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Abstract: We present a method to identify symmetry groups of the Yukawa sector of the three-
Higgs-doublet model and to determine the implication that the symmetry has on the lepton masses
and mixing. The method can accommodate different hypotheses about the group representation
assignments, and thus support the exploration of candidate symmetry groups. For one particular rep-
resentation selection scheme we apply the computer-implemented method to scan all discrete groups
of order less than 1035. It can be proven that none of these groups defines a flavor symmetry that
implies masses and neutrino mixing angles consistent with the experimental lepton data, although
several cases are found that are partially or approximately consistent.
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1. Introduction

Many important questions still remain unanswered in the Standard Model (SM),
which on the other hand agrees with experiment with great accuracy [1,2]. In this situation,
various extensions of the SM have been proposed to address some unresolved questions,
for example, the origin of the three generations of fermions, with such different mass
hierarchies and radically different mixing patterns of leptons compared to quarks. In
the lepton sector, which is the focus of this work, various attempts have been made to
devise a theory that could predict the lepton masses and their mixing (e.g., see [3–7]). The
experimental data on these quantities have gained better precision in recent years (e.g.,
see [8–10]), and it is getting increasingly hard to explain them satisfactorily. An often
encountered approach to this problem is to look for some flavor symmetry of the lepton
interaction Lagrangian that can, in a way consistent with the experimental data, predict the
values of the lepton masses and their mixing angles. It is well known that a continuous
nontrivial flavor symmetry in the lepton sector does not exist, which follows from the fact
that the lepton masses are distinct [11]. Discrete symmetries remain possible in the Yukawa
sector. However, due to Schur’s first lemma, the acting of two inequivalent representations
in flavor space (one on the lepton doublets, one on the lepton singlets) implies that any
mass matrix is either proportional to the unit matrix or vanishes. One strategy to avoid this
problem is to break the flavor symmetry explicitly in such a way that the charged lepton
mass matrix and the neutrino mass matrix are separately invariant under two different
subgroups of a larger discrete symmetry group G [12]. The subgroups are usually kept
small, although in [13], groups G of order up to 1000 have been investigated. It was
shown that the possible lepton mixing patterns then depend on how the two subgroups
are embedded within G. Another approach is based on a Lagrangian including mass terms
constructed with lepton, Higgs doublet and scalar flavon fields. Group-invariance of the
terms is looked for by systematic probing all plausible representation assignments [14],
where dynamic parameters (VEVs) affect the predicted mixing angles [15,16].
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The aforementioned explicit flavor symmetry breakdown in the Yukawa sector can
be avoided in the presence of Higgs fields (causing spontaneous symmetry breaking)
that transform under G. Two-Higgs doublet models (2HDM) [17] are obvious candidates
to investigate that principle. In [18,19] non-Abelian groups that have two- and three-
dimensional irreducible representations have been investigated. The lepton masses and
the angles of the mixing matrix resulting from the assumed discrete symmetry were found,
but the agreement with the experimental data was not satisfactory. Although the implied
lepton masses of the model were nondegenerate, the obtained mixing matrices appeared
to be always monomial. However, the results are different when one more Higgs doublet
is added, as for example in the three-Higgs-doublet model (3HDM) [20,21]. This model
contains neither flavons nor other additional fields and it allows the treatment of neutrinos
as Dirac particles or as Majorana particles. We will assume that the Higgs doublets form a
flavor vector transforming under a group G, as do the charged-lepton and neutrino flavor
vectors. In this model [18,22], the mass-squared matrices are not affected by Schur’s first
lemma: the masses can be nondegenerate and the neutrino mixing nontrivial, even when
the assigned 3D irreps are inequivalent and G is non-Abelian.

The 3HDM symmetry depends on how group representations are assigned to the
flavor vectors. In order to either prove the existence of a proper symmetry or to exclude any
symmetry, different hypotheses about the representation assignments must be tested. For
this purpose we have built a computer tool that analyses discrete groups of arbitrary order.
The theoretical foundation, the design of the tool and the initial outcomes are presented in
this article.

In the following section we define the extension of the SM to 3HDM and describe the
construction of the Yukawa Lagrangian. In Section 3 we define one particular scheme for
the representation assignments and summarize the scan results for groups with order of
less than 1035. Section 4 describes the method for finding those transformations (defined
by finite subgroups of U(3)) that impose non-trivial relationships between lepton masses
and mixing angles. In Section 5 we list alternative assignments of the representations, and
directions for improvement of the exploration method.

2. Flavor Symmetry of the 3HDM

The SM comprises one electroweak SU(2) Higgs doublet, that generates the masses of
the gauge bosons and the fermions. The fermions that we study in this work are the three
charged leptons electron, muon and tau, denoted le, lµ and lτ , and three neutrinos, that we
name νe, νµ and ντ . The subscripts e, µ and τ are called lepton flavors.

Suppose for a moment that the three charged leptons have equal mass and also the
three neutrinos have equal mass. Then the charged leptons would be indistinguishable
and the same goes for the neutrinos. Any Lagrangian constructed from the lepton fields
would be invariant under interchanging of charged fermions or interchanging neutrinos
or, more generally, under any unitary transformation of the triplets (or flavor vectors)
(le, lµ, lτ)T and (νe, νµ, ντ)T . We would have a trivial continuous U(3) flavor symmetry. If
any two charged leptons (or any two neutrinos) have different masses, the Lagrangian will
in general lose its U(3) flavor symmetry. We will see that for the Lagrangian of the SM we
can apply the reverse argument: if the Yukawa term is invariant under certain continuous
U(3) transformations of the flavor vectors then the masses of the charged leptons, and of
the neutrinos, are degenerate. The key point here is that unlike the SM the 3HDM does
allow nondegenerate lepton masses under specific discrete symmetries and, in addition,
predict relations among mass and mixing quantities that can be compared against the
experimental data.

In the following we consider two scenarios. In the first we treat all six fermions as
Dirac particles. In the second we treat the three neutrinos as Majorana particles instead. A
difference between the Dirac neutrinos and Majorana neutrinos is the way they acquire
mass through the Higgs mechanism. As an extension of the SM the 3HDM has three
electroweak SU(2) Higgs doublets (instead of only one), denoted Φi, i = 1, 2, 3. Doublet
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i contains an electrically neutral Higgs field φ0
i and a negative Higgs field φ−i . The left-

handed components of the leptons form electroweak SU(2) doublets Lα = (ναL, lαL)
T for

each of three flavors α. Lepton masses arise from Yukawa couplings between the Higgs
fields and the (left- and right-handed components of the) lepton fields.

To define flavor symmetry we first need to know the Lagrangian of the system re-
sponsible for the lepton masses and mixing. In this work we account for the Yukawa
sector of the Lagrangian only, not for the vacuum alignments imposed by symmetry of
the potential energy term of the Higgs bosons. The Yukawa Lagrangian Ll of the charged
leptons has 27 terms (plus their Hermitian conjugates), for the occurring combinations
(i, α, β), compactly denoted

Ll = −(hl
i)αβLαLΦ̃ilβR + H.c.. (1)

Here summation over the lepton flavor indices α, β = e, µ, τ and over i = 1, 2, 3 is under-
stood. The Higgs doublet Φ̃i = iσ2Φ∗i is the complex conjugate representation of Φi, where
σ2 is the second Pauli matrix. hi is the 3× 3 Yukawa matrix defining the couplings due
to Higgs doublet Φi. LαL = (ναL, lαL). If we treat neutrinos as Dirac particles, i.e., there
exist right-handed neutrino fields, then the Yukawa Lagrangian of the neutrinos is (similar
to Ll):

Lν = −(hν
i )αβLαLΦiνβR + H.c. (2)

If we assume that neutrinos are Majorana particles instead then separate right-handed
neutrino fields are not needed. For each flavor α the charge-conjugate lepton doublet
Lc

αL = CLT
αL is a right-handed doublet. Then an effective dimension-five operator can be

constructed to define the Yukawa Lagrangian of Majorana neutrinos as [23]

LM = − g
M

(hM
ij )αβ(LαLΦi)(ΦT

j Lc
βL) + H.c., (3)

where g and M are constants and hM
ij is a 3× 3 matrix of coupling constants. The number

of terms of this Lagrangian is 81 (not counting the H.c. terms), which is the number of
combinations (i, j, α, β).

After spontaneous electroweak symmetry breaking, the vacuum expectation values vi
for the Φi generate the mass matrices Ml , Mν and MM as

Ml = − 1√
2

v∗i hl
i Mν =

1√
2

vihν
i MM =

g
M

vivjhM
ij . (4)

The mass-Lagrangian terms for the charged leptons, and for the Dirac neutrinos and the
Majorana neutrinos will read

Ll
mass = −lL Ml lR + H.c. Lν

mass = −νL MννR + H.c. LM
mass = −

1
2

νL MMνc
L + H.c., (5)

where lL, lR, νL, νR are flavor vectors for the left/right-handed charged leptons and neutri-
nos, respectively. For example lL = (leL, lµL, lτL)

T . We also define v = (v1, v2, v3)
T as the

flavor vector of the Higgs doublets.
We are now ready to explore symmetries of the three Lagrangian terms; for that

purpose we can leave out the Hermitian conjugate terms, so it is sufficient to consider
the quantities

lL (v∗i hl
i) lR, νL (vihν

i ) νR and νL (vivjhM
ij ) νc

L. (6)

lL, lR, νL, νR and v will each be assigned a three-dimensional representation of some finite
group G. In the present study we restrict to irreducible representations; other choices of
representations will be discussed later. All representation matrices must be unitary in order
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to conserve the total lepton number and to ensure that
√

Σ|vi|2 = (
√

2GF)
−1/2 = 246 GeV,

where GF is the Fermi coupling constant. We should remember that ll and νl reside in the
same SU(2) doublet and hence should be assigned the same representation.

As said in the introduction, we want to find such a discrete symmetry of the full
Lagrangian of leptons that will give mass matrices of charged leptons and neutrinos, where
several free parameters can be selected so, that after diagonalization, we obtain lepton
masses, mixing angles and the CP symmetry breaking phases consistent with experimental
observations. For this purpose, we should study the symmetry of two terms, (1) the Yukawa
Lagrangian which, after spontaneous symmetry breaking, produces lepton mass matrices,
and (2) the Higgs potential. In the present study, we will only deal with the symmetry of
a well-defined Yukawa Lagrangian, leaving for further analysis the selection of a Higgs
potential the form of which is more freely defined.

The first step is to identify distinct groups G, isomorphic to a U(3) subgroup, that
have one or more unitary three-dimensional irreducible representations, and assign these
representations to the flavor vectors so that some or all of the three transformed terms of
Equation (6)

lL A†
L(g) (A∗Φ(g)v∗)ihl

i AlR(g) lR (7)

νL A†
L(g) (AΦ(g)v)ihν

i AνR(g) νR (8)

νL A†
L(g) (AΦ(g)v)i(AΦ(g)v)j)hM

ij A∗L(g) νc
L (9)

remain invariant under simultaneous operation of matrices of the irreducible representa-
tions AL(g), AlR(g), AνR(g) and AΦ(g) for all g in G and any vector lL, lR and v. Note that
different flavor vectors can be assigned different representations of G.

As an example let us consider the Yukawa Lagrangian for the charged leptons (7). It is
G-invariant if

lL (v∗i hl
i) lR = lL A†

L(g) (A∗Φ(g)v∗)ihl
i AlR(g) lR, all g ∈ G, all lL, lR, v. (10)

Since all matrix operators are linear, we are dealing with a set of |G| equations with
27 unknown complex numbers (the entries of the three Yukawa matrices hl

i). |G| is the order
of G. So if Equation (10) can be solved, it defines the hl

i . Here we realize that if Equation (10)
is solved for a particular group element g then the system of equations obtained after
transformation of all flavor vectors with the operators AL(g), AlR(g), AνR(g) and AΦ(g),
will also be solvable for g, giving exactly the same solution(s) hl

i . So if Equation (10) is
solved for g, it will be solved for gn for all n. In that case we can remove the mutually
equivalent equations. Further, if Equation (10) is solved for group elements g and h it will
be solvable for gn hm too. More generally, we need only to take into account the generators
of G, rather than all its elements. In a similar way we can define the set of equations to
solve for hν

i and hM
ij :

νL (vihν
i ) νR = νL A†

L(g) (A∗Φ(g)v)ihν
i AνR(g) νR, (11)

νL(vivj)hM
ij νc

L = νL A†
L(g) (AΦ(g)v)i(AΦ(g)v)j)hM

ij A∗L(g) νc
L, (12)

where for Equation (12) the number of unknowns is 81 (the entries of nine 3× 3 matrices). A
discrete symmetry of lepton interactions given by some group G requires that Equations (10)
and (11) are satisfied for Dirac neutrinos and Equations (10) and (12) for Majorana neutrinos
for all generators of G.

3. Solving the Invariance Equations

We take Equation (10) as an example again. Working out the matrix multiplications it
can be expressed as

((AΦ(g))† ⊗ (AL(g))† ⊗ (AlR(g))T) hl = hl , (13)
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The Kronecker product gives a 27 × 27 matrix, and hl is the 27-dimensional vector built
from the Yukawa matrices hl

1, hl
2 and hl

3, in that order, row-wise. If hl is an invariant
eigenvector satisfying Equation (13) for all generators of G then Ll is G-invariant. The
invariance equations for the terms Lν and LM are

((AΦ)
T ⊗ (AL)

† ⊗ (AνR)
T)hν = hν (14)

((AΦ)
T ⊗ (AΦ)

T ⊗ (AL)
† ⊗ (AL)

†)hM = hM, (15)

dropping the (g)-argument for clearness. hν is a 27-dimensional invariant eigenvector built
from the entries of the three hν

i matrices, row-wise. The 81-dimensional vector hM contains
the entries of hM

11, row-wise, followed by the entries of hM
12, hM

13, hM
21 etc.

For completeness we note that Equations (13)–(15) are equivalent to the (Clebsch-
Gordan) tensor product decomposition equations [24]

AL ⊗ A∗lR = A∗Φ ⊕ ... (16)

AL ⊗ A∗νR = AΦ ⊕ ... (17)

A∗Φ ⊗ AL ⊗ AL = AΦ ⊕ ..., (18)

still assuming that all matrix operators are unitary. Equations (16) (or (17)) are fulfilled if
and only if the 9-dimensional tensor product operator allows a decomposition containing at
least one three-dimensional matrix operator. Equation (18) requires that the 27-dimensional
tensor product operator contains at least one three-dimensional matrix operator.

To investigate which groups and which representation assignments can accomplish
such invariance one could expect that it is necessary to explicitly solve the invariance
equations for each instance. However, in the next section it will be shown that a significant
part of those calculations can be skipped. The computational complexity of the calculations
needs to be considered further because groups with |G| > ∼1000 can have 8 or more
generators and hundreds of inequivalent three-dimensional representations, leading to
up to 10 million equation sets Equations (13)–(15) for a single group. We therefore put
some restrictions to the analysis. Only irreducible representations are considered and a
candidate group must have at least one faithful three-dimensional representation. Our
precise selection criterion is that at least one of the irreducible representations assigned to a
mass term is faithful. As mentioned, different selection criteria can be tested too.

From a scan of groups with |G| < 1035, while applying the selection criteria, we find
749 groups that provide one or more solutions hl to Equation (13), and in each of these cases
also a solution hν to Equation (14). In the entire set of (over 6 million) solutions hl (or hν),
2130 are linearly independent. 216 groups provide one or more solutions to Equation (15),
resulting in 70 linearly independent vectors hM.

It follows from Equation (4) that for given solutions hl , hν and hM the mass matrices
(and hence the mixing matrices) are functions of the VEVs. Since we do not know the
absolute scale of the Higgs couplings nor the flavor assignments we have v2/v1 and v3/v1
as 4 real parameters, and we can at most determine mass ratios mi/mj of the leptons. Also
any PMNS matrix can be determined up to permutation of its rows and columns and (for
the Majorana case) up to a phase for two rows.

The low number of solutions that, despite the 4 parameters, imply nontrivial neutrino
mixing is somewhat surprising. The majority of the obtained mixing matrices is monomial
and exclude mixing. For none of the tested groups we find a symmetry that is entirely
compatible simultaneously with the experimental masses and mixing data, neither when
the neutrinos are assumed Dirac or Majorana particles. However, there are symmetries
(e.g., for ∆(96) and S4) that imply partially or approximately correct quantities.

4. Method to Find Relations among the Lepton Mass and Mixing Parameters

The selection and processing of groups is fully automated using the computer-algebra
system GAP [25]. To determine which representation assignments would solve a particular



Symmetry 2022, 14, 1854 6 of 10

invariance equation it is sufficient to observe the group’s character table, which is readily
provided by GAP. By doing so a tremendous amount of redundant computation is avoided;
we therefore go into some detail of this point. The character of g ∈ G in representation
A, denoted χA(g), is defined as the trace of matrix A(g). The mapping χA is called the
character of A. Let A and B be representations of G, then

〈χA, χB〉 :=
1
|G| ∑

g∈G
χA(g)?χB(g) (19)

defines the inner product of characters χA and χB. It can be proven that χA⊗B(g) =
χA(g)χB(g) for all g ∈ G. Let also H be an irreducible representation of G. Then 〈χA⊗B, χH〉
is the multiplicity of H occurring in the tensor product decomposition of A⊗ B. In Equa-
tion (16), 〈χAL⊗A∗lR , χA∗Φ〉 can take a value from 0 to 3. This is the number of linearly
independent solutions hl to Equation (13). The inner product can be directly deduced from
the character table of G, and thus prior to the actual generation of the representation matri-
ces themselves and without explicitly solving Equation (13). For brevity let us denote the
representations appearing in Equation (16) as A, B and H, respectively. Then, if A, B and H
are irreducible, Equation (13) has a nontrivial solution if and only if n := 〈χA⊗B?

, χH?〉 > 0.
In the present selection procedure the representation triplet (A, B, H) is accepted only
if n = 1; as a trade-off regarding computational load, we disregard multidimensional
solutions (n > 1).

The process of identifying 3HDM symmetry groups is schematically given in
Algorithm 1. The first if-statement filters out the groups with |G| not divisible by 3. It
can be proven that groups with 3D irreps (and those are the ones we consider) must have
order divisible by 3. In the next statement the character table of G is retrieved, using GAP.
Let us take group S4 (the group of all permutations of 4 objects) as an example. S4 has
order |G| = 24. Its character table is shown in Table 1. The top row in the table lists how
many group elements are member of a particular conjugacy class of the group. S4 has 5
conjugacy classes and the list adds up to 24. The first conjugacy class has one member,
which is the identity element of the group. The next 5 rows list the vectors of characters for
all irreducible representations of S4. Each row defines the 5 entries of a character χi, where
each entry equals the trace of a representation matrix. For example χ3 = (2, 0,−1, 2, 0).
Its 4th component specifies that the three group elements in the 4th conjugacy class each
correspond to a representation matrix with trace equal to 2. The first numerical column
(belonging to the identity element) indicates the dimensions of the matrix representations,
since the trace of any identity matrix equals its dimension.

In the character table of S4 the algorithm finds two three-dimensional irreducible
characters namely χ4 and χ5, listed in the last two lines of Table 1. So the set E (introduced
in line 5 of the algorithm) is going to contain these two characters. The algorithm also
signifies that both are faithful, since all their character entries (except the first) are smaller
than 3, and thus none of the corresponding representation matrices will be an identity
matrix. This guarantees that any two different group elements will be represented by two
different matrices.

Table 1. Irreducible characters of group S4.

1 6 8 3 6

χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 −1 2 0
χ4 3 −1 0 −1 1
χ5 3 1 0 −1 −1
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Algorithm 1: Obtain Dirac mass matrices from group symmetry of the 3HDM.

1 Let S be a set of finite groups of interest;
2 for every G in S do
3 if 3 divides the order of G then
4 obtain character table of G;
5 obtain E, the set of characters for three-dimensional irreducible

representations of G;
6 for every 4-tuple of characters (A, B, C, H) in E4 do
7 if one of A, B, H is faithful and n1:= innerProduct(A⊗ B∗, H∗) = 1 then
8 Obtain unitary representation matrices for the 3D irreps of A, B, H;
9 for every generator of G do

10 setup Kronecker product equation;
11 end
12 Solve set of Kronecker product equations for hl-matrices;
13 Calculate charged lepton mass matrix Ml ;
14 end
15 if one of A, C, H is faithful and n2:= innerProduct(A⊗ C∗, H) = 1 then
16 Obtain unitary representation matrices for the 3D irreps of A, C, H;
17 for every generator of G do
18 setup Kronecker product equation;
19 end
20 Solve set of Kronecker product equations for hν-matrices;
21 Calculate Dirac neutrino mass matrix Mν;
22 end
23 if n1 = 1 and n2 = 1 and one of A, B, H is faithful
24 and one of A, C, H is faithful
25 then
26 Calculate UPMNS from Ml and Mν;
27 end
28 end
29 end
30 end

From step 6 of the algorithm all possible 4-tuples that can be made from the characters
in E are processed. What we describe from here on is for one 4-tuple of characters, named
(A, B, C, H). In line 7 the inner product n1 determines whether decomposition Equation (16)
is feasible for characters (A, B, H). In case A = χ4 and B = χ4 it is found that A⊗ B? =
(9,−6, 0, 3,−6). For H = χ4 it follows from Equation (19) that 〈A ⊗ B?, H?〉 = n1 = 1.
So (A, B, H) = (χ4, χ4, χ4) is a candidate character triplet to define a symmetry of the
charged-lepton mass term. One more triplet, (A, B, H) = (χ4, χ4, χ5) appears viable too.
As a result, only these two triplets for the charged-lepton term need further processing, in
lines 8 to 13. The explicit three-dimensional matrix representations (denoted 3A, 3B and 3H)
of A, B and H are obtained using the Repsn package of GAP [26]. The Kronecker product
Equation (13) is constructed for each generator fi of G, and the resulting set of equations is
solved for hl , using the BaseFixedSpace function of GAP. If we define the 27-dimensional
matrix Kl

i as
Kl

i = (AΦ( fi))
† ⊗ (AL( fi))

† ⊗ (AlR( fi))
T , (20)

where i = 1, . . . , nG and nG is the number of generators, then BaseFixedSpace takes the ma-
trices Kl

i as input and returns their n1-dimensional common eigenspace. In our application
n1 = 1, so the eigenspace defines hl .

In line 13 Ml is calculated as a function of v, using Equation (4). From line 15 on it is
checked whether assignment (A, C, H) can solve decomposition Equation (17) and if so,
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the Dirac neutrino mass matrix Mν is calculated. Finally, if both Ml and Mν are available,
UPMNS is calculated (using Mathematica [27]) for the duplet ((A, B, H), (A, C, H)) using
the corresponding representations ((3A, 3B, 3H), (3A, 3C, 3H)). For group S4 it turns out
that an invariant UPMNS exists, as will be described later.

For a given (A, B, C, H), Algorithm 1 outputs either nothing or Ml or Mν or both
mass matrices, and in the latter case UPMNS as well. From this output the invariance of
the individual terms Ll or Lν can be studied, as well as the invariance of (Ll+Lν). Since
UPMNS is extracted from observations of SU(2)L-symmetric charged current interactions
the characters A and H both appear twice in duplet ((A, B, H), (A, C, H)); lαL and ναL both
reside in the same SU(2)L doublet and thus lL and νL should transform equally. Likewise
the transformations of v and v? differ by complex conjugation, since the two corresponding
Higgs doublets differ by complex conjugation.

In case the neutrinos have Majorana nature, the computations are similar to Algorithm 1.
The character assignments are then of the form ((A, B, H), (A, H)).

From Ml , Mν (or MM) and UPMNS the 3HDM predicts lepton mass ratios and mixing
angles as functions of v2/v1 and v3/v1. As an example we take group S4 again, which
happens to be the smallest group allowing nontrivial flavor mixing in case neutrinos are
Dirac particles. The two representation assignments that provide such neutrino mixing
symmetry are ((31, 31, 31), (31, 31, 31)) and ((31, 31, 32), (31, 31, 32)), where 31 and 32 are
the two inequivalent three-dimensional representations of S4. The first representation
assignment leads to anti-symmetric mass matrices and a monomial mixing matrix. The
second implies the mass matrices:

Ml = − cl√
2

 0 v?3 v?2
v?3 0 v?1
v?2 v?1 0

, Mν = − cν
cl

Ml∗, (21)

where cν is an arbitrary constant. Based on these two mass matrices, we obtain fits to the
experimental neutrino mixing data with sin2θ12 and sin2θ23 ending up approximately 3σ
larger than the observed values; sin2θ13 and δCP deviate less than 1σ from the observed
values. Figure 1 shows mixing angle distributions calculated at uniform sampling within
a limited box of the four-dimensional parameter space. Points within 1σ from the experi-
mental sin2θ13 and δCP are red colored. The best fit is obtained for the red points closest to
the intersection of the shaded areas in the left-most subplot. Higher-order groups, such as
Ci × S4 and C4 × A4 give similar distributions.

Figure 1. UPMNS mixing angles for S4-symmetry; |vi/v1| ∈ [0, 1.2]. The shaded areas indicate 1σ

intervals of the quantities. The red points deviate less than 1σ from the experimental values of sin2θ13

and δCP.

5. Conclusions

We have presented a method to determine discrete symmetries for the Yukawa sector
in the 3HDM model, which gives the relationship between the masses of leptons and the
elements of the PMNS mixing matrix. The implied relations among the lepton masses and
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mixing can be compared to the experimental data. Using the method we have searched for
discrete flavour symmetry groups with order less than 1035. With the applied represen-
tation selection criteria, none of the studied groups provides a symmetry which predicts
lepton masses and mixing simultaneously compatible with the experimental data. Partial
and approximate agreement with the data has been explored and appeared to exist for a
small number of groups.

The method can accommodate different selection criteria by altering the presented
algorithm. For example the restriction to U(3) subgroups can be relaxed, and unfaithful,
reducible and/or lower-dimensional representations can be admitted. Also, the require-
ment that the tensor product decomposition is unique could be omitted, allowing multi-
dimensional solutions. Presumably it will thus be feasible for a given group, to either detect
a symmetry compatible with the experimental data or to rule out any such symmetry even
for the most relaxed hypothesis.

There are several possible improvements and extensions to the described method. The
present results are based on numerical sampling in four-dimensional VEV-space, where
the choice of search interval and the sampling density is limited for practical reasons. The
analysis would be highly enhanced when analytic expressions for the eigenvalues of mass
matrices are used to find bounds on solutions of physical quantities.
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