 4 is presented in Table 8. The Van der Pol problem does not
have an analytical solution; thus, the approximate solution of the problem was computed
using the newly derived NFSSA and compared with the approximate solution generated
using the inbuilt MATLAB stiff solver, ode 15s at the end points X = 1, X = 5, X = 10 and
X = 20. The results obtained clearly showed that the NFSSA is computationally reliable.
The graphical plots displayed in Figure 5 further buttresses the fact that the solution curves
of the NFSSA converge to those of ode 15s.
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Table 8. Approximate solution for Problem 4.

X yi APPSOL Using NFSSA APPSOL Using ode 15s

1 y1 −1.8650950986 −1.8650950571

y2 0.7524845366 0.7524845299

5 y1 1.8985234725 1.8985234421

y2 −0.7289532611 −0.7289532451

10 y1 1.7865365303 1.7865365103

y2 −0.8156276699 −0.8156276438

20 y1 1.5075643350 1.5075643177

y2 −1.1911230102 −1.1911230003
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7. Conclusions

In this research, the non-fixed step-size strategy was adopted in deriving an algorithm
for the numerical integration of highly stiff differential systems. The research also validated
some basic properties of the new algorithm. The data presented in Tables 5–8 validate the
fact that the NFSSA is more accurate and also more efficient in terms of computational
cost than the methods we compared our results with. Figures 3 and 4 show the efficiency
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of the NFSSA while Figure 5 shows the convergence of the NFSSA. In the course of the
research, it was also observed that the proposed NFSSA has a fewer number of function
evaluations compared to the other methods. This explains the reason for the reduced
execution time and reduced use in computer memory. Future research in this area may
focus on the derivation and implementation of non-fixed (variable) step methods on large
systems including oscillatory and other real-life problems.
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Abbreviations
The following abbreviations shall be used in the Tables 5–8 and Figures 3–5.

h Step size
NST Number of steps taken
FNE Number of function evaluations
FNC Total number of function calls
FLS Number of failure (rejected) steps
EXECTM Execution time (in seconds)
ABERR Absolute error
MAXERR Maximum error
APPSOL Approximate solution
VSSM Order 6 variable step-size method developed by [1]
HSDBBDF Order 7 hybrid second derivative block backward differentiation formula

developed by [11]
SDM Order 11 second derivative method developed by [50]
ode 15s MATLAB inbuilt stiff solver
NFSSA Newly derived non-fixed step-size algorithm
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