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Abstract: Various architectures can be applied in software design. The aim of this research is to
examine a typical implementation of Jakarta EE monolithic and microservice software architectures in
the context of software quality attributes. Software quality standards are used to define quality models,
as well as quality characteristics and sub-characteristics, i.e., software quality attributes. This paper
evaluates monolithic and microservice architectures in the context of Coupling, Testability, Security,
Complexity, Deployability, and Availability quality attributes. The performed examinations yielded
a quality-based mixed integer goal programming mathematical model for software architecture
optimization. The model incorporates various software metrics and considers their maximal, minimal
or targeted values, as well as upper and lower deviations. The objective is the sum of all deviations,
which should be minimal. Considering the presented model, a solution which incorporated multiple
monoliths and microservices was defined. This way, the internal structure of the software is defined
in a consistent and symmetrical context, while the external software behavior remains unchanged. In
addition, an intersection point of monolithic and microservice software architectures, where software
metrics obtain the same values, was introduced. Within the intersection point, either one of the
architectures can be applied. With the exception of some metrics, an increase in the number of features
leads to a value increase of software metrics in microservice software architecture, whilst these values
are constant in monolithic software architecture. An increase in the number of features indicated
a quality attribute’s importance for the software system should be examined and an appropriate
architecture should be selected accordingly. Finally, practical recommendations regarding software
architectures in terms of software quality were given. Since each software system needs to meet
non-functional in addition to functional requirements, a quality-driven software engineering can
be established.

Keywords: software architecture; monolithic architecture; microservice architecture; Jakarta EE;
software quality; quality attribute; quality-based model; architecture optimization; intersection point

1. Introduction

Software engineering is a discipline that considers all aspects of the software develop-
ment process, which can apply various models, methods, strategies, and activities [1–3].
In that sense, one of the most important activities of the software development process is
software design. Software design can be defined as an activity in which software require-
ments are analyzed in order to produce a description of the software’s internal structure [4].
As a result, software architecture is created and used to describe the system’s design
at a high level [5]. Thus, software architecture represents the basis for further software
development processes.

Symmetry 2022, 14, 1824. https://doi.org/10.3390/sym14091824 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091824
https://doi.org/10.3390/sym14091824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0790-6791
https://doi.org/10.3390/sym14091824
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091824?type=check_update&version=1


Symmetry 2022, 14, 1824 2 of 26

Selection of software architecture guides the software development process. Software
is constructed based on the software architecture [4], which defines the software system’s
components, as well as the interfaces between them [6]. Each software system’s component
should be tested (i.e., unit and integration testing of components) [1]. Additionally, a
software system’s components should further be maintained and reused. Thus, it is of
utmost importance to determine a software architecture that best suits the software system
in question.

Numerous software architectures could be applied in the software development
process [7,8]. Software architectures are subject to quality evaluation. As software systems
should assure some quality characteristics, the architecture chosen for the system has
to be compliant with the defined quality model. The aim of this research is to consider
monolithic and microservice software architectures in the context of software quality
attributes. Therefore, the evaluation process examined a software system for project
assessment, while the software development process applied Jakarta EE (Jakarta Enterprise
Edition) web technology stack and Spring Framework. Since measured values could differ,
research results can contribute to a proper choice of architecture that best suits the specific
software system.

In software design, microservice architecture is one of the alternatives to a monolithic
architecture. Software quality standards are used to define quality models, while quality
models define quality attributes. The evaluation process of monolithic and microservice
architectures considered Coupling, Testability, Security, Complexity, Deployability, and
Availability quality attributes. The performed evaluation produced a quality-based mathe-
matical model for software architecture optimization. The model considers features of a
software system and the importance of the selected software metrics. In this context, the
structure of the solution, which incorporates multiple monoliths and multiple microser-
vices, was defined, i.e., the proposed model considers the structure of a software system
in which monolithic and microservice architectures coexist. In addition, an intersection
point of monolithic and microservice software architectures, where software metrics obtain
the same values, was introduced. Finally, the research presents practical recommendations
regarding the examined architectures in the context of quality attributes. Taking into ac-
count that the proposed model considers various aspects of software quality in terms of
quality attributes and metrics, the internal structure of the software can be defined in a
consistent manner.

This paper is organized as follows. Section 2 outlines monolithic and microservice
architectures, as well as software quality standards. The section also gives an overview
of some quality attributes which need to be considered in the software development
process. Section 3 examines monolithic and microservice architectures in the context of
software quality attributes. The quality-based model for software architecture optimization
is presented in Section 4. Threats to validity are presented in Section 5. Discussion is
presented in Section 6. Section 7 summarizes the research results, main conclusions, and
presents limitations and further research directions.

2. Background

This section outlines monolithic and microservice software architectures and intro-
duces software quality standards and software quality attributes.

2.1. Monolithic and Microservice Software Architectures

In general, architecture could be defined as the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment [9].
Architecture also includes the principles for component design and evolution. On the other
hand, software architecture could be defined as a set of structures needed to reason about
a system, which comprises software elements, relations among them, and properties of
both [10]. Software architecture is defined during the software design process [4].
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A monolith is a software application whose modules cannot be executed indepen-
dently [11]. Figure 1 depicts a conceptual overview (one possible solution) of monolithic
application. A monolithic application consists of multiple modules where each module
has its own responsibility [12]. Module 1 may contain user interface, Module 2 may con-
tain components that refer to application’s business logic, Module 3 may contain data
access components, etc. Figure 1 also shows that a monolithic application usually has only
one database.
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Dependencies between modules imply that a monolithic application is compiled and
assembled as an entity. Therefore, a change in one module indicates that the module should
be recompiled and that the whole should be reassembled [13].

Microservice architecture is one of the alternatives to monolithic architecture. When
large monolithic software systems are observed, adding new functionalities may affect the
complexity and maintenance of software. The solution can be to implement microservice
architecture, which is aimed at grouping functionalities in a set of small services that
cooperate with each other. Microservice architecture is a distributed application where
all its modules are microservices [11]. A microservice is a cohesive, independent process
which interacts via messages [11]. Figure 2 provides a conceptual overview of microservice
application. The figure illustrates multiple independent microservices, while each microser-
vice has its own responsibility [14]. All presented elements are parts of a microservice
application. Moreover, each microservice (i.e., each module) may contain a user interface, a
component that refers to an application’s business logic, a component for data access, as
well as other components. Figure 2 also shows that each microservice has its own database.
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Independence among microservices indicates that each microservice is separately com-
piled and assembled. Therefore, a change in one microservice does not require recompiling
and reassembling of the whole application [13]. In addition, each software development
team must have only the source code of a microservice for which it is directly responsible
(i.e., the microservice delegated to that team).

2.2. Software Quality Standards

Taking into account the complexity of modern software systems and their application
in various fields, software quality is identified as one of the knowledge areas within the
Software Engineering Body of Knowledge [4]. Therefore, quality management and quality
control should be considered in all phases of the software development process [15].

Quality could be defined as a product’s compliance with the product’s detailed spec-
ification [16]. Software quality can be defined as the capability of a software product to
meet the stated and implied needs in particular circumstances [4,17], i.e., as an effective
software process which results in a useful software product that provides measurable value
for those who produce it and those who use it [1].

The abovementioned definitions indicate that software quality could be observed
from different perspectives. Software engineers are focused on developing a software that
is functional, testable, reliable, and maintainable, while a system’s end users are more
concerned with characteristics such as productivity, usability, effectiveness, etc. These are
just some of the software quality attributes which need to be taken into account during
software development.

Software quality standards are applied in the software quality evaluation process.
Various quality standards are available: some represent general-purpose standards and can
be used to evaluate any software system (e.g., ISO/IEC 9126 [18] and ISO/IEC 25000 [17]),
while others are specialized standards applied within specific industries.

Software quality standards are used to determine the specification of a software qual-
ity model, which is the basis for software quality evaluation. However, a quality model
provides no specification of how to measure value—it only determines quality characteris-
tics and decomposes them to the level of sub-characteristics. Quality characteristics and
sub-characteristics are used to identify key attributes of software quality [1], which are then
applied for quality requirements specification [19]. Figure 3 illustrates the relationship be-
tween software quality standards, software quality models, and software quality attributes.
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It is implied above that a quality model may define multiple attributes, characteristics
and sub-characteristics typically organized as a hierarchy [20]. In that context, software
metrics are applied for operational measurements of the software quality characteristics
and sub-characteristics. Each quality model can incorporate various metrics for quality
evaluation [1,21]. A software metric can be defined as a quantitative measure of the degree
to which a system, component or process possesses the observed attribute [9,20]. It is a
characteristic of the software system, system’s documentation or system’s development
process that can be objectively measured [15], based on which various aspects of software
quality could be determined [22].

Different quality standards can define different quality attributes [17,18]. In this
research, different terms are found for the same software quality attribute [23]. In this
context, the following quality attributes should be considered in the software quality
evaluation process:

• Coupling—A software system may encompass multiple components grouped in
modules. Components of one module can invoke the components from another
module. Coupling can be defined as a measure of interdependence among modules in
a software system [4]. In that context, the coupling between components and modules
should be reduced to a minimum.

• Testability—Apart from the programming code, a software system can contain nu-
merous tests (e.g., unit tests, components tests, integration tests). Testability could
be defined as a degree of effectiveness and efficiency with which test criteria can
be established for a system, product, or component and tests can be performed to
determine whether those criteria have been met [17]. High level of testability is a
required characteristic within the software development process.

• Security—Security considers the ways in which a software system protects information
and data so that persons or other products or systems have the degree of data access
appropriate to their types and levels of authorization [17]. Taking into consideration
the importance of information and data found in a software system, security should
be maintained at a high level.

• Complexity—As previously stated, a software system incorporates multiple compo-
nents. Complexity could be defined as the degree to which a system or component has
a design or implementation that is difficult to understand and verify [9]. A low level
of complexity is a required characteristic within the software development process.

• Deployability—Subsequent to the implementation or change in some feature, a soft-
ware system should be deployed to the appropriate environment (e.g., test environ-
ment, staging environment, production environment). Deployability considers all
artefacts and activities required to put a software system into operation [9]. A high
level of software system deployability is required.

• Availability—Availability could be defined as the degree to which a system or com-
ponent is operational and accessible when required for use [17]. A software system
should preserve a high level of availability.

These are only some of the quality attributes that should be examined during the
software development process. This enables the fulfillment of non-functional requirements,
and thus it can be stated that software quality attributes correspond to non-functional
requirements of the software system [24].

3. Evaluation of Monolithic and Microservice Software Architectures

Monolithic and microservice software architectures can be evaluated in the context
of different software quality attributes [13,14,23,25]. This research examines Coupling,
Testability, Security, Complexity, Deployability, and Availability quality attributes (see
Figure 4). These quality attributes were supported by software quality analysis tools used
in the evaluation process.
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3.1. Technology Stack

Jakarta EE web technology stack was applied in the software development process.
More specifically, Spring Framework 5 and Spring-related libraries (via Spring Boot 2) were
applied in the back-end development, while the front-end development was performed
by applying the Vue.js framework. Apache Maven 3.6 was used as a build management
tool. Java web applications are usually deployed as jar or war files and are executed on the
appropriate server. These files contain compiled code, external libraries and other resources
needed for an application’s execution. Additionally, this type of distribution enables
continuous delivery and deployment and promotes DevOps software development [26].
BitBucket Pipelines were applied in DevOps software development and applications were
executed on AWS (Amazon Web Services) instances.

3.2. Data Analysis

SonarQube tool (i.e., SonarCloud version) was applied in the software quality evalua-
tion process, which enables an overview of software quality from different perspectives.
During the evaluation process, The Sonar Way quality model was applied. Jacoco Code
Coverage tool, easily integrated within the SonarQube tool, was applied in code coverage
analysis. Software metrics related to Deployability were obtained from BitBucket Pipelines,
while the Availability metrics were obtained from the Spring Actuator library.

Domain classes and Data Transfer Object (DTO) classes were excluded from the
software quality evaluation process. These classes do not contain any of the business logics.
However, they are used for data transfer and represent value classes (i.e., they just contain
public constructors and getter/setter methods).

3.3. Evaluation

Feature Driven Development (FDD) was applied in the software development process.
FDD is a software development method aimed at making progress on features [27]. Feature
can be defined as a functional characteristic of a system of interest that end-users and other
stakeholders can understand [28]. This way, functionalities are combined into a single busi-
ness capability [11]. The software sub-system for project assessment was examined (shown
in Figure 5) and the following features were identified: Client Management Feature (i.e.,
Feature A), Project Management Feature (i.e., Feature B), Employee Management Feature
(i.e., Feature C), Location Management Feature (i.e., Feature D), and Task Management
Feature (i.e., Feature E). Each feature contains components related to entity manipulation,
i.e., create, retrieve, update and delete operations (CRUD operations). From a software
engineering perspective, CRUD operations are typical operations supported by all data
structures and entities [4].
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Monolithic software architecture presented in Figure 6 encompasses a Web Module,
Service Module and Repository Module (i.e., Data Access Module). User interface invokes
controller components, while the controllers invoke business services. Finally, the services
invoke components within the Repository Module. The system contains one database,
which is accessed from the Repository Module by applying appropriate data persistence
technology (i.e., JDBC API). The application was executed on an AWS instance.
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Provided that only one Feature A exists, user interface (i.e., HTML elements and
the JavaScript code) and Controller A will be created within Web Module (user interface
invokes Controller A). In addition, Controller A component invokes Service A from the
Service Module, which further invokes Repository A data access component. All of these
components will be compiled and assembled into one application which produces the
required Feature A. Adding a new Feature B activates the Single Responsibility Principle
which states that a component should have only one reason to change [12]. In other words,
each component within the software system should have one responsibility. In cases when
one component has multiple responsibilities, multiple reasons for changing it may exist.
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Thus, a user interface for the new Feature B is created, as well as specific Controller B,
Service B, and Repository B components on the Web Module, Service Module and Repository
Module, respectively. All created components will also be compiled and assembled into
one application used for realization of both Feature A and Feature B.

The above principle was applied in the development of the remaining features (i.e.,
Feature C, Feature D, and Feature E). Therefore, it can be concluded that one monolithic
application incorporates all features. Put differently, if a new feature is added or an existing
feature is modified, some modules should be recompiled and the whole application should
be reassembled. Taking into account the represented monolithic architecture, Table 1
presents the software metrics’ values for the observed software quality attributes.

Table 1. Software metrics’ values—Monolithic software architecture.

Quality Attribute Software Metric Value

Coupling Coupling Between Objects 16

Testability

Unit Tests 90

Code Coverage (%) 94.2

Covered Conditions 30

Uncovered Conditions 0

Security
Security Hotspots 3

Security Configurations 1

Complexity
Cyclomatic Complexity 75

Cognitive Complexity 15

Deployability

Build Time (min) 02:07

Deployment Pipelines 1

Deployable Size (MB) 41.2

AWS Instances 1

Deployment Profiles 3

Availability Healthcheck Endpoints 1

Let us examine the microservice software architecture presented in Figure 7. As
previously stated, Jakarta EE and Spring Framework were used for application develop-
ment. More specifically, Spring Cloud library was applied to ensure the discovery and
management of microservices. Spring Cloud incorporates the following components:

• API Gateway—provides an effective way to route to APIs (i.e., microservices);
• Service Registry—used for microservice registration and management;
• Messaging—enables asynchronous microservice communication via messaging interfaces;
• Spring Cloud Sleuth—enables auto-configuration for distributed tracing.

These are typical components in the implementation of microservice architecture [29]
and are provided out-of-the-box by Spring Framework and Spring Cloud. Figure 7 shows
Web Layer, Service Layer and Repository Layer (i.e., Data Access Layer) as components
of microservice architecture. User interface invokes controller components, while the con-
trollers invoke business services. Finally, the services invoke components within Repository
Layer. Each microservice within the system has a separate database which is accessed from
Repository Layer by applying the appropriate data persistence technology (i.e., JDBC API).
Each microservice is executed on a separate AWS instance.
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Assuming only one Feature A exists, the user interface (i.e., HTML elements and
the JavaScript code) and Controller A will be created within Web Layer (user interface
invokes Controller A). In addition, Controller A component invokes Service A from the
Service Layer that further invokes Repository A data access component. These components
will be compiled and assembled into one application with which the required Feature A
is realized. There is a specific database for Feature A. In case of adding a new Feature
B, another microservice application is designed to incorporate user interface for the new
Feature B, as well as separate Controller B, Service B, and Repository B component within
Web Layer, Service Layer, and Repository Layer, respectively. All of the created components
will also be compiled and assembled into one application used for Feature B realization. A
separate database for Feature B is obtained.

The abovementioned principle was used in the development of the remaining features
(i.e., Feature C, Feature D, and Feature E). This implies that each feature represents a
separate microservice application. In other words, if a new feature is added or an existing
feature is modified, only one microservice application should be recompiled and reassem-
bled. Table 2 presents software metrics’ values for the observed software quality attributes
of the microservice architecture.

The following subsections discuss software quality attributes and metrics.

3.3.1. Coupling

In terms of the Coupling attribute, the metric Coupling Between Objects was examined.
An object is coupled to another one if it invokes the other one’s functions [21]. User
interface components invoke Controller components, while Controller components invoke
Service components that further invoke Repository components. Additionally, Repository
components invoke database functions. This promotes the separation of concerns between
user interface, business logic, and data persistence [30].

Monolithic application contains all components, which is why the value of the metric
Coupling Between Objects equals 16. However, microservice architecture contains only
components required for the observed feature’s realization. Thus, the value of the metric
Coupling Between Objects within microservice applications equals 4. Therefore, the value of
Coupling within a microservice architecture is lower than that in a monolithic architecture.
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Table 2. Software metrics’ values—Microservice software architecture.

Quality Attribute Software Metric Feature A Feature B Feature C Feature D Feature E

Coupling Coupling Between Objects 4 4 4 4 4

Testability

Unit Tests 18 18 18 18 18

Code Coverage (%) 87.5 86.3 87.5 86.3 84.9

Covered Conditions 6 6 6 6 6

Uncovered Conditions 0 0 0 0 0

Security Security Hotspots 3 3 3 3 3

Security Configurations 1 1 1 1 1

Complexity Cyclomatic Complexity 18 20 18 20 21

Cognitive Complexity 3 3 3 3 3

Deployability

Build Time (min) 01:28 01:37 01:24 01:27 01:30

Deployment Pipelines 1 1 1 1 1

Deployable Size (MB) 40.4 53.2 40.4 53.2 53.2

AWS Instances 1 1 1 1 1

Deployment Profiles 3 3 3 3 3

Availability Healthcheck Endpoints 1 1 1 1 1

3.3.2. Testability

In terms of Testability, the code coverage above 84% was achieved for each application.
Monolithic application contains 90 tests, while each microservice has 18 tests. Condition
coverage of 100% was achieved. However, microservices have fewer conditions needed to
be covered (each microservice application has six conditions, while a monolithic application
contains 30 conditions). The results are expected since each microservice incorporates only
one feature.

An interesting observation in monolithic architecture is that Repository Module, which
incorporates data persistence-related components, has the code coverage of 0%. So, unit
tests for each module’s component were introduced and successfully passed. Further
code inspection has led to the conclusion that this module contains only interfaces used
for specifying data persistence methods. During the compile-time, the implementation
of those interfaces was not included in this module. However, the implementation is
dynamically included during the run-time through the application of aspect-oriented
programming concepts. Since the module contains only interfaces, the code coverage
cannot be determined. A similar conclusion could be drawn for testing the repository layer
components in microservices.

The highest code coverage was achieved within a monolithic architecture (coverage
of 94.2%), while the coverage for microservices was lower. Detailed code inspection has
shown that the lower coverage achieved in microservices was related to microservices’
communication. Microservices define only communication interfaces, while the implemen-
tation of those interfaces is provided in the run-time through the use of Spring Cloud library.
An interesting conclusion is that the independent microservices (in terms of microservices’
communication) had the highest code coverage: Feature A and Feature C with respective
code coverage of 87.5%. On the other hand, microservices Feature B and Feature D are
related to previously mentioned microservices and had coverage of 86.3%, while the most
complex microservice (in terms of communication with other microservices) Feature E
resulted in code coverage of 84.9%. So, as for Testability, a monolithic application contains
all components and tests, which results in simpler integration testing. On the other hand,
each microservice incorporates only one feature and contains only components and tests
related to this particular feature, which results in more difficult integration testing.
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3.3.3. Security

As for Security, we examined Common Weakness Enumeration (CWE) and Open Web
Application Security Project (OWASP) recommendations that can lead to serious vulnerabil-
ities in software. In that regard, monolithic application has three Security Hotspots. Closer
code inspection revealed that these refer to safe use of command line arguments, proper
configuration of Cross-Site Request Forgery, and appropriate use of user roles. Given the
fact that functionalities are provided through web services and that user roles are well
defined, we believe that detected hotspots pose no problems at the moment. However,
these truly are potential threats which need to be taken into consideration during the
software development process.

When considering microservices, we have come to some interesting conclusions. We
had determined that each microservice contains three Security Hotspots and that those
were the same Hotspots previously identified in the monolithic application. Additionally,
according to the metric Security Configurations, each microservice has its own security
mechanism whose issues need to be considered. On the other hand, secure communication
between microservices should be ensured which requires additional effort in the software
development process.

3.3.4. Complexity

In terms of Complexity, we examined the Cyclomatic Complexity (CC) metric. CC can
be defined as the number of linearly independent paths comprised within a method [21].
This enables the determination of the software system complexity. With monolithic applica-
tion, the Cyclomatic Complexity metric has a value of 75. On the other hand, Cyclomatic
Complexity metric for microservice applications ranges from 18 to 21.

Cognitive Complexity metric was also examined. This software metric is the measure
of understandability of the control flow statements within a software system [31]. Cognitive
Complexity metric has a value of 15 in monolithic application, while this value is 3 when
each microservice is observed.

As seen above, monolithic application incorporates all features, hence its Complexity
is high. On the other hand, each microservice incorporates only one feature, hence its
Complexity is lower than that in monolithic application.

3.3.5. Deployability

Average Build Time metric was examined in Deployability. This metric is the time
(in minutes) needed for the production of deployable artefacts and includes phases of
validation, code compilation, test compilation, test execution, static code analysis and pack-
aging of the application into a deployable format. It is important to note that this process
is executed within BitBucket Cloud Pipelines so the background hardware configuration
remains unknown. The average build time after running pipelines multiple times was
examined for each application.

When monolithic application is observed, the Average Build Time metric equals
02:07 min. On the other hand, the Average Build Time metric for a microservice application
is the interval from 01:24 to 01:37 min. Therefore, the average build time of the microservice
is shorter than the average build time of the monolithic application. In the event of a feature
change, microservice’s deployable can be deployed more quickly than that of monolithic
application. Furthermore, examination of the metric Deployment Pipelines shows that
each application contains one pipeline. This enables parallel execution of microservices’
pipelines which additionally reduces the delivery time.

Moreover, Deployable Size metric, with value expressed in megabytes, was exam-
ined. The value of Deployable Size metric for a monolithic application is 41.2 MB, while
the value of Deployable Size metric for microservice applications is the interval from
40.4 MB to 53.2 MB. This is an interesting result because monolithic application incorpo-
rates all features, while each microservice incorporates only one feature. Inspection of
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pom.xml configuration files brought us to a conclusion that each deployable contains
the following dependencies:

• database driver;
• spring-related libraries;
• data persistence-related libraries;
• tests-related libraries.

All the above-mentioned dependencies are incorporated into one deployable within
the monolithic application. When microservices are concerned, dependencies are copied to
each microservice application which results in a high value of Deployable Size metric. So,
as for dependency management, it can be concluded that microservice software architecture
violates the principle “Don’t Repeat Yourself” (DRY) and promotes the principle “Write
Everything Twice” (WET). However, due to the independency of microservices, we believe
that this redundancy is required.

Finally, artefacts should be deployed to the appropriate environment. Thus, for each
application one AWS instance and three profiles were defined (application.properties profile
that can be used in the software development process, application-test.properties profile that
can be used in a testing environment, and application-prod.properties profile that can be used
in production). Here, each and every application will have the value of a metric AWS
Instances set to 1, while the Deployment Profiles metric’s value will be 3.

3.3.6. Availability

Healthcheck Endpoints metric was examined when considering Availability. These
endpoints are exposed through REST web services and return a JSON-formatted response
of an application’s status (i.e., available, unavailable, failure). Cloud instances periodically
invoke this service and, depending on the response status, relevant action can be performed.
This ensures the discovery of a service [32]. In that regard, Healthcheck Endpoints metric
will have a value of 1 for each and every application. This favors microservice software
architecture: each microservice can independently be health-checked, based on which a
new microservice instance can be started. When high-availability of a service is needed,
auto-provisioning and scaling could be performed.

4. Quality-Based Model for Software Architecture Optimization

This section introduces a quality-based mathematical model for software architecture
optimization. It also introduces a MicroMono application which is based on the premises
of the presented model.

4.1. The Model for Software Architecture Optimization

The comparison of monolith and microservice software architectures presented in
Section 3 has led to the conclusion that the software system contains five features. However,
different software systems may contain a different number of features. After changing or
adding a new feature, a quality analysis could be conducted as well as an examination of
how the change would affect the rest of the software system. To this end, a continuous
quality assessment can be performed [33] and a software metric’s values can be examined.
The relationship between the number of features and the change in software metrics is
presented in Table 3.

A quality-based mathematical model for software architecture optimization was in-
troduced based on the presented evaluation. The UML class diagram for the model
construction is illustrated in Figure 8. Key entities, their attributes, and relationships with
other entities can be detected: one software architect can define multiple software systems
(i.e., problems), and the software system provides multiple features. These definitions
help produce a solution. One solution can incorporate multiple monoliths and multiple
microservices: a monolith contains multiple features, while a microservice contains only
one feature.
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Table 3. Continuous quality assessment of the software system.

Monolithic Software
Architecture

Microservice Software
Architecture

Software Metric
No. of Features

1 2 3 ... k 1 2 3 ... k ∆ (Microservice
−Monolithic)

Coupling Between Objects 4 7 10 ... 3·k + 1 4 8 12 ... 4·k k − 1

Unit Tests 18 36 54 ... 18·k 18 36 54 ... 18·k 0

Covered Conditions 6 12 18 ... 6·k 6 12 18 ... 6·k 0

Cognitive Complexity 3 6 9 ... 3·k 3 6 9 ... 3·k 0

Security Hotspots 3 3 3 ... 3 3 6 9 ... 3·k 3·(k − 1)

Security Configurations 1 1 1 ... 1 1 2 3 ... k k − 1

Deployment Pipelines 1 1 1 ... 1 1 2 3 ... k k − 1

AWS Instances 1 1 1 ... 1 1 2 3 ... k k − 1

Deployment Profiles 3 3 3 ... 3 3 6 9 ... 3·k 3·(k − 1)

Healthcheck Endpoints 1 1 1 ... 1 1 2 3 ... k k − 1
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The observed problem is formulated as a clustering problem with additional con-
straints. The assumptions of the defined problem are:

• The feature that is the center of a cluster and all the features assigned to that cluster
form one monolith. In this application, the center of the cluster is not relevant, but
what is important is which features are grouped into a cluster (monolith);

• A cluster with one feature is a microservice;
• For each metric, maximal, minimal or targeted value is defined;
• Deviations from the maximal, minimal and target values of the metrics are allowed

but should be minimized.

The software metric Coupling Between Objects considers relationships between the
components of a software system. Our model applies the Model-View-Controller (MVC)
paradigm, which promotes the separation of concerns between user interface, business logic
and data persistence [4,30]. In this context, coupling implies the following relationships
between the components: (a) User Interface–Controller, (b) Controller–Service, (c) Service–
Data Repository, and (d) Data Repository–Database. The maximum value for the Coupling
Between Objects metric and its upper deviation are considered.

Software metrics Unit Tests and Covered Conditions focus on test implementation
and execution in order to determine whether the defined test criteria have been met [17].
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In other words, the examined metrics are focused on the dynamic analysis of the software
system and their values should be maximized [4]. However, the number of unit tests and
conditions to cover are directly related to the specification and implementation of the tested
component: in case of a large number of functions and conditions, the number of unit tests
and conditions to cover will increase, and vice versa. In that sense, targeted values for
Unit Test and Covered Conditions software metrics are defined, as well as their upper and
lower deviations.

Software metric Cognitive Complexity focuses on the static analysis of the software
system: it considers understandability of the control flow statements within the compo-
nents [31], which implies that the metric value should be minimized. On the other hand,
cognitive complexity is directly related to the implementation of the examined component:
in case of a large number of control flow statements, the complexity will be increased, and
vice versa. In this context, targeted value for Cognitive Complexity metric and its upper
and lower deviations are considered.

Software metrics Security Hotspots and Security Configurations address security
issues in a software system. Considering the importance of data found in the software
system, software metrics Security Hotspots and Security Configurations should be mini-
mized. Therefore, the maximum values for the examined metrics and their upper deviations
are considered.

Deployment Pipelines, AWS Instances, Deployment Profiles, and Healthcheck End-
points software metrics are focused on the run-time environment of the software system.
As the number of instances of the software system increases, the values of the observed
metrics also increase. In this context, minimum values for the investigated metrics and
their lower deviations are defined.

The notation used to define parameters and variables is as follows:
M—set of features;
Parameters:
k—number of features;
CBO, SH, SC—maximum values of Coupling Between Objects, Security Hotspots,

Security Configurations, respectively;
TU, CC, CCM—targeted values of Unit Tests, Covered Conditions, Cognitive Com-

plexity, respectively;
DP, AWS, DPF, HE—minimum values of Deployment Pipelines, AWS Instances,

Deployment Profiles, Healthcheck Endpoints, respectively;
Variables:

yj =

{
1 if j-th feature is microservice or center of monolith
0 if j-th feature is assigned to one of the monoliths

, j ∈ M

xij =

{
1 if i-th feature is assigned to the j-th monolith
0 otherwise

, i, j ∈ M

nj—the number of features assigned to the j-th cluster j ∈ M;

moj =

{
1 if j-th feature is the center of cluster (monolith)
0 otherwise

, j ∈ M

msj =

{
1 if j-th feature is microservice
0 otherwise

, j ∈ M

dcbog, dtug, dccg, dccmg, dshg, dscg—upper deviations from CBO, TU, CC, CCM, SH,
SC, respectively;

dtud, dccd,dccmd,ddpd,dawsd,ddpfd,dhed—lower deviations from TU, CC, CCM, DP,
AWS, DPF, HE, respectively.



Symmetry 2022, 14, 1824 15 of 26

Using the above notation, the following mixed integer goal programming (MIGP)
mathematical model is formulated.

min f = dcbog + dtug + dccg + dccmg + dshg + dscg+
dtud + dccd + dccmd + ddpd + dawsd + ddp f d + dhed

s.t.
xij ≤ yj, i, j ∈ M (1)

xii = yj, i ∈ M (2)

∑
j∈M

xij = 1, i ∈ M (3)

∑
i∈M

xij = nj, j ∈ M (4)

(nj − 1)− k ·moj ≤ 0, j ∈ M (5)

msj = yj −moj, j ∈ M (6)

msj ≤ nj, j ∈ M (7)

moj ≤ nj, j ∈ M (8)

∑
j∈M

(3 · nj + 1)− ∑
j∈M

(1− yj)− dcbog ≤ CBO (9)

∑
j∈M

18 · nj + dtud− dtug = TU (10)

∑
j∈M

6 · nj + dccd− dccg = CC (11)

∑
j∈M

3 · nj + dccmd− dccmg = CCM (12)

3 · ∑
j∈M

moj + 3 · ∑
j∈M

msj − dshg ≤ SH (13)

∑
j∈M

moj + ∑
j∈M

msj − dscg ≤ SC (14)

∑
j∈M

moj + ∑
j∈M

msj + ddpd ≥ DP (15)

∑
j∈M

moj + ∑
j∈M

msj + dawsd ≥ AWS (16)

3 · ∑
j∈M

moj + 3 · ∑
j∈M

msj + ddp f d ≥ DPF (17)

∑
j∈M

moj + ∑
j∈M

msj + dhed ≥ HE (18)

The objective is the sum of all deviations, which should be minimal. The constraints
((1)–(3)) represent standard clustering conditions: the feature can be assigned to the cluster
only if the cluster exists ((1) and (2)) and it can be assigned to one cluster exactly (3).
Equation (4) is used to count how many features are associated with the cluster and
consequently to check the status of the feature: if nj ≥ 2 the feature is the centre of
a cluster, if nj = 1 the feature is microservice and if nj = 0 the feature is assigned to
a cluster (monolith). Auxiliary variables moj and msj are needed to calculate some of
the metrics and are defined using constraints ((5)–(8)). Constraint (9) is related to the
maximal acceptable value for the Coupling Between Objects. The second term on the
left-hand side of the constraint is introduced to correct the first term, in which the value
1 is summed for all features, even those attached to a monolith. Constraints ((10)–(12))
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refer to the targeted values for Unit Tests, Covered Conditions and Cognitive Complexity,
respectively. Constraints ((13)–(14)) relate to the maximal acceptable values for Security
Hotspots and Security Configurations. The final four constraints ((15)–(18)) refer to the
minimal acceptable values for Deployment Pipelines, AWS Instances, Deployment Profiles
and Healthcheck Endpoints, respectively.

4.2. The MicroMono Application

In order to apply the developed model, the MicroMono application was designed.
The architecture of the MicroMono system is presented in Figure 9, showing components
related to user management (i.e., User Controller, User Service, and User Repository), software
system definition (i.e., Software System Controller, Software System Service, and Software
System Repository), and solution production (i.e., Solver Controller, Solver Service, and Solver
Repository). In addition to the graphical user interface, parameters for the Solver component
can also be specified via the web service, which means the presented model can also be
used in external applications. Monolithic software architecture was applied in the design
process of the MicroMono system.
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Figure 9. The architecture of the MicroMono application.

After the production of the solution, it is possible to perform a visualization. OrgChart
library, which enables the creation of hierarchy diagrams, was applied to this end. The
solution can be exported to Microsoft Excel for further analysis (see Figure 10).



Symmetry 2022, 14, 1824 17 of 26

Symmetry 2022, 14, x FOR PEER REVIEW  18  of  28 
 

 

 

Figure 9. The architecture of the MicroMono application. 

After  the production of  the  solution,  it  is possible  to perform a visualization. Or‐

gChart library, which enables the creation of hierarchy diagrams, was applied to this end. 

The solution can be exported to Microsoft Excel for further analysis (see Figure 10). 

 

Figure 10. The structure of the solution in textual and graphic form. 

   

Figure 10. The structure of the solution in textual and graphic form.

5. Threats to Validity

This research examines the general structure of monolithic and microservice archi-
tectures. In particular, the research considers monolithic and microservice architecture
implementation specific to Jakarta EE and Spring Framework. Although the examined
software system contains typical components, implementation techniques may vary de-
pending on the technology platform, applied frameworks, complexity, and domain of
the software system [34,35]. A software system may be much more complex and may
contain numerous modules related in various ways, which should be considered during the
evaluation process. However, the identified modules and components promote separation
of concerns between user interface, business logic, and data persistence [30]. In addition,
the Single Responsibility Principle is applied [12].

This paper investigates only some of the software quality attributes. However, each
quality model can define different quality attributes, i.e., has the ability to decompose
quality characteristics and sub-characteristics in diverse ways [17,18]. Additionally, dif-
ferent terms used for the same software quality attribute may exist [23]. For the purpose
of obtaining more relevant results, a wider scope of software quality attributes should
be considered.

6. Discussion

During the software development process, different aspects (e.g., human resources,
equipment, development time, defects and time needed for resolving them) should be
examined. These aspects are aimed at creating a software product that brings value to all
stakeholders (e.g., software development team, software quality assurance team, project
managers, users). Stakeholders can focus on different software development aspects,
hence the software development process can be managed by applying a quantitative
quality-driven approach [36]. A quantitative approach refers to objective measurement of
characteristics, so software quality standards can guide and gather all stakeholders during
the software development process, establishing quality-driven software engineering [37,38].

Examination of the presented software architectures implies that principles of de-
composition and modularization were applied during the software development process.
Decomposition and modularization are crucial and frequently used software design princi-
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ples. This helps achieve reusability and extendability of software system components [39].
In other words, the initial problem can be decomposed into simpler sub-problems (i.e.,
modules) that can be independently realized. Within the monolithic software architecture,
the observed modules are dependent upon each other, while the modules in microservice
software architecture are independent (i.e., each module represents one microservice).
Taking into account a module’s independency, microservices communicate with each other
by sending messages using synchronous or asynchronous protocols [40].

During the software design process, in accordance with the Single Responsibility
Principle [12], each module should have only one responsibility. Put differently, a module
should encapsulate only those components that are necessary for the observed respon-
sibility’s realization, i.e., the module should be highly cohesive. Moreover, a module’s
coupling should be decreased to the lowest possible degree, thus achieving the principle
“High Cohesion, Low Coupling” [14,41,42].

In microservice software architecture, modules are independent, while within mono-
lithic software architecture, module coupling exists. This coupling can be reduced by
defining interfaces for providing communication between modules. As a result, the princi-
ple “Program to an interface, not an implementation” is applied [12,43].

In addition to the application of the said principles, microservices also require cer-
tain configurations:

• security configuration of each microservice;
• security configuration of communication between microservices;
• external libraries configuration (e.g., database driver, data persistence-related libraries,

tests-related libraries);
• configuration of each instance located on cloud infrastructure.

In that regard, we believe that microservice software architecture violates the “Don’t
Repeat Yourself” principle and promotes the application of the “Write Everything Twice”
principle. However, the use of tools for creating the application skeleton (e.g., Maven
Archetype, Spring Initializr) can reduce the aforementioned configurations. It is also pos-
sible to apply the “Convention over Configuration” principle to minimize the number of
decisions a software engineering team needs to make [44]. Nonetheless, these configura-
tions may present a time-consuming task in case of a high number of microservices.

Software quality standards define quality models and attributes [17,18]. Software
quality attributes refer to non-functional characteristics of a software system [24], so it is
possible to establish a relationship between software architectures and software quality
attributes [23]. Fazio et al. examined monolithic and microservice software architectures in
their research and concluded that the implementation of microservice architecture posi-
tively impacts scalability, portability, updatability, and availability quality attributes, but
at the cost of expensive remote calls (instead of in-process calls) and increased overheads
for cross-component synchronization [13]. Furthermore, microservice architecture imple-
mentation may also have a positive effect on testability, reliability, and maintainability
quality attributes [11]. Each microservice can be independently scalable, portable, updat-
able, available, testable, reliable, and maintainable. In addition, usage of microservices
can have a beneficial effect on deployability, modifiability, and resilience quality attributes,
which results in continuous delivery and DevOps software development [25,26]. In that
respect, microservices can be distributed within the container that can be executed on
various cloud vendor’s infrastructures [45]. Contrary to monolithic applications, the use
of microservices may also result in an increase of both team’s agility and scalability. In
addition, tech stack for each microservice can be considered, which results in polyglot
software development [34,46].

Implementation of microservice architecture helps achieve isolation of a software
system’s module. However, this exact isolation as well as numerous microservices may
present a great challenge to the software development process management [11,25]. On the
other hand, by comparing monolithic and microservice software architectures, it can be
concluded that the implementation of microservice architecture may have a negative impact
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on security, performance, and testability quality attributes [11]. Due to a microservice’s
independence, data transfer (e.g., for encryption and authorization in communication be-
tween microservices) requires additional effort in providing security. Communication over
a network requires managing a network’s infrastructure and may contribute to additional
latency that should be taken into consideration [47].

It was previously mentioned that each microservice could be independently tested.
However, integration testing of a system that implements a microservice software architec-
ture may be rather complicated [25]. On the other hand, modules within the monolithic
software architecture present an entity, so their integration testing is simpler. In addition,
modules in monolithic software architecture can be tested in isolation if interfaces for
communication between components are properly defined, which achieve the principle
“Separation of interface and implementation” [48]. The abovementioned indicates that
monolithic and microservice architectures can be examined in the context of different
quality attributes.

Monolithic and microservice architectures can be observed in the context of design
pattern. Design pattern could be defined as a three-part rule that expresses the relationship
between a certain problem, its solution and their context [43]. In that regard, various design
patterns can be implemented in the software development process [43,49,50], which can
also have an impact on software quality [51,52].

The presented quality-based model considers monolith and microservice software
architectures in the context of software metrics and software system features. In order to
illustrate the formulated mathematical model, a set of experiments was performed. The
dimensions of the solved problems and the optimization results are shown in Table 4. The
models were solved for software systems with k = 10, 20, 30, 40, 50, 100, 150, 200, 250
and 300 features. The right-hand side values of constraints ((9)–(18)) were determined as
follows: first, for each k using equations from Table 3, the values of software metrics are
determined for two extreme cases: all features are contained in one monolith (met1) and
each feature is one microservice (met2). Then, the obtained values were aggregated into
right-hand side values (rhs) using the equation:

rhs = w1 ·met1 + w2 ·met2 (19)

The weights of w1 and w2 were incrementally changed and their values are shown in
the header of Table 4.

The elements of the solutions for each k and each weights ratio are given in Table 4:
the number of monoliths with the number of features given in parentheses; the number of
microservices; the sum of deviations (the value of the objective) and the optimization time.
Optimization was performed on Lenovo ThinkPad L580 Laptop (Intel Core 8th Generation
i7-8550U at 2.00 GHz Processor, 16 GB DDR4 RAM, 512 GB SSD, Windows 10 Professional
64-bit Operating System).

As expected, with an increase in the weight of met1 and met2, the number of features
organized into microservices increased, i.e., the number of features grouped into monoliths
decreased. In addition, in most cases, features were grouped into multiple monoliths of
different sizes. In 20 cases, the value of the objective is 0, i.e., there is no deviation from
the maximal, minimal and target values of the metrics. When weights w1 and w2 are equal
or close, the objective function value is equal to 1. In all 30 such cases, deviations from
maximal values of Security Hotspots (SH) by 1 are obtained. Given that the values for SH
are high, for example SH = 182 for k = 100, the obtained deviations are acceptable. In the
last 20 cases, the objective values are equal to 2 and they all refer to the deviation from
maximal values of Security Hotspots. Based on the performed examinations, the internal
structure of the software is defined in a consistent manner, while the external software
behaviour remains unchanged.
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Table 4. Optimization results.

No. of
Fea-

tures
Solution w1 = 0.8

w2 = 0.2
w1 = 0.7
w2 = 0.3

w1 = 0.6
w2 = 0.4

w1 = 0.5
w2 = 0.5

w1 = 0.4
w2 = 0.6

w1 = 0.3
w2 = 0.7

w1 = 0.2
w2 = 0.8

10

# of monoliths 1 (8) 1 (7) 1 (6) 2 (4, 2) 1 (4) 1 (3) 1 (2)
# of microservices 2 3 4 4 6 7 8

deviation 0 0 1 1 1 2 2
time used 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s

20

# of monoliths 1 (16) 1 (14) 1 (12) 2 (8, 3) 1 (8) 2 (5, 2) 1 (4)
# of microservices 4 6 8 9 12 13 16

deviation 0 0 1 1 1 2 2
time used 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s 0.0 s

30

# of monoliths 1 (24) 1 (21) 1 (18) 1 (15) 3 (6, 6, 2) 1 (9) 1 (6)
# of microservices 6 9 12 15 16 21 24

deviation 0 0 1 1 1 2 2
time used 0.0 s 0.0 s 0.0 s 0.0 s 0.1 s 0.0 s 0.1 s

40

# of monoliths 1 (32) 1 (28) 1 (24) 1 (20) 1 (16) 2 (10, 3) 3 (4, 3, 3)
# of microservices 8 12 16 20 24 27 30

deviation 0 0 1 1 1 2 2
time used 0.0 s 0.0 s 0.0 s 0.0 s 0.2 s 0.1 s 0.2 s

50

# of monoliths 1 (40) 1 (35) 1 (30) 4 (22, 2, 2, 2) 3 (15, 5, 2) 1 (15) 2 (8, 3)
# of microservices 10 15 20 22 28 35 39

deviation 0 0 1 1 1 2 2
time used 0.0 s 0.0 s 0.0 s 0.3 s 0.8 s 0.3 s 0.3 s

100

# of monoliths 1 (80) 1 (70) 1 (60) 5 (29, 4, 4, 2, 15) 3 (29, 8, 5) 3 (14, 9, 9) 2 (12, 9)
# of microservices 20 30 40 46 58 68 79

deviation 0 0 1 1 1 2 2
time used 0.1 s 0.2 s 0.2 s 2.5 s 2.2 s 0.8 s 0.7 s

150

# of monoliths 1 (120) 1 (105) 1 (90) 2 (62, 14) 2 (58, 3) 6 (36, 6, 2, 2, 2, 2) 4 (21, 2, 7, 3)
# of microservices 30 45 60 74 89 100 117

deviation 0 0 1 1 1 2 2
time used 0.4 s 0.3 s 0.4 s 3.4 s 18.8 s 2.0 s 40.8 s

200

# of monoliths 1 (160) 1 (140) 1 (120) 7 (49, 8, 37, 2, 3, 4, 3) 1 (80) 3 (45, 15, 2) 4 (28, 11, 2, 2)
# of microservices 40 60 80 94 120 138 157

deviation 0 0 1 1 1 2 2
time used 0.6 s 0.6 s 0.7 s 33.2 s 15.9 s 23.2 s 17.3 s

250

# of monoliths 1 (200) 1 (175) 1 (150) 18 * 35 ** 1 (75) 15 ***
# of microservices 50 75 100 108 116 175 186

deviation 0 0 1 1 1 2 2
time used 0.9 s 0.9 s 0.9 s 198.4 s 161.9 s 22.7 s 74.6 s

300

# of monoliths 1 (240) 1 (210) 1 (120) 8 (87, 38, 10, 9, 3, 6, 2, 2) 5 (76, 17, 22, 6, 3) 6 (21, 50, 4, 12, 4, 4) 3 (42, 18, 2)
# of microservices 60 90 180 143 176 205 238

deviation 0 0 1 1 1 2 2
time used 1.3 s 1.3 s 1.3 s 41.0 s 54.5 s 87.5 s 37.4 s

* 18 (79, 3, 3, 2, 22, 2, 2, 2, 6, 4, 2, 2, 3, 2, 2, 2, 2, 2) ** 35 (7, 2, 2, 2, 2, 4, 5, 3, 3, 3, 3, 3, 3, 4, 3, 3, 2, 5, 3, 3, 3, 3, 3, 2, 4, 8, 6,
5, 8, 2, 2, 4, 3, 9, 7) *** 15 (15, 3, 2, 5, 6, 2, 2, 2, 2, 10, 2, 2, 4, 4, 3).

Benefits of software architectures obtained by optimization compared to only mono-
lith or only microservices architectures are illustrated through a comparison of software
metric values for different numbers of features from Table 4. Due to the large number of
instances, those with weight values w1 = w2 = 0.5 were selected and shown in Table 5.
A related type of constraint (9–18) for each of the 10 software metrics is shown in the
mathematical model in the “constraint type” row, while the right sizes of those constraints
for k ∈ {10, 20, 30, 40, 50, 100, 150, 200, 250, 300} are given in the “condition” rows. The
rows “monolith”, “microservice”, and “optimal” contain the deviations from the given
conditions for software metric values for the cases of only monolith, only microservices
and optimal software architectures, respectively.

In the software arhitecture obtained by optimization, the only deviation appears
for Security Hotspots (SH), where the value of this metric is obtained by 1 higher than
the maximal required. In the case of a monolithic architecture, none of the metrics with
minimum acceptable values (Deployment Pipelines, AWS Instances, Deployment Profiles,
Healthcheck Endpoints) are satisfied. For example, the value of Deployment Profiles (DP)
for k = 200 according to the constraint (17) should be at least 302, but in the monolith
arhitecture its value is 3, i.e., deviation is 299. In the case of microservice arhitecture, the
metrics with maximum acceptable values (Coupling Between Objects, Security Hotspots,
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Security Configurations) are not satisfied. For example, the value of Security Configurations
(SC) for k = 200 according to the constraint (14) can be less than or equal to 101, but in
microservice arhitecture its value is 200, i.e., deviation is 99. For both architectures, monolith
and microservice, the higher the number of features, the greater these deviations. In some
other ratios of weights w1 and w2, the deviations are even larger.

Table 5. Deviation comparison.

Software Metric

CBO TU CC CCM SH SC DP AWS DPF HE

k constraint
type < = = = < < > > > >

10

condition 36 180 60 30 17 6 6 6 17 6
monolith - - - - - - 5 5 14 5

microservice 4 - - - 13 4 - - - -
optimal - - - - 1 - - - - -

20

condition 71 360 120 60 32 11 11 11 32 11
monolith - - - - - - 10 10 29 10

microservice 9 - - - 28 9 - - - -
optimal - - - - 1 - - - - -

30

condition 106 540 180 90 47 16 16 16 47 16
monolith - - - - - - 15 15 44 15

microservice 14 - - - 43 14 - - - -
optimal - - - - 1 - - - - -

40

condition 141 720 240 120 62 21 21 21 62 21
monolith - - - - - - 20 20 59 20

microservice 19 - - - 58 19 - - - -
optimal - - - - 1 - - - - -

50

condition 176 900 300 150 77 26 26 26 77 26
monolith - - - - - - 25 25 74 25

microservice 24 - - - 73 24 - - - -
optimal - - - - 1 - - - - -

100

condition 351 1800 600 300 152 51 51 51 152 51
monolith - - - - - - 50 50 149 50

microservice 49 - - - 148 49 - - - -
optimal - - - - 1 - - - - -

150

condition 526 2700 900 450 227 76 76 76 227 76
monolith - - - - - - 75 75 224 75

microservice 74 - - - 223 74 - - - -
optimal - - - - 1 - - - - -

200

condition 701 3600 1200 600 302 101 101 101 302 101
monolith - - - - - - 100 100 299 100

microservice 99 - - - 298 99 - - - -
optimal - - - - 1 - - - - -

250

condition 876 4500 1500 750 377 126 126 126 377 126
monolith - - - - - - 125 125 374 125

microservice 124 - - - 373 124 - - - -
optimal - - - - 1 - - - - -

300

condition 1051 5400 1800 900 452 151 151 151 452 151
monolith - - - - - - 150 150 449 150

microservice 149 - - - 448 149 - - - -
optimal - - - - 1 - - - - -
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Furthermore, let us examine software metrics values in case of one feature. Under
these circumstances, the following software metrics values are achieved:

Coupling Between ObjectsMonolithic = Coupling Between ObjectsMicroservice = 4, k = 1 (20)

Unit TestsMonolithic = Unit TestsMicroservice = 18, k = 1 (21)

Covered ConditionsMonolithic = Covered ConditionsMicroservice = 6, k = 1 (22)

Cognitive ComplexityMonolithic = Cognitive ComplexityMicroservice = 3, k = 1 (23)

Security HotspotsMonolithic = Security HotspotsMicroservice = 3, k = 1 (24)

Security ConfigurationsMonolithic = Security ConfigurationsMicroservice = 1, k = 1 (25)

Deployment PipelinesMonolithic = Deployment PipelinesMicroservice = 1, k = 1 (26)

AWS InstancesMonolithic = AWS InstancesMicroservice = 1, k = 1 (27)

Deployment ProfilesMonolithic = Deployment ProfilesMicroservice = 3, k = 1 (28)

Healthcheck EndpointsMonolithic = Healthcheck EndpointsMicroservice = 1, k = 1 (29)

It is evident that, in this case, the observed software quality metrics will have the same
values in both monolithic and microservice software architectures. In case of only one
feature, it may be concluded that the point k = 1 represents the Intersection Point of Monolithic
and Microservice Software Architectures where the examined quality metrics obtain the same
values. On the other hand, the increase in the number of features leads to a value increase
of quality metrics in microservice software architecture, whilst these values are constant in
monolithic software architecture (with the exception of Coupling Between Objects, Units
Tests, Covered Conditions, and Cognitive Complexity metrics with values increasing in
both architectures). Against this background, two conclusions may be drawn:

• In case of only one feature (i.e., k = 1) monolithic or microservice software architectures
could be applied either way;

• In case of multiple features (i.e., k > 1), software quality attribute’s importance should
be examined and a decision on whether to implement monolithic or microservice
software architecture should be made.

Taking into account the presented discussion, practical quality-based recommenda-
tions related to monolith and microservice architectures can be introduced. When Testability,
Coupling and Complexity are concerned, the evaluation indicates that each microservice
encapsulates its tests, coupling and complexity. Lower code coverage (in terms of Testa-
bility), coupling between objects (in terms of Coupling), as well as cyclomatic complexity
and cognitive complexity (in terms of Complexity) were obtained in microservice software
architecture. Therefore, if the number of features increases, the complexity could be divided
between microservices. Additionally, when increasing the number of features, unit testing
of the microservice is simple, while integration testing may pose challenges.

On the other hand, some quality metrics in case of an increase in the number of features
indicate that the application of microservice software architecture may be a more prefer-
able solution. The corresponding software system can be more deployable and available
compared to a monolithic system. As for Deployability metrics, multiple AWS instances,
pipelines, and deployment profiles exist. In that context, if a feature changes, microservice’s
deployable can be deployed faster than that of a monolithic application’s. Furthermore,
parallel execution of microservices’ pipelines is possible, which additionally reduces the
deployment time. As for Availability metrics, each microservice can independently be
healthchecked based on which a new microservice instance can be started. Furthermore,
when high-availability of a service is needed, auto-provisioning and scaling could be per-
formed. When Security metrics are concerned, an increase in the number of features will
not affect security hotspots and security configuration of monolithic application, while the
security of each microservice should particularly be assessed. Considering that an increase
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in the number of features implies that each microservice as well as their communication
need to be more secured, along with the fact there is a need for managing a network’s
infrastructure, performances and latency, monolithic application can represent a better
solution. The above conclusions may contribute to the appropriate choice of architecture
that best corresponds to the software system being developed.

Different research focused on choosing a technique for microservice’s extraction from
a monolithic system can be found. Research conducted by Levcovitz et al. defines a set of
facades, set of business functions and set of database tables [53]. Subsequently, component
mappings are defined, dependency graph is created, and microservice candidates are iden-
tified [53]. Within the examined software system in this approach, controllers correspond
to facades, business functions could be presented through the services, while each mi-
croservice would incorporate a relevant repository component and relevant database table.
Another approach suggests microservice organization around business capabilities [11,45].
According to this approach, a set of similar functionalities should be grouped into one
microservice. Within the examined software system, a microservice could be presented
using one feature which can be defined as a functional characteristic of a system of interest
that end-users and other stakeholders can understand [28]. This helps identify business
capabilities that could be implemented as microservices. The following approach implies
the application of Domain-Driven Design techniques and Bounded Context pattern [54],
which helps achieve modelling according to domains. When applying this approach to
the examined software system, microservices could be modelled towards domain objects
which would result in bounded context: each microservice is aimed at one domain and
incorporates only domain-related functionalities. Although the resulting microservices
correspond to the observed microservice extraction techniques, we do believe the results
may vary depending on the domain and complexity of the system subject to evaluation.

Each software architecture has certain benefits. Microservice architecture is a prefer-
able option when many of the quality attributes are considered, but monolithic architecture
has its benefits as well. Within a software development industry, numerous legacy systems
that usually use monolithic architecture exist [14,55]. Software requirements ask for con-
tinuous improvement and refinement of architecture [6]. So, a transition from monolithic
to microservice architecture is possible with the application of Strangler design pattern
by transforming each functionality to a separate microservice [56,57]. This accomplishes
refactoring, i.e., the system’s design is changed without changing external software behav-
ior [58,59]. However, it is important to note that refactoring of the whole system is not
conducted at once, but isolation of functionalities and their transformation to microser-
vices is achieved gradually. Refactoring should consequently lead to the improvement of
software system’s quality level [60,61].

Finally, we want to emphasize that the application of microservice software architec-
ture will not resolve all problems in the software development process [14]. Implementation
of monolithic or microservice architecture may have a positive impact on some software
quality attributes, while at the same time having a negative effect on other attributes [11,62].
Therefore, quality attributes cannot be observed in isolation, but rather as a part of the
whole development process.

7. Conclusions

The complexity of modern software systems enforces the need for good organization
of the software development process. One of the important decisions the software devel-
opment team needs to make is the selection of software architecture which is the basis
for further software development. This paper has discussed monolithic and microservice
software architectures. The evaluation process examined the software system for project
assessment, while Feature-driven development and Jakarta EE technology stack were
applied in the software development process.

Based on the performed evaluation, a quality-based mathematical model for software
architecture optimization was developed. The MIGP model incorporates various software
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metrics in terms of their values and deviations and produces a solution which incorpo-
rates multiple monoliths and microservices. In addition, an intersection point in which
observed software metrics obtain the same values in monolithic and microservice software
architectures was introduced. This is achieved only in the case of one feature and implies
that either one of the architectures, monolithic or microservice, can be applied. On the
other hand, an increase in the number of features indicates that the importance of quality
attribute for the software system should examined and, in accordance with that, software
architecture should be selected.

Furthermore, practical recommendations regarding software architectures, in the
context of software quality, were presented. When Testability, Coupling, and Complexity
are concerned, research indicates that each microservice encapsulates its tests, coupling and
complexity. Therefore, in case of an increase in the number of features, the complexity could
be divided between microservices. Additionally, when increasing the number of features,
unit testing of the microservice is simple, while integration testing may pose challenges. On
the other hand, Deployability and Availability quality metrics obtain better values in case
of microservice architecture, while Security quality metrics have more preferable values
within monolithic architecture. Taking into account all these conclusions can help make a
proper choice of architecture that best suits the specific software system.

Since each software system, apart from functional requirements, also needs to meet
non-functional requirements related to software quality [4,24], we believe that the obtained
conclusions form a good basis for further research. Provided that this research had dis-
cussed the general structure of monolithic and microservice software architectures, further
direction of examination may refer to the inclusion of additional criteria in the evaluation
process (e.g., additional coupling between components and/or modules, examination
of interdependence between quality attributes). Although the investigated features of
the software system contain typical components and operations, further research should
include additional components and operations. In addition, the importance of software
quality attributes for the software system being developed should be examined. Taking
into account that each quality model can define different quality attributes, further research
should also include a larger set of software quality attributes.

Considering the direct relation between software architectures and quality attributes,
software development that focuses on quality is promoted in this way and, consequently,
the improvement of software system’s quality is achieved. This helps establish quality-
driven software engineering [37,38].
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