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Abstract: The paper undertakes certain special forms of the quarter symmetric metric and non-metric
connections on an ε-anti-Kähler manifold. Firstly, we deduce the relation between the Riemannian
connection and the special forms of the quarter symmetric metric and non-metric connections. Then,
we present some results concerning the torsion tensors of these connections. In addition, we find the
forms of the curvature tensor, the Ricci curvature tensor and scalar curvature of such connections
and we search the conditions for the ε-anti-Kähler manifold to be an Einstein space with respect to
these connections. Finally, we study U(Ric)−vector fields with respect to these connections and give
some results related to them.
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1. Introduction

The notion of quarter-symmetric connection on differentiable manifolds was defined
and studied by Golab in [1]. A linear connection is said to be a quarter symmetric connection
if its torsion tensor T is of the form

T(ξ1, ξ2) = u(ξ2)φξ1 − u(ξ1)φξ2, (1)

where u is a 1−form, φ is a tensor of type (1, 1), and ξi are vector fields (i = 1, 2). In
particular, if φ = id, then a quarter-symmetric connection reduces to a semi-symmetric
connection [2,3]. Thus, the notion of quarter-symmetric connection generalizes the idea
of semi-symmetric connection. Note that a quarter-symmetric metric connection is a
Hayden connection with torsion tensor of the form (1) [4]. Studies of various types of
quarter-symmetric metric connections and their properties include [5–10] among others.
In [11], Mishra and Pandey discussed certain special forms of the quarter symmetric metric
connection defined by Golab and studied the conditions for Einstein manifolds, Sasakian
manifolds and Kähler manifolds equipped with these connections to be flat, projectively
flat or conharmonically flat. Furthermore, some of the latest connected studies can be seen
in [12–17]. If a quarter-symmetric connection ∇ on a Riemannian manifold (M, g) satisfies
the condition

(∇ξ1 g)(ξ2, ξ3) = 0

for all vector fields ξ1, ξ2, ξ3 on M, then ∇ is said to be a quarter-symmetric metric connec-
tion, otherwise it is said to be a quarter-symmetric non-metric connection. In this paper, we
consider the special forms of the quarter symmetric metric and non-metric connections on
an ε-anti-Kähler manifold. These connections have not been defined so far. All forms of
curvature tensors of these connections are calculated and some results concerning with their
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torsion and curvature properties are presented. Finally, we study U(Ric)−vector fields
with respect to these connections and obtain some interesting results (Theorems 1 and 3).
In the future work, we plan to study certain special forms of the quarter symmetric metric
and non-metric connections on an ε-anti-Kähler manifold combine with the results and
methods in [18–47] to find more new properties.

2. Preliminaries

Let Mn be an n = 2m−dimensional differentiable manifold of class C∞ covered by
any system of coordinate neighbourhoods (xh), where h runs over the range 1, 2, ..., n.

An almost ε-complex structure E of type (1, 1) satisfies the condition E2 = εI, where
ε = {−1, 1}. If ε = −1, it is an almost complex structure and if ε = 1, it is an almost para-
complex structure. In this case, the pair (Mn, E) is called an almost ε-complex manifold. In
addition, if NE = 0, that is, almost ε-complex structure E is integrable, then the pair (Mn, E)
is called an ε-complex manifold, where NE is the Nijenhuis tensor:

NE(ξ1, ξ2) = [Eξ1, Eξ2]− E[Eξ1, ξ2]− E[ξ1, Eξ2] + ε[ξ1, ξ2]

for all vector fields ξ1, ξ2 on (Mn, E). An ε-anti-Kähler (or ε-Kähler-Norden) manifold
(Mn, g, E, ε) is a manifold which consists of an almost ε-complex structure E and a pseudo
Riemannian metric g satisfing the following conditions

g(Eξ1, ξ2) = g(ξ1, Eξ2) (2)

and
∇E = 0, (3)

where ∇ is the Levi–Civita connection of g.

Examples of ε-Anti-Kähler Manifolds

(1) The (pseudo)-Euclidean space R2n given by the (pseudo)-Euclidean metric g and

the almost ε-complex structure defined by g =

(
εδij 0
0 δij

)
and E =

(
0 δi

j
εδi

j 0

)
with

respect to the natural basis of R2n is an ε-anti-Kähler space.
(2) Let TM be the tangent bundle of a Riemannian manifold (M, g) (dimM = n) and

let π : TM −→ M be the projection. A point x of the tangent bundle is represented by an
ordered pair (z, u), where z = π(x) is a point on M and u is a vector on Tz M. We refer
to [48] for more details and further references on the geometry of tangent bundles. Let∇ be
the Levi–Civita connection on M, and denote by ξv and ξh the vertical and the horizontal lift,
respectively, to the tangent bundle TM of the vector field ξ on M. Consider the following
Sasaki-type metric and the almost ε-complex structure on TM, respectively [48,49]:

g̃(ξh
1 , ξh

2) = εg(ξ1, ξ2),

g̃(ξh
1 , ξv

2) = g̃(ξv
1 , ξh

2) = 0,

g̃(ξv
1 , ξv

2) = g(ξ1, ξ2),

and

Ẽ(ξh) = εξv,

Ẽ(ξv) = ξh.

It is easy to see that the Sasaki-type metric g̃ and the almost ε-complex structure Ẽ are
related by the equality g̃(Ẽξ̃1, ξ̃2) = g(ξ̃1, Ẽξ̃2) for all vector fields ξ̃1, ξ̃2 on TM. The
corresponding Levi–Civita connection ∇̃ of the tangent bundle with the Sasaki-type metric
g̃ satisfies the followings [49]:
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
∇̃ξh

1
ξh

2 =
(
∇ξ1 ξ2

)h − 1
2 (R(ξ1, ξ2)u)

v,

∇̃ξh
1
ξv

2 =
(
∇ξ1 ξ2

)v
+ 1

2ε (R(u, ξ2)ξ1)
h,

∇̃ξv
1
ξh

2 = 1
2ε (R(u, ξ1)ξ2)

h,
∇̃ξv

1
ξv

2 = 0,

where R(ξ1, ξ2)ξ3 is the Riemannian curvature tensor field on (M, g). Firstly,(
∇̃ξv

1
Ẽ
)

ξh
2 = 0,(

∇̃ξv
1
Ẽξh

2

)
− Ẽ

(
∇̃ξv

1
ξh

2

)
= 0,

ε∇̃ξv
1
ξv

2 −
1
2ε

Ẽ
(
(R(u, ξ2)ξ1)

h
)

= 0,

1
2

R(ξ2, u)ξ1 = 0,

from which we have (
∇̃ξv

1
Ẽ
)

ξh
2 = 0⇔ R(ξ2, u)ξ1 = 0,

that is, the base manifold (M, g) is flat. In this case, for all vector fields ξ̃1, ξ̃2 on TM, the
conditions

(
∇̃

ξ̃1
Ẽ
)

ξ̃2 = 0 are provided. Thus, let (M, g) be a Riemannian manifold and let
TM be its tangent bundle with the Sasaki-type metric g̃ and the almost ε-complex structure
Ẽ. Then, (TM, g̃, Ẽ) is an ε-anti-Kähler manifold if and only if the base manifold (M, g) is
flat.

3. Quarter-Symmetric Metric E-Connection on (Mn, g, E, ε)

A linear connection∇ on an ε-anti-Kähler manifold (Mn, g, E, ε) satisfying the relations

∇g = 0 and ∇E = 0 (4)

is called a metric E-connection. Especially, if its torsion tensor is given by

S(ξ1, ξ2) = p(ξ2)(Eξ1)− p(ξ1)(Eξ2) + p(Eξ2)(ξ1)− p(Eξ1)(ξ2), (5)

where p is called the generator (or 1-form) of the torsion tensor S, then the connection that
satisfies the Equation (4) is as follows:

∇ξ1 ξ2 = ∇ξ1 ξ2 + p(ξ2)(Eξ1)− (U)g(Eξ1, ξ2) + p(Eξ2)(ξ1)− (EU)g(ξ1, ξ2), (6)

where U is a vector field such that g(ξ1, U) = p(ξ1) [4]. From now on, we will call the
connection that provides the Equation (6) a quarter-symmetric metric E-connection on the
ε-anti-Kähler manifold (Mn, g, E,∇, ε).

In [50], the author mentioned an operator applied to pure tensor fields K of type (r, s),
which is called the Tachibana operator ΦE, where E is any tensor field of type (1, 1). Purity
of a (r, s)-tensor field K with respect to E means that
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K(Eξ1, ξ2, ..., ξs,
1
ζ,

2
ζ, ...,

r
ζ) = K(ξ1, Eξ2, ..., ξs,

1
ζ,

2
ζ, ...,

r
ζ)

...

= K(ξ1, ξ2, ..., Eξs,
1
ζ,

2
ζ, ...,

r
ζ)

= K(ξ1, ξ2, ..., ξs, É
1
ζ,

2
ζ, ...,

r
ζ)

= K(ξ1, ξ2, ..., ξs,
1
ζ, É

2
ζ, ...,

r
ζ)

...

= K(ξ1, ξ2, ..., ξs,
1
ζ,

2
ζ, ..., É

r
ζ)

for vector fields ξ1, ξ2, ..., ξs and covector fields
1
ζ,

2
ζ, ...,

r
ζ on Mn, where É is the adjoint

operator of E defined by
(́Eζ)(ξ) = ζ(Eξ) = (ζ ◦ E)(ξ).

The Tachibana operator applied to a pure (r, s)-tensor field K is as follows [50]:

(
ΦEξ K

)(
ξ1, ..., ξs,

1
ζ, ...,

r
ζ

)
= (Eξ)K

(
ξ1, ..., ξs,

1
ζ, ...,

r
ζ

)
− ξK

(
Eξ1, ..., ξs,

1
ζ, ...,

r
ζ

)
+

s

∑
λ=1

K
(

ξ1, ...,
(

Lξλ
E
)
ξ, ..., ξs,

1
ζ, ...,

r
ζ

)
−

r

∑
µ=1

K
(

ξ1, ..., ξs,
1
ζ, ..., LEξ

µ

ζ − Lξ

(µ

ζ ◦ E
)

, ...,
r
ζ

)
.

For ε = −1, 1, if ΦEK = 0, then K is called a holomorphic and para-holomorphic tensor
field according to the ε-complex structure E, respectively. For the sake of simplicity, we
will accept the equality of ΦE p = 0 in the rest of the article, that is, the following equation
always holds:

(∇Eξ1 p)(ξ2)− (∇ξ1 p)(Eξ2) = 0. (7)

For pure tensors and tensor operators applied to them, we refer to [50,51].

3.1. Properties of the Torsion Tensor S

In this section, we will examine the properties of the torsion tensor of the quarter-
symmetric metric E-connection.

Proposition 1. The torsion tensor S expressed by (5) is a pure tensor according to E, that is,

S(Eξ1, ξ2) = S(ξ1, Eξ2) = ES(ξ1, ξ2).

Proof. From the Equation (5), we immediately get

S(Eξ1, ξ2) = ε[p(ξ2)ξ1 − p(ξ1)ξ2]− p(Eξ1)(Eξ2) + p(Eξ2)(Eξ1)

= S(ξ1, Eξ2)

= ES(ξ1, ξ2).

It is well known that the torsion tensor of the E-connection is pure if and only if the
E-connection is pure [50]. Thus, we can easily say that the Connection (6) is pure according
to E, that is,
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∇Eξ1 ξ2 = ∇ξ1(Eξ2) = E∇ξ1 ξ2. (8)

Theorem 1. For [(trE)2− ε(4− n)2] 6= 0, the necessary and sufficient condition for the generator
p to be closed is that

(∇ξ1 S)(ξ2, ξ3) + (∇ξ2 S)(ξ3, ξ1) + (∇ξ3 S)(ξ1, ξ2) = 0,

where S is the torsion tensor of the quarter-symmetric metric E-connection ∇ on (Mn, g, E,∇, ε)
and trE is the trace of the ε-complex structure E.

Proof. Firstly, let the generator p be closed, that is,

2(dp)(ξ1, ξ2) = ξ1 p(ξ2)− ξ2 p(ξ1)− p([ξ1, ξ2]) (9)

= (∇ξ1 p)ξ2 − (∇ξ2 p)ξ1

= 0.

In addition, from (5), we obtain

(∇ξ1 S)(ξ2, ξ3) + (∇ξ2 S)(ξ3, ξ1) + (∇ξ3 S)(ξ1, ξ2)

=
[
(∇ξ3 p)ξ2 − (∇ξ2 p)ξ3

]
(Eξ1)

+
[
(∇ξ1 p)ξ3 − (∇ξ3 p)ξ1

]
(Eξ2)

+
[
(∇ξ2 p)ξ1 − (∇ξ1 p)ξ2

]
(Eξ3)

+
[
(∇ξ3 p)(Eξ2)− (∇ξ2 p)(Eξ3)

]
ξ1

+
[
(∇ξ1 p)(Eξ3)− (∇ξ3 p)(Eξ1)

]
ξ2

+
[
(∇ξ2 p)(Eξ1)− (∇ξ1 p)(Eξ2)

]
ξ3.

It is easy to say that (∇ξ1 p)ξ2 − (∇ξ2 p)ξ1 = (∇ξ1 p)ξ2 − (∇ξ2 p)ξ1 = 2(dp)(ξ1, ξ2).
From (9) and (8), the last equation becomes

(∇ξ1 S)(ξ2, ξ3) + (∇ξ2 S)(ξ3, ξ1) + (∇ξ3 S)(ξ1, ξ2)

= 2[(dp)(ξ3, ξ2)(Eξ1) + (dp)(ξ1, ξ3)(Eξ2)

+(dp)(ξ2, ξ1)(Eξ3) + (dp)(ξ3, Eξ2)(ξ1)

+(dp)(ξ1, Eξ3)(ξ2) + (dp)(ξ2, Eξ1)(ξ3)]

= 0.

Conversely, let (∇ξ1 S)(ξ2, ξ3) + (∇ξ2 S)(ξ3, ξ1) + (∇ξ3 S)(ξ1, ξ2) = 0, from which

0 =
[
(∇ξ3 p)ξ2 − (∇ξ2 p)ξ3

]
(Eξ1)

+
[
(∇ξ1 p)ξ3 − (∇ξ3 p)ξ1

]
(Eξ2)

+
[
(∇ξ2 p)ξ1 − (∇ξ1 p)ξ2

]
(Eξ3)

+
[
(∇ξ3 p)(Eξ2)− (∇ξ2 p)(Eξ3)

]
ξ1

+
[
(∇ξ1 p)(Eξ3)− (∇ξ3 p)(Eξ1)

]
ξ2

+
[
(∇ξ2 p)(Eξ1)− (∇ξ1 p)(Eξ2)

]
ξ3

and
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0 =
[
(∇ξ3 p)ξ2 − (∇ξ2 p)ξ3

]
g(Eξ1, ξ4)

+
[
(∇ξ1 p)ξ3 − (∇ξ3 p)ξ1

]
g(Eξ2, ξ4)

+
[
(∇ξ2 p)ξ1 − (∇ξ1 p)ξ2

]
g(Eξ3, ξ4)

+
[
(∇ξ3 p)(Eξ2)− (∇ξ2 p)(Eξ3)

]
g(ξ1, ξ4)

+
[
(∇ξ1 p)(Eξ3)− (∇ξ3 p)(Eξ1)

]
g(ξ2, ξ4)

+
[
(∇ξ2 p)(Eξ1)− (∇ξ1 p)(Eξ2)

]
g(ξ3, ξ4).

If we contract the last equation with respect to ξ1 and ξ4, from (∇Eξ1 p)(ξ2)− (∇ξ1 p)
(Eξ2) = 0, we get

(4− n)
[
(∇ξ3 p)(Eξ2)− (∇Eξ2 p)ξ3

]
+ (trE)

[
(∇ξ3 p)ξ2 − (∇ξ2 p)ξ3

]
= 0. (10)

In the Equation (10), if we put ξ2 = Eξ2, then

ε(4− n)
[
(∇ξ3 p)ξ2 − (∇ξ2 p)ξ3

]
+ (trE)

[
(∇ξ3 p)(Eξ2)− (∇Eξ2 p)ξ3

]
= 0. (11)

Finally, from (10) and (11), we obtain

[(trE)2 − ε(4− n)2]
[
(∇ξ3 p)ξ2 − (∇ξ2 p)ξ3

]
= 0

and
[(trE)2 − ε(4− n)2](dp)(ξ1, ξ2) = 0,

which completes the proof.

Proposition 2. On an ε-anti-Kähler manifold (Mn, g, E,∇, ε), the torsion tensor S of the quarter-
symmetric metric E-connectionsatisfies the following condition:

S(S(ξ1, ξ2), ξ3) + S(S(ξ3, ξ1), ξ2) + S(S(ξ2, ξ3), ξ1) = 0. (12)

Proof. If the Equation (5) is substituted in the Equation (12), the result is directly ob-
tained.

It is well known that the curvature tensor of any connection ∇ has the form:

R(ξ1, ξ2, ξ3) = ∇ξ1∇ξ2 ξ3 −∇ξ2∇ξ1 ξ3 −∇[ξ1,ξ2]
ξ3.

Especially, if the connection ∇ is the quarter-symmetric metric E-connection given by (6),
then the curvature tensor of this connection becomes

R(ξ1, ξ2, ξ3, ξ4) = R(ξ1, ξ2, ξ3, ξ4) (13)

+σ(ξ1, ξ3)g(Eξ2, ξ4)− σ(ξ2, ξ3)g(Eξ1, ξ4)

+σ(ξ2, ξ4)g(Eξ1, ξ3)− σ(ξ1, ξ4)g(Eξ2, ξ3)

+σ(ξ1, Eξ3)g(ξ2, ξ4)− σ(ξ2, Eξ3)g(ξ1, ξ4)

+σ(ξ2, Eξ4)g(ξ1, ξ3)− σ(ξ1, Eξ4)g(ξ2, ξ3),

where R(ξ1, ξ2, ξ3, ξ4) = g(R(ξ1, ξ2, ξ3), ξ4) and R is the Riemannian curvature tensor of
the Levi–Civita connection ∇ and

σ(ξ1, ξ2) = (∇ξ1 p)ξ2 − p(ξ1)p(Eξ2) +
1
2

p(U)g(Eξ1, ξ2) (14)

−p(ξ2)p(Eξ1) +
1
2

p(EU)g(ξ1, ξ2).

It is easy to see that



Symmetry 2022, 14, 1899 7 of 15

σ(ξ1, ξ2)− σ(ξ2, ξ1) = (∇ξ1 p)ξ2 − (∇ξ2 p)ξ1 = 2(dp)(ξ1, ξ2)

and
σ(ξ1, ξ2)− σ(ξ2, ξ1) = 0⇐⇒ (dp)(ξ1, ξ2) = 0.

In addition, from (7), we have

σ(Eξ1, ξ2)− σ(ξ2, Eξ1) = 0,

that is, the tensor σ is pure according to E. We give the following proposition without proof.
Because standard calculations give it. We omit them.

Proposition 3. The curvature (0, 4)−tensor R of the quarter-symmetric metric E-connection ∇
satisfies the following equations:

(i) R(ξ1, ξ2, ξ3, ξ4) = −R(ξ2, ξ1, ξ3, ξ4),
(ii) R(ξ1, ξ2, ξ3, ξ4) = −R(ξ1, ξ2, ξ4, ξ3),
(iii) R(ξ1, ξ2, ξ3, ξ4) = R(ξ3, ξ4, ξ1, ξ2) ⇐⇒ (dp)(ξ1, ξ2) = 0,
(iv) R(ξ1, ξ2, ξ3, ξ4) + R(ξ3, ξ1, ξ2, ξ4) + R(ξ2, ξ3, ξ1, ξ4) = 0 ⇐⇒ (dp)(ξ1, ξ2) = 0.

Denote by Ric(ξ1, ξ2) the Ricci tensor of the quarter-symmetric metric E-connection
and Ric(ξ1, ξ2) the Ricci tensor of the Levi–Civita connection. Then, the Ricci tensor
Ric(ξ1, ξ2) is

n

∑
i=1

R(ei, ξ1, ξ2, ei) = Ric(ξ1, ξ2) (15)

= Ric(ξ1, ξ2) + (4− n)σ(ξ1, Eξ2)− g(ξ1, ξ2)(trθ)

−σ(ξ1, ξ2)(trE)− g(Eξ1, ξ2)(trσ),

where {ei}, i = 1, ..., n are orthonormal vector fields on (Mn, g, E,∇, ε) and

trσ =
n

∑
i=1

σ(ei, ei)

=
n

∑
i=1

(∇ei p)(ei) +
(n− 4)

2
p(EU) +

(trE)
2

p(U)

and

trθ =
n

∑
i=1

(σ ◦ E)(ei, ei) =
n

∑
i=1

σ(ei, Eei)

=
n

∑
i=1

(∇ei p)(Eei) +
ε(n− 4)

2
p(U)− (trE)

2
p(EU).

It is easy to see that if (dp)(ξ1, ξ2) = 0, then Ric(ξ1, ξ2) = Ric(ξ2, ξ1). In fact,

Ric(ξ1, ξ2)− Ric(ξ2, ξ1) = (4− n)[σ(ξ1, Eξ2)− σ(Eξ2, ξ1)]

−(trE)[σ(ξ1, ξ2)− σ(ξ2, ξ1)]

= 2(4− n)(dp)(ξ1, Eξ2)− 2(trE)(dp)(ξ1, ξ2).

Moreover, the scalar curvature τ of the quarter-symmetric metric E-connection is given by

τ =
n

∑
i=1

Ric(ei, ei) (16)

= Ric(ei, ei) + 2(2− n)(trθ)− 2(trσ)(trE)

= τ + 2(2− n)(trθ)− 2(trσ)(trE),
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where τ is the Riemannian scalar curvature of the Levi–Civita connection of ∇.
An Einstein manifold is a Riemannian manifold that satisfies the condition

Ric(ξ1, ξ2) = λg(ξ1, ξ2), where λ is a scalar function. In addition, for the Ricci tensor
Ric(ξ1, ξ2) of the manifold (Mn, g, E,∇, ε), the Einstein case becomes

sym
(ξ1,ξ2)

Ric(ξ1, ξ2) =
1
2
[Ric(ξ1, ξ2) + Ric(ξ2, ξ1)] = µg(ξ1, ξ2), (17)

where µ is a scalar function and the manifold (Mn, g, E,∇, ε, Ric) is called an ε-Einstein–
anti-Kähler manifold.

Proposition 4. Let (Mn, g, E,∇, ε, Ric) be an ε-Einstein–anti-Kähler manifold. Then, the follow-
ing equation holds:

µ− λ = a1

n

∑
i=1

(∇ei p)(Eei) + a2

n

∑
i=1

(∇ei p)(ei) + a3 p(U) + a4 p(EU),

where

a1 =
2(2− n)

n
, a2 = −2(trE)

n
,

a3 =

(
ε(2− n)(n− 4)− (trE)2

n

)
, a4 =

2(trE)
n

.

Proof. From (15), (17) and Ric(ξ1, ξ2) = λg(ξ1, ξ2), we get

τ = µn and τ = λn.

In addition, from the last equation and (16), we obtain

τ = τ + 2(2− n)(trθ)− 2(trE)(trσ)

and
µn = λn + 2(2− n)(trθ)− 2(trE)(trσ).

Finally, substituting trθ and trσ in the last equation, we reach the end of the proof.

3.2. Transposed Connection of the Quarter-Symmetric Metric E-Connection

The transposed connection t∇ of the quarter-symmetric metric E-connection ∇ is
defined by

t∇ξ1 ξ2 = ∇ξ1 ξ2 + [ξ1, ξ2],

for all vector fields ξ1 and ξ2 on (Mn, g, E,∇, ε) [6,52]. Substituting
tS(ξ1, ξ2) =

t∇ξ1 ξ2 −t ∇ξ2 ξ1 − [ξ1, ξ2] in the last equation, we get

t∇ξ1 ξ2 = ∇ξ1 ξ2 − S(ξ1, ξ2) (18)

and
tS(ξ1, ξ2) = −S(ξ1, ξ2).

From the Equation (6) and (18), the transposed connection t∇ is as follows:

t∇ξ1 ξ2 = ∇ξ1 ξ2 + p(ξ1)(Eξ2)−Ug(Eξ1, ξ2) + p(Eξ1)(ξ2)− (EU)g(ξ1, ξ2). (19)

It is clear that t∇g 6= 0 and t∇E = 0, that is, the transposed connection t∇ is a non-metric
E-connection.

The curvature tensor tR of the transposed connection t∇ is as follows:
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tR(ξ1, ξ2, ξ3) = R(ξ1, ξ2, ξ3)− (∇ξ1 S)(ξ2, ξ3) + (∇ξ2 S)(ξ1, ξ3)

−[S(S(ξ1, ξ2), ξ3) + S(S(ξ3, ξ1), ξ2) + S(S(ξ2, ξ3), ξ1)].

From Proposition 2, we obtain

tR(ξ1, ξ2, ξ3) = R(ξ1, ξ2, ξ3)− (∇ξ1 S)(ξ2, ξ3) + (∇ξ2 S)(ξ1, ξ3).

3.3. U(Ric)-Vector Fields on (Mn, g, E,∇, ε)

Let ϕ be a vector field on a Riemannian manifold (Mn, g), which is locally expressed
by ϕ = ϕm ∂

∂xm . The vector field ϕ is a ϕ(Ric)-vector field on a Riemannian manifold (Mn, g)
such that [53]

∇(ϕ) = γRic, (20)

where γ is a non-zero scalar function, ∇ is the Levi–Civita connection of g, Ric is the Ricci
tensor of (Mn, g) and g(ϕ, ξ) = ϕ(ξ). The Equation (20) is locally expressed by

∇j ϕi = γRij,

where ϕi = gim ϕm and Rij is the Ricci tensor. In the special case, using the generator p we
can define a ϕ(Ric)−vector field by

(∇ξ1 p)ξ2 = γRic(ξ1, ξ2), (21)

where γ is a non-zero scalar function, ∇ is the Levi–Civita connection of g and
g(U, ξ) = p(ξ). For this reason, we will call the vector field U a U(Ric)−vector field.
The Equation (21) implies that (dp)(ξ1, ξ2) = 0. In fact,

0 = Ric(ξ1, ξ2)− Ric(ξ2, ξ1) (22)

=
1
γ
[(∇ξ1 p)ξ2 − (∇ξ2 p)ξ1]

=
1
γ
[σ(ξ1, ξ2)− σ(ξ2, ξ1)]

=
2
γ
(dp)(ξ1, ξ2).

Proposition 5. Let (Mn, g, E,∇, ε) be an ε-anti-Kähler manifold admitting a U(Ric)-vector field.
Then, Theorem 1 and Proposition 3 are directly provided.

On the ε-anti-Kähler manifold (Mn, g, E,∇, ε), the U(Ric)−vector field with respect to
the quarter-symmetric metric E-connection ∇ is defined as follows:

(∇ξ1 p)ξ2 = γRic(ξ1, ξ2), (23)

where γ is a non-zero scalar function on (Mn, g, E,∇, ε) and Ric is the Ricci tensor of
∇. Actually, if (∇ξ1 p)ξ2 = γRic(ξ1, ξ2), then from the Equation (23), we can say that
Ric(ξ1, ξ2)− Ric(ξ2, ξ1) = 0, that is, the Ricci tensor Ric(ξ1, ξ2) of the quarter-symmetric
metric E-connection is symmetric.

Theorem 2. An anti-Kähler manifold (Mn, g, E,∇, ε = −1) with a U(Ric)-vector field of con-
stant length has constant scalar curvature, that is, ∇τ = 0.

Proof. From (23), we obtain

(∇ξ1 p)ξ2 − p(ξ2)p(Eξ1)− p(Eξ2)p(ξ1) + p(U)g(Eξ1, ξ2) + p(EU)g(ξ1, ξ2)

= γ[Ric(ξ1, ξ2) + (4− n)σ(ξ1, Eξ2)− g(ξ1, ξ2)(trθ)− g(Eξ1, ξ2)(trσ)]



Symmetry 2022, 14, 1899 10 of 15

and
− 1

2γ
p(U) = trσ.

Substituting trσ in the last equation and from (∇ξ1 p)ξ2 = γRic(ξ1, ξ2), we have

− 1
2γ

p(U) =
n

∑
i=1

(∇ei p)(ei) +
(n− 4)

2
p(EU)

= γ
n

∑
i=1

Ric(ei, ei) +
(n− 4)

2
p(EU)

= γτ +
(n− 4)

2
p(EU)

and

τ =
(n− 4)

2γ
p(EU)− 1

2γ2 p(U). (24)

If we consider that a U(Ric)-vector field has constant length, we can write

||U|| = p(U) = c, (c = constant)

and from the covariant derivative according to the Levi–Civita connection ∇ of the last
equation, we get

∇ξ1 [p(U)] = (∇ξ1 p)U + p(∇ξ1U) = 0. (25)

It is clear that g(ξ2, U) = p(ξ2) and

g(∇ξ1 ξ2, U) + g(ξ2,∇ξ1U) = (∇ξ1 p)ξ2 + p(∇ξ1 ξ2)

= (∇ξ1 p)ξ2 + g(∇ξ1 ξ2, U)

g(ξ2,∇ξ1U) = (∇ξ1 p)ξ2.

From the last equation and (25), we obtain

(∇ξ1 p)U + (∇ξ1 p)U = 0

and

(∇ξ1 p)U = γRic(ξ1, U)

= 0.

In addition, for p(EU) and the last equation, we find

∇ξ1 [p(EU)] = (∇ξ1 p)(EU) + p(∇ξ1(EU)) (26)

= 2(∇ξ1 p)(EU)

= 2γRic(ξ1, EU)

= 2γRic(Eξ1, U)

= 0.

Finally, by using (25), (26) and (24), we easily see that ∇τ = 0. This completes the
proof.
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4. Quarter-Symmetric Non-Metric E-Connection on (Mn, g, E, ε)

We construct a linear connection ∇̃ on the ε-anti-Kähler manifold (Mn, g, E, ε) whose
torsion tensor is in the form (5):

∇̃ξ1 ξ2 = ∇ξ1 ξ2 + (1− α)[p(ξ2)(Eξ1) + p(Eξ2)(ξ1)] (27)

−α[p(ξ1)(Eξ2) + p(Eξ1)(ξ2)],

where α ∈ R. It is provided by standard calculations:

∇̃g 6= 0 and ∇̃E = 0,

that is, the Connection (27) is a quarter-symmetric non-metric E-connection on (Mn, g, E, ∇̃, ε).
The curvature (0, 4)−tensor of the quarter-symmetric non-metric E-connection can be
written in the form:

R̃(ξ1, ξ2, ξ3, ξ4) = R(ξ1, ξ2, ξ3, ξ4)

+φ(ξ1, ξ3)g(Eξ2, ξ4)− φ(ξ2, ξ3)g(Eξ1, ξ4)

+φ(ξ1, Eξ3)g(ξ2, ξ4)− φ(ξ2, Eξ3)g(ξ1, ξ4)

+
α

α− 1
[g(ξ3, ξ4)(φ(ξ1, Eξ2)− φ(Eξ2, ξ1))

+g(Eξ3, ξ4)(φ(ξ1, ξ2)− φ(ξ2, ξ1))],

where α 6= 1 and

φ(ξ1, ξ2) = (1− α)(∇ξ1 p)ξ2 − (1− α)2[p(ξ1)(Eξ2) + p(ξ2)(Eξ1)].

In the last equation, we can say that φ(ξ1, ξ2) − φ(ξ2, ξ1) = 0 ⇐⇒ (dp)(ξ1, ξ2) = 0,
actually

φ(ξ1, ξ2)− φ(ξ2, ξ1) = (1− α)[(∇ξ1 p)ξ2 − (∇ξ1 p)ξ2].

In addition, from (7), we can write

φ(Eξ1, ξ2)− φ(ξ2, Eξ1) = 0.

Thus, the tensor φ is pure with respect to E.
It is clear that the curvature (0, 4)−tensor R̃ satisfies the following properties:
(i) R̃(ξ1, ξ2, ξ3, ξ4) = −R̃(ξ2, ξ1, ξ3, ξ4),
(ii) (dp)(X, Y) = 0 ⇒ R̃(ξ1, ξ2, ξ3, ξ4) + R̃(ξ3, ξ1, ξ2, ξ4) + R̃(ξ2, ξ3, ξ1, ξ4) = 0.
The Ricci tensor of the quarter-symmetric non-metric E-connection has the form:

R̃ic(ξ1, ξ2) = Ric(ξ1, ξ2) + (2− n)φ(ξ1, Eξ2)− (trE)φ(ξ1, ξ2) (28)

+
2α

α− 1
[φ(Eξ2, ξ1)− φ(ξ1, Eξ2)],

where Ric(ξ1, Y) is the Ricci tensor of g and α 6= 1. It follows that

R̃ic(ξ1, ξ2)− R̃ic(ξ2, ξ1) =

(
2(1 + α)

1− α
− n

)
[φ(ξ1, Eξ2)− φ(Eξ2, ξ1)]

−(trE)[φ(ξ1, ξ2)− φ(ξ2, ξ1)].

If (dp)(ξ1, ξ2) = 0, then R̃ic(ξ1, ξ2) = R̃ic(ξ2, ξ1). Hence, the scalar curvature τ̃ of the
manifold (Mn, g, E, ∇̃, ε) becomes

τ̃ = τ + (2− n)(trψ)− (trE)(trφ), (29)



Symmetry 2022, 14, 1899 12 of 15

where

trφ =
n

∑
i=1

φ(ei, ei) (30)

= (1− α)
n

∑
i=1

(∇ei p)(ei)− 2(1− α)2 p(EU)

and

trψ =
n

∑
i=1

(ψ ◦ E)(ei, ei) =
n

∑
i=1

σ(ei, Eei) (31)

= (1− α)
n

∑
i=1

(∇ei p)(Eei)−2ε(1− α)2 p(U).

The condition for the ε-anti-Kähler manifold (Mn, g, E, ∇̃, ε) to be Einstein according
to the quarter-symmetric non-metric E-connection ∇̃ is given by

sym
(ξ1,ξ2)

R̃ic(ξ1, ξ2) =
1
2
[R̃ic(ξ1, ξ2) + R̃ic(ξ2, ξ1)] = µg(ξ1, ξ2), (32)

where µ is a scalar function. In this case, the manifold (Mn, g, E, ∇̃, ε, R̃ic) is called an ε-
Einstein–anti-Kähler manifold according to the quarter-symmetric non-metric E-connection
∇̃. Then, we get the following proposition.

Proposition 6. Let (Mn, g, E, ∇̃, ε, R̃ic) be an ε-Einstein–anti-Kähler manifold. Then, the follow-
ing equation holds:

µ− λ = b1

n

∑
i=1

(∇ei p)(Eei) + b2 p(U) + b3,

where

b1 =
(n− 2)(α− 1)

n
, b2 =

2ε(n− 2)(1− α)2

n
, b3 = − (trE)(trφ)

n
.

Proof. From (28), (32) and Ric(ξ1, ξ2) = λg(ξ1, ξ2), we have

τ̃ = ξn and τ = λn.

In addition, from the last equation and (29), we get

τ̃ = τ + (2− n)(trψ)− (trE)(trφ)

and
ξn = αn + (2− n)(trψ)− (trE)(trφ).

Finally, substituting trψ and trφ in the last equation, the proof is completed.

4.1. U(R̃ic)-Vector Fields on (Mn, g, E, ∇̃, ε)

Let (Mn, g, E, ε) be an ε-anti-Kähler manifold with the quarter-symmetric non-metric
E-connection ∇̃ given by (27). Using the generator p and the quarter-symmetric non-metric
E-connection ∇̃, we can define a U(R̃ic)-vector field as follows:

(∇̃ξ1 p)ξ2 = ηR̃ic(ξ1, ξ2),

where η is a non-zero scalar function on (Mn, g, E, ∇̃, ε), R̃ic is the Ricci tensor of ∇̃
and g(U, ξ) = p(ξ). If (∇ξ1 p)ξ2 = ηRic(ξ1, ξ2), we can easily see that R̃ic(ξ1, ξ2) −
R̃ic(ξ2, ξ1) = 0.
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Theorem 3. An anti-Kähler manifold (Mn, g, E, ∇̃, ε = −1) (n ≥ 3) with a U(R̃ic)-vector field
of constant length has constant scalar curvature, that is, ∇τ = 0.

Proof. As in Theorem 2, we get

τ =
(2− 4α)

η2(1− α)(n− 2)
p(U) +

2(1− α)

η
p(EU).

If we assume that a U(R̃ic)−vector field has constant length, then ∇ξ1 [p(U)] = 0 and
∇ξ1 [p(EU)] = 0. Thus, we have ∇τ = 0.

4.2. Dual Connection of the Quarter-Symmetric Non-Metric E-Connection ∇̃
The dual connection ∗∇̃ of any linear connection ∇̃ is given by

ξ1g(ξ2, ξ3) = g(∇̃ξ1 ξ2, ξ3) + g(ξ2,∗ ∇̃ξ1 ξ3) (33)

for all vector fields ξ1, ξ2 and ξ3 on Mn [54,55]. Using (33), we find the dual connection ∗∇̃
of the quarter-symmetric non-metric E-connection on (Mn, g, E, ∇̃, ε) as follows:

∗∇̃ξ1 ξ2 = ∇ξ1 ξ2 + (α− 1)[Ug(Eξ1, ξ2) + (EU)g(Eξ1, ξ2)] (34)

+α[p(ξ1)(Eξ2) + p(Eξ1)(ξ2)].

From (27) and (34), we can write ∗S̃(ξ1, ξ2) = −αS(ξ1, ξ2), where ∗S̃ is the torsion
tensor of the connection ∗∇̃. In addition, the connection ∗∇̃ satisfies the condition ∗∇̃g 6= 0
and ∗∇̃E = 0, the connection ∗∇̃ is a quarter-symmetric non-metric dual E-connection.

In [55], the author has shown that there is a relationship of the form ∗R̃(ξ1, ξ2, ξ3, ξ4)
= −R̃(ξ1, ξ2, ξ4, ξ3) between the curvature tensors of any connection ∇̃ and its dual ∗∇̃.
Then, the curvature (0, 4)-tensor of the dual Connection (34) has the form:

∗R̃(ξ1, ξ2, ξ3, ξ4) = R(ξ1, ξ2, ξ3, ξ4)

+φ(ξ2, ξ4)g(Eξ1, ξ3)− φ(ξ1, ξ4)g(Eξ2, ξ3)

+φ(ξ2, Eξ4)g(ξ1, ξ3)− φ(ξ1, Eξ4)g(ξ2, ξ3)

− α

α− 1
[g(ξ3, ξ4)(φ(ξ1, Eξ2)− φ(Eξ2, ξ1))

+g(Eξ3, ξ4)(φ(ξ1, ξ2)− φ(ξ2, ξ1))],

where α 6= 1. The Ricci tensor ∗R̃ic and the scalar curvature ∗τ̃ of the dual connection ∗∇̃
are

∗R̃ic(ξ1, ξ2) = Ric(ξ1, ξ2) + 2φ(ξ1, Eξ2)− g(ξ1, ξ2)(trψ) (35)

−g(Eξ1, ξ2)(trφ)− 2α

1− α
[φ(ξ1, Eξ2)− φ(Eξ2, ξ1)]

and
∗τ̃ = τ + (2− n)(trψ)− (trE)(trφ), (36)

respectively. From (35), we obtain

∗R̃ic(ξ1, ξ2)−∗ R̃ic(ξ2, ξ1) = 4(1− 3α)(dp)(ξ1, Eξ2).

Then, we can write the following last proposition.

Proposition 7. (i) ∗R̃ic(ξ1, ξ2)−∗ R̃ic(ξ2, ξ1) = 0⇔ (dp)(ξ1, Eξ2) = 0
(ii) From (29) and (36), we easily say that the scalar curvature ∗τ̃ of the connection ∗∇̃

coincides with the scalar curvature τ̃ of the connection ∇̃, that is, ∗τ̃ = τ̃.
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26. Li, Y.; Uçum, A.; İlarslan, K.; Camcı, Ç. A New Class of Bertrand Curves in Euclidean 4-Space. Symmetry 2022, 14, 1191.
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