
Citation: Khan, W.; Raj, K.; Kumar, T.;

Roy, A.M.; Luo, B. Introducing Urdu

Digits Dataset with Demonstration of

an Efficient and Robust Noisy

Decoder-Based Pseudo Example

Generator. Symmetry 2022, 14, 1976.

https://doi.org/10.3390/

sym14101976

Academic Editor: Mihai Postolache

Received: 10 August 2022

Accepted: 16 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Introducing Urdu Digits Dataset with Demonstration
of an Efficient and Robust Noisy Decoder-Based Pseudo
Example Generator
Wisal Khan 1,† , Kislay Raj 2,† , Teerath Kumar 3,†, Arunabha M. Roy 4,* and Bin Luo 1,*

1 School of Computer and Technology, Anhui University, Hefei 230039, China
2 School of Computing, Dublin City University, SFI for Research Training in Artificial Intelligence,

Dublin 9, Ireland
3 Department of Software Engineering, School of Computing, National University of Computer and Emerging

Sciences, Islamabad 44000, Pakistan
4 Aerospace Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
* Correspondence: arunabhr.umich@gmail.com (A.M.R.); luobin@ahu.edu.cn (B.L.)
† These authors contributed equally to this work.

Abstract: In the present work, we propose a novel method utilizing only a decoder for generation of
pseudo-examples, which has shown great success in image classification tasks. The proposed method is
particularly constructive when the data are in a limited quantity used for semi-supervised learning (SSL)
or few-shot learning (FSL). While most of the previous works have used an autoencoder to improve the
classification performance for SSL, using a single autoencoder may generate confusing pseudo-examples
that could degrade the classifier’s performance. On the other hand, various models that utilize encoder–
decoder architecture for sample generation can significantly increase computational overhead. To address
the issues mentioned above, we propose an efficient means of generating pseudo-examples by using only
the generator (decoder) network separately for each class that has shown to be effective for both SSL and
FSL. In our approach, the decoder is trained for each class sample using random noise, and multiple
samples are generated using the trained decoder. Our generator-based approach outperforms previous
state-of-the-art SSL and FSL approaches. In addition, we released the Urdu digits dataset consisting of
10,000 images, including 8000 training and 2000 test images collected through three different methods
for purposes of diversity. Furthermore, we explored the effectiveness of our proposed method on the
Urdu digits dataset by using both SSL and FSL, which demonstrated improvement of 3.04% and 1.50% in
terms of average accuracy, respectively, illustrating the superiority of the proposed method compared to
the current state-of-the-art models.

Keywords: semi-supervised learning (SSL); few-shot learning (FSL); encoder–decoder; Urdu digits
dataset; deep learning

1. Introduction

Deep learning (DL) has shown significant performance gain in image classification [1–7],
computer vision and object detection [8–10], text classification [11–14] audio classifica-
tion [15–18], brain–computer interface [19–21], biomedical applications [22–28], and
various future computational aspects [29,30]. The state-of-the-art DL methods heavily de-
pend on correctly labeled data. However, the acquisition of labeled data from particularly
large datasets is a tedious task to perform [31,32].

With the emergence of big data technology, unlabeled data are sufficiently available on a
large scale [32,33], whereas there is only a handful of labeled samples available [34]. The labeling
of the large dataset can be expensive, time-consuming, and often unreliable [31,32,34–38]. In
this regard, semi-supervised learning (SSL) helps to auto-label the unlabeled datasets using
a few labeled data samples. There are several ways to label the unlabeled data, but in the

Symmetry 2022, 14, 1976. https://doi.org/10.3390/sym14101976 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14101976
https://doi.org/10.3390/sym14101976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4900-5286
https://orcid.org/0000-0003-0089-6866
https://orcid.org/0000-0003-4790-726X
https://orcid.org/0000-0001-5948-5055
https://doi.org/10.3390/sym14101976
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14101976?type=check_update&version=2

Symmetry 2022, 14, 1976 2 of 15

conventional method, the model is first trained on labeled data, then the trained model is
employed to assign the pseudo-labels to unlabeled data. Finally, both the initial labeled data and
the pseudo-labeled data can be merged. Thus, SSL can significantly reduce errors and human
annotation efforts. However, SSL can result in erroneous results if a significant distribution gap
exists between labeled and unlabeled data.

To resolve the issue, various data augmentation methods [2] have been applied to a few
available labeled data to match the diversity between labeled and unlabeled data. In recent
years, several studies have been geared toward various semi-supervised approaches such as
the manifold embedding technique using the pre-constructed graph of unlabeled data [2,35],
whereas, in a separate study, the latent representation was exploited by dividing the variational
autoencoder (VAE) into two parts, then regularizing the autoencoder by imposing a prior
distribution on both parts by making them independent, which led to latent representation [37].
More recently, a new approach was proposed to exploit VAE by adding a classification layer on
the topmost layer of the encoder and then merging it with the re-sampled latent layer of the
decoder [38].

As mentioned earlier, in some scenarios, only a handful of labeled data are available in the
absence of unlabeled data. This can pose challenges concerning obtaining good performance
while utilizing a limited handful of only labeled data. Few-shot learning (FSL) is an emerging
technique that could be applicable in such cases. In recent years, several approaches considering
FSL have been employed. Notably, in [34], firstly, the large network was trained using a few
samples; then, knowledge distillation that transfers knowledge from the large model to the
small model was optimized to generate pseudo-examples. Along similar lines, a large network
was trained for each class separately and then distilled to a small network using a linear
function for both small and large networks [39]. In [40], both labeled and unlabeled data were
trained simultaneously in a supervised manner where, at first, pseudo-labels were assigned to
unlabeled data; subsequently, a denoising autoencoder and dropout were utilized.

However, the aforementioned methods suffer from mediocre performance in terms of
accuracy and robustness. To overcome such an issue, in the present work, we proposed an
efficient and robust model combining FSL and semi-supervised learning in a unique and
efficient way that can significantly improve the accuracy of the model.

The key contributions of the present work can be summarized as follows:

• We propose an efficient way of generating pseudo-examples by using only the decoder
network separately for each class that has shown to be effective for both SSL and FSL.

• In the proposed approach, the decoder is trained for each class sample using random
noise, and multiple samples are generated using the trained decoder.

• Furthermore, we are the first to release a manually labeled Urdu digits dataset con-
sisting of 10,000 images in total collected through various methods for diversity
(https://www.kaggle.com/teerathkumar142/Urdudigits, accessed on (11 April 2022).

• A varied range of experiments were performed, specifically on the Urdu digits dataset,
which elucidate the competitiveness and superiority of the proposed network in terms
of performance over existing state-of-the-art models.

• Our generator-based approach outperforms previous state-of-the-art SSL and FSL
approaches, obtaining an absolute average improvement of 3.04 and 1.50 in terms of
accuracy, respectively.

2. Related Work
2.1. Semi-Supervised Learning

Semi-supervised learning (SSL) can be helpful when significantly fewer labeled data
are available than large-scale unlabeled data. In recent years, there has been tremendous
progress in SSL. Considering that, relevant work on SSL has been briefly reviewed. Recently,
an SSL-based encoder–decoder network was extended to VAE that combines the classification
layer, mean layer, and standard deviation layer with the topmost encoder layer, combined
with the resampled latent layer for the decoder structure [38]. For this architecture, new
samples were generated from Gaussian noise fed to the classifier using mean and standard

https://www.kaggle.com/teerathkumar142/Urdu digits

Symmetry 2022, 14, 1976 3 of 15

deviation, which has shown impressive performance. In [41], a joint framework considering
representation learning and supervised learning was proposed and then applied to SSL. During
training, encoder and supervised classifier loss were significantly reduced. In [37], the latent
representation of the autoencoder was divided into two parts, one for content and the other
for style. It was concluded that the latent representation associated with the content can be
beneficial for classification data. The work demonstrated better performance compared to
the vanilla autoencoder. Along similar lines, in [4], firstly, encoder–decoder architecture was
trained for each class. In the next phase, the encoder was removed, and noise was passed to
the decoder several times to generate diverse samples. However, our experimental results
suggest that only training a decoder can be an effective strategy for generating samples for
each class. Additionally, the proposed approach by replacing the encoder–decoder [4] with a
decoder network can significantly minimize training time and saves computational overhead.

2.2. Few-Shot Learning

Few-shot learning (FSL) can be effective when the availability of labeled data is limited,
and the model has to learn utilizing the shallow data. Although numerous methods have
been proposed for FSL, we will cover only the relevant works for a fair comparison.
In [34], a relatively large network was considered a reference model trained on a few label
samples, and knowledge distillation from significant to small models was employed. In
addition, pseudo-examples were generated and optimized by employing a high-fidelity
optimization procedure. This method illustrated that a relatively small network trained
on fewer labels can outperform an initially trained larger network model. In [39], a linear
predictor was trained for each class separately and simultaneously distilled to the target
model. Subsequently, the bidirectional distillation method was employed, passing the
sample to the target and the reference model. During training, the specific class predictor
was activated, trained, and distilled to the target model employing MSE. Such a linear
distillation technique achieved significant performance improvement. Additionally, various
SSL and FSL methods exist which thrive in terms of improving performance. In the current
study, the proposed approach can be used for FSL by generating pseudo-examples. To this
end, we designed a novel FSL technique to improve performance and achieve state-of-the-
art results.

3. Proposed Approach

We propose a novel pseudo-examples generation technique to improve semi-supervised
and few-shot learning performance in the present work. The schematic of the basic archi-
tecture of our approach is shown in Figure 1, where we train the decoder for a single class.
Once trained, we pass normal distribution noise to generate samples of a specific class.
We repeat this for all classes. As shown in Figure 2, the overall process of our approach is
to employ a separate decoder for each class.

Figure 1. Schematics of pseudo-example generation model consisting of two architecture steps—
Step1: train ecoder on specific class samples; Step 2: generate multiple uniform samples that have
been passed to a decoder to obtain new samples for the specific class.

Symmetry 2022, 14, 1976 4 of 15

Figure 2. The schematic of the overall architecture: the decoder (generator) was trained for each class
in a cascade manner with random noise passed to each decoder.

3.1. Decoder Architecture

As previously mentioned, we used only a decoder to generate the examples of each
class. While varieties of decoder architecture exist, in the present work, we chose standard
dense layer decoder architecture, where input is the noise of dimension d and is passed and
mapped to examples of the specific class Ci. For the decoder, five layers with dimensions
of 10, 2000, 500, 500, and 784 are used as shown in Figure 3. We trained the decoder
using stochastic gradient descent (SGD) [42]. Each layer uses ReLu activation and kernel
initialization [43] with a scale parameter value of 1/3 with normal distribution.

Figure 3. The proposed standard dense layer decoder (generator) architecture that consists of five
layers with respective dimensions of 10, 2000, 500, 500, and 784.

Training

During training, we set the batch size to 5. Two different learning rates: 0.1 (for the
MNIST dataset) and 0.04 (for FashionMNIST) are prescribed with a momentum value of
0.9. For all cases, standard MSE is evaluated following Equation (1).

MSE =
1
n

n

∑
i=1

(yi − ỹi)
2 (1)

3.2. Work Flow

In this section, we describe the overall workflow and corresponding algorithm of our
proposed approach. Let us consider that Xn and Yn are the limited original samples and
their corresponding labels, respectively. Let Xc be the number of examples belonging to
the specific class c. In the proposed workflow as described in Algorithm 1, at first, we
train a decoder on Xc supplemented with normal noise [44–46] as input that produces
X̄(i)

c as the output as shown in line 5 of Algorithm 1. Once the training is completed, we
pass normal noise to the trained decoder N times to obtain N examples of that particular
class c as reflected in line 5 of Algorithm 1. In order to obtain corresponding Yc as the

Symmetry 2022, 14, 1976 5 of 15

labels of class c for these generated examples, we add an N-dimensional vector having c
in the vector with respect to Y as described in line 6 of Algorithm 1. In such a way, we
generate N examples with their corresponding labels for a specific class c. Therefore, we
initially have no information on Xn and Yn, which represent the examples of class and
their corresponding labels, respectively. In the next step, the whole process was repeated
for all classes, as shown in Figure 2 and described in the loop of Algorithm 1. Finally, we
have a large number of labeled data in the form of X and Y, respectively, as examples and
corresponding labels as described in line 7 of Algorithm 1. In the end, FSL and SSL take the
benefits of generated data X and Y from the proposed pseudo-sample generation model.

Algorithm 1 Decoder-Training-And-Generating(Xn,Yn,N)
Input: Xn: Samples only

Yn : Labels of the Samples
N: Number of samples per class to be generated

Output: dataGenerated, Labels
1 X=[]

Y = []
for Choose c ∈ UniqueClasses(Yn) do

2 model = Decoder() // C

3 reating Decoder model Train(model, Gaussian Noise,Xc) // Training Decoder

for class i samples

4 output = SynthesisData(Model,Gaussian Noise, N) // Generating labels

5 Y = Y ∪ [N] ∗ i // Generate N samples of class i

6 X = X ∪ output

7 X, Y // Data and corresponding labels

4. Newly Introduced Urdu Digits Dataset
4.1. Dataset Motivation

The Urdu language is widely used in Asian countries, in particular, Pakistan, India,
Bangladesh, and Afghanistan [47]. It is also regarded as the national language of Pakistan.
In addition, Urdu, Arabic, Pashto, and Persian languages share various similarities. Due to
different applications of Urdu numbers [48–50] that mainly include the automated reading
of postal numbers, cheque numbers, digitization, and preserving manuscripts from old
ages the acquisition and labeling of Urdu number datasets are of utmost importance and
the driving motivation of the current study. However, there is no research work present in
the literature that is geared toward the collection and labeling of the largest Urdu language
digits dataset. In the present work, to the best of our knowledge, we are the first to
release a manually labeled extensive challenging Urdu digits dataset consisting of a total of
10,000 images with 8000 training and 2000 test images. In Urdu digits dataset, some digits,
in particular, 3 and 4 are almost symmetric in terms of shape. Additionally, digits 7 and
8 are in reflection symmetry. Such kinds of partial/ non-partial symmetric cases induce
additional challenges in the dataset for the neural network to learn.

4.2. Dataset Collection

We used three different methods to collect data: the Microsoft (MS) paint tool, online
search, and paper-based collection from different participants to increase the variability in
the dataset.

4.2.1. Microsoft (MS) Paint-Based Collection

In MS paint-based collection, we set up an MS paint tool, in which we fixed the
window at 28× 28 pixels, and then filled it with the black background color. The numbers
are written in a fixed window size by five different people using various brush sizes.
Following such an approach, a different set of Urdu digits of a total of 37,000 images was

Symmetry 2022, 14, 1976 6 of 15

generated and collected. Some representative dataset samples collected with the MS paint
tool are shown in Figure 4.

Figure 4. Representative samples in Urdu digits dataset collected with MS paint tool where different
variants of digits are arranged row-wise.

4.2.2. Online Data Collection

To include diversity in the dataset, we used Python code scarper to obtain images
from the internet using the keyword Urdu Digit, then asked ten different users to crop the
Urdu numbers. In this way, we collected a total of around 3000 additional images.

4.2.3. Paper-Based Data Collection

To further increase the diversity of the data, we asked ten different participants to write
multiple numbers on an A4 page, take the picture through the mobile camera, and then crop
those numbers. Using this setup, we collected around 60,000 images. Some representative
samples from the paper-based data collection procedure are depicted in Figure 5. Overall,
we have 10,000 images in the Urdu digits dataset consisting of 8000 images for the training
set and 2000 images for the testing set. After collecting data through the aforementioned
procedures, we performed pre-processing on the image data. First, we converted the digit
into white and the background into black color for all the collected images. Then we resized
the image by 28 × 28 pixels while maintaining the same aspect ratio. After resizing, we
normalize images in the range of 0 to 1, dividing by 255. Following the preprocessing steps
similar to MNIST and Fashion-MNIST dataset, we keep the Urdu digits dataset in grayscale
while not applying any mean centering to the collected images.

Symmetry 2022, 14, 1976 7 of 15

Figure 5. Representative samples in Urdu digits dataset collected with paper-based data collection
where different variants of digits are grouped.

5. Experiment and Results

In this section, we report our experimental findings in order to demonstrate the
performance of the proposed model. We followed various settings in terms of datasets,
CNN architectures, and the model parameters, which are detailed in the subsequent
sections. We use Equation (2) to calculate the entropy.

Lcross-entropy (ŷ, y) = −∑
i

yi log(ŷi) (2)

Symmetry 2022, 14, 1976 8 of 15

5.1. Datasets

To check the effectiveness of the proposed approach, we used MNIST [51] and Fashion-
MNIST [52] datasets using semi-supervised and few-shot learning. The MNIST dataset has
60,000 training and 10,000 testing samples of 10-digit classes (range from 0 to 9) with 28× 28
grayscale images. The fashion-MNIST dataset which is used for clothes and accessories
has 60,000 training and 10,000 testing samples of ten different classes with sizes of 28 × 28
grayscale images. Some representative samples of MNIST and Fashion-MNIST datasets are
shown in Figures 6 and 7, respectively. Additionally, we performed an extensive analysis
on the newly introduced Urdu digit dataset.

Figure 6. Representative generated pseudo-samples from the proposed model for MNIST dataset
consisting of 10-digit classes (range from 0 to 9) with 28 × 28 grayscale images.

Figure 7. Representative generated pseudo-samples from the proposed model for the Fashion-MNIST
dataset consisting of ten different classes with sizes of 28 × 28 grayscale images.

Symmetry 2022, 14, 1976 9 of 15

5.2. Result from Semi-Supervised Learning

In this section, we report the results obtained from the SSL. We implemented and
used a CNN network [4,38] for SSL results based on autoencoder using standard deviation
and mean. For the experiments, we used a total of 100 and 1000 labels from the MNIST
and Fashion-MNIST datasets, respectively. For our Urdu digits dataset, we used various
numbers of labels, i.e., 100, 200, 500, 1000, and 2000. Utilizing our proposed method, we
then generated the data and subsequently the SSL model was applied.

For MNIST and Fashion-MNIST datasets, various state-of-the-art models including
CCNs [38], (MS) [38], and CNNs (AE) [4] were considered and directly compared with
the proposed model. Note, in these tables, CNNs correspond to a supervised model,
CNNs (MS) refers to semi-supervised based on the mean standard deviation layers of
the autoencoder, whereas CNNs (Our) is based on a semi-supervised learning method
using pseudo-examples. The accuracy values obtained from these models are presented
in Tables 1 and 2 for MNIST and Fashion-MNIST datasets, respectively. For the MNIST
dataset, CCNs (MS) provides the best results with accuracy values of 81.10± 6.16% for
100 labels, as shown in Table 1. However, with increasing labels 1000, our proposed
model achieved the best accuracy of 95.11± 2.30% which is a 1.40% accuracy improvement
over CCNs (MS). However, for the Fashion-MNIST dataset, our model provides the best
results, achieving an accuracy of 74.52± 1.42%, whereas with an increasing number of
sample size 1000, CCNs (MS) provides the best result with an accuracy of 83.67± 1.09%.
In almost all cases, our approach improves the accuracy by over 2% except for the case of
1000 label MNIST. Overall, for both datasets, the proposed model illustrates its superiority
by providing state-of-the-art results. Finally, for the Urdu digits dataset, the accuracy values
are presented for various numbers of labels as shown in Table 3. It is noteworthy that with
an increasing number of labels, the accuracy improves. For example, with a relatively small
number of labels, 20, the accuracy reaches up to 84.90%, whereas it attains an impressive
accuracy value of 96.70% for a large number of labels, 200. In short, the proposed model
demonstrated superior performance with a reasonable amount of labeled data for the Urdu
digits dataset.

Table 1. Comparison of accuracy values (in %) between various state-of-the-art models and the
proposed model evaluated in MNIST dataset.

Model 100 Labels 1000 Labels

CCNs [38] 76.51± 3.21 89.11± 2.10
CCNs (MS) [38] 81.10± 6.16 94.51± 1.13
CNNss (AE) [4] 78.89± 1.92 89.33± 2.17
CNNss (Ours) 78.16± 1.10 95.11± 2.30

Table 2. Comparison of accuracy values (in %) between various state-of-the-art models and the
proposed model evaluated in Fashion-MNIST dataset.

Model 100 Labels 1000 Labels

CCNs [38] 66.22± 1.02 80.30± 1.98
CCNs (MS) [38] 72.41± 0.87 83.67± 1.09
CNNs (AE) [4] 72.51± 2.57 79.93± 1.46
CNNs (Ours) 74.52± 1.42 82.71± 1.47

Table 3. Accuracy values (in %) obtained from the proposed SSL model for different numbers of
labels evaluated in Urdu digits dataset.

Labels 10 20 50 100 200

SSL (Ours) 80.15 84.90 89.05 93.45 96.70

Symmetry 2022, 14, 1976 10 of 15

5.3. Results from Few-Shot Learning

In this section, we reported the results obtained from the FSL. For the comparison, a
large knowledge distillation model [34] was considered and trained on a few label samples.
In addition, pseudo-examples were generated and then optimized and selected using high
fidelity techniques. This method was shown to outperform the original large model using
the relatively small model on a few label datasets. In our approach, we utilize a relatively
small CNN model [34], conduct experiments on various datasets, and compare the results
between these two models. At first, we generate a various number of examples for each
experiment using a few selected examples. Selected examples are then combined to train
the model. Thus, a different number of examples is generated using our approach. Several
examples that consider various hyperparameters were discussed. Each experiment was
repeated three times and average accuracy was reported.

For MNIST, Fashion-MNIST, and Urdu digits datasets, we used a different number
of samples i.e., 10, 20, 50, 100, and 200 per class. Using these few examples, we generated
multiple samples and then trained the model. The model’s performance is presented in
Tables 4–6 with respect to MNIST, Fashion-MNIST, and Urdu digits datasets, respectively.
As shown in Table 4, our proposed model outperformed the current state-of-the-art model
by achieving accuracy of 50.33 % and 54.59% in 10 and 20 examples per class, respectively.
For a relatively higher number of examples per class, our model performs comparatively
with the performance of the state-of-the-art models.

Table 4. Accuracy comparison between FSL and other models evaluated on MNIST dataset, where
Imt = Imitation, opt = optimize, fd = fidelity.

Labels 10 20 50 100 200

NN [34] 37.90 46.00 66.00 78.30 86.70
GP [34] 39.90 51.60 64.60 73.20 80.00
Imt [34] 43.50 51.20 67.70 78.10 86.10

Imt, opt [34] 44.10 53.70 70.00 79.50 86.70
Imt, opt,
fd [34] 44.10 53.90 70.40 80.00 86.60

CNN (AE) [4] 46.30 54.30 59.40 67.40 76.40
FSL (Ours) 50.33 54.59 68.14 76.34 86.41

Table 5. Accuracy comparison between FSL and other models evaluated on Fashion-MNIST Dataset,
where Imt = Imitation, opt = optimize, fd = fidelity.

Labels 10 20 50 100 200

NN [34] 39.30 47.90 58.30 64.90 71.30
GP [34] 44.60 52.40 59.90 65.70 71.40
Imt [34] 43.60 50.90 60.00 67.30 72.50

Imt, opt [34] 41.20 49.70 60.10 67.30 72.20
Imt, opt,
fd [34] 44.80 52.70 62.10 67.30 72.50

CNN (AE) [4] 48.20 56.10 58.80 65.80 69.49
FSL (Ours) 54.42 59.06 67.51 70.82 74.37

Table 6. Accuracy values from FSL evaluated on Urdu digit dataset

Labels 10 20 50 100 200

Our 78.80 83.65 87.95 92.56 96.0

For the Fashion-MNIST dataset, as shown in Table 5, the proposed method with the
FSL model outperformed all other current state-of-the-art models in terms of accuracy for
the same network configuration and optimization scheme. Thus, our extensive experiments

Symmetry 2022, 14, 1976 11 of 15

elucidate the superior performance in terms of the accuracy of the proposed FSL method
for various numbers of levels.

6. Parametric Study

In both SSL and FSL experiments, the generated number of examples is different for
the different number of selected levels. Thus, the number of generated examples can be
treated as one of the hyperparameters. Therefore, we conduct extensive experiments to
find the influence of a number of generated examples on the accuracy of the model. For the
calculation of average accuracy, each experiment was repeated three times.

6.1. Performance of SSL

In the SSL model, we selected a few labeled samples ranging from 1000 to 5000 with an
increment of 1000 for each individual class. Each sample size was trained in the SSL network
at each interval. The experimental results suggest that generating a different number of
examples can significantly influence the performance of the SSL model concerning the
different numbers of selected examples for various datasets. As we can see from Figure 8,
where the x- and y-axes represent the number of generated examples and the accuracy
value, respectively. The increasing number of examples boosts the performance of both the
MNIST and the FMINST datasets. For example, SSL provides the best performance in the
case of 10 samples per class with 2000 generated samples for the MNIST dataset, as shown
in Figure 8. Additionally, 100 samples per class with 5000 generated samples show superior
performance. We treated its superiority in terms of accuracy. For the Fashion-MNIST
dataset, as shown in Figure 8, generating 2000 samples gives the best performance in the
case of 10 samples per class. With increasing 100 samples per class, generating 5000 samples
provides the best performance.

Similarly, we extended our experiments on the Urdu digits dataset using a different
number of examples as shown in Figure 9. Our extensive study reveals that various
example sizes together with generated examples can significantly influence the accuracy of
the model.

Figure 8. (Left) Accuracy vs. number of generated examples from semi-supervised learning (SSL) for
MNIST; (Right) Accuracy vs. number of generated examples from semi-supervised learning (SSL)
for Fashion-MNIST.

Symmetry 2022, 14, 1976 12 of 15

Figure 9. Accuracy vs. number of generated examples from semi-supervised learning for Urdu digits
dataset.

6.2. Performance of FSL

For few-shot learning, we first selected several examples to train the generator for
those selected examples. Then we generated a different number of examples. In our
experiment, the generated number of examples can be treated as a hyper-parameter. We
generated 1000 to 5000 examples with an interval of 1000. At each interval, we trained
the CNN model. In each case, generating a different number of examples gives different
performances for different datasets, as we can see from Figure 10 for the MNIST dataset
and Fashion-MNIST dataset. The x-axis represents the number of generated examples,
while the y-axis shows the performance. For the MNIST dataset, as shown in Figure 10,
for 200 examples per class, the proposed model provides the best performance. Similarly,
for the Fashion-MNIST dataset, as shown in Figure 11, in the case of 1 sample per class,
generating 3000 samples gives the best performance; similarly, in the case of 2 samples
per class, 5 samples per class, 10 samples per class, and 20 samples per class, generating
5000 samples, 3000 samples, 5000 samples, and 4000 samples, respectively, gives the best
performance. Similarly, we conducted experiments on the Urdu digits dataset using a
different number of examples, as shown in Figure 10. From the comparison, we can see
that higher numbers of examples per class significantly improves the accuracy. However,
a moderate amount of examples can provide state-of-the-art results for relatively higher
numbers of example generation.

Figure 10. (Left) Accuracy vs. the number of generated examples from few-shot learning (FSL) for
the Urdu digit dataset; (Right) Fashion-MNIST generated examples vs. FSL Accuracy.

Symmetry 2022, 14, 1976 13 of 15

Figure 11. (Left) Accuracy vs. number of generated examples from few-shot learning (FSL) for
MNIST; (Right) Accuracy vs. number of generated examples from few-shot learning (FSL) for
Fashion-MNIST.

7. Conclusions

In summary, in the current study, we proposed a novel approach to improve perfor-
mance concerning generating pseudo-examples by addressing the current drawbacks in the
existing state-of-the-art approaches. In the proposed model, we only used a decoder net-
work, which is easier and faster to train compared to both encoder–decoder architectures.
Another advantage of such a strategy is that training a decoder using random values and
images can generate different images of the same class, which is impossible in an encoder–
decoder that only generates images corresponding to the same training class. Furthermore,
we are the first to release a manually labeled Urdu digits dataset collected through various
methods. In order to show the efficacy of the proposed approach, we extensively tested the
model in different datasets with various samples using both SSL and FSL. The performance
comparison in terms of average classification accuracy demonstrates the superiority of the
proposed model in that it outperforms current state-of-the-art models for both SSL and
FSL. Future works could be geared toward designing an efficient encoder–decoder model,
replacing the decoder-only model and building various other valuable datasets.

Author Contributions: Conceptualization, W.K., K.R., T.K., B.L. and A.M.R.; methodology, W.K.,
K.R. and T.K.; validation, W.K. and T.K.; formal analysis, W.K. and T.K.; investigation, W.K. and K.R.;
resources, B.L. and A.M.R.; data curation, W.K.; writing—original draft preparation, W.K., R.R. and
K.R.; writing—review and editing, B.L. and A.M.R.; visualization, T.K.; supervision, B.L. and A.M.R.;
project administration, B.L. and A.M.R.; funding acquisition, B.L. and A.M.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was partially funded by Aeronautical Research and Development Board
(Grant No. DARO/08/1051450/M/I). The APC was fully funded by MDPI AG.

Informed Consent Statement: We published and used the images with the consent of participants.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vailaya, A.; Jain, A.; Zhang, H. On image classification: City images vs. landscapes. Pattern Recognit. 1998, 31, 1921–1935.

[CrossRef]
2. Shorten, C.; Khoshgoftaar, T. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
3. Kumar, T.; Park, J.; Ali, M.; Uddin, A.; Ko, J.; Bae, S. Binary-classifiers-enabled filters for semi-supervised learning. IEEE Access

2021, 9, 167663–167673. [CrossRef]
4. Kumar, T.; Park, J.; Ali, M.; Uddin, A.; Bae, S. Class Specific Autoencoders Enhance Sample Diversity. J. Broadcast Eng. 2021, 26,

844–854.

http://doi.org/10.1016/S0031-3203(98)00079-X
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1109/ACCESS.2021.3124200

Symmetry 2022, 14, 1976 14 of 15

5. Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process.
Syst. 2012, 25, 84–90. [CrossRef]

6. Jamil, S.; Abbas, M.S.; Roy, A.M. Distinguishing Malicious Drones Using Vision Transformer. AI 2022, 3, 260–273. [CrossRef]
7. Alam, A.; Ullah, I.; Lee, Y. Video Big Data Analytics in the Cloud: A Reference Architecture, Survey, Opportunities, and Open

Research Issues. IEEE Access 2020, 8, 152377–152422. [CrossRef]
8. Roy, A.M.; Bhaduri, J. A Deep Learning Enabled Multi-Class Plant Disease Detection Model Based on Computer Vision AI 2022,

2, 413–428. [CrossRef]
9. Roy, A.M.; Bose, R.; Bhaduri, J. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network Neural

Comput. Appl. 2022, 34, 3895–3921.
10. Roy, A.M.; Bose, R.; Bhaduri, J. Real-time growth stage detection model for high degree of occultation using DenseNet-fused

YOLOv4. Comput. Electron. Agric. 2022, 193, 106694. [CrossRef]
11. Ullah, I.; Khan, S.; Imran, M.; Lee, Y. RweetMiner: Automatic identification and categorization of help requests on twitter during

disasters. Expert Syst. Appl. 2021, 176, 114787.
12. Kowsari, K.; Jafari Meimandi, K.; Heidarysafa, M.; Mendu, S.; Barnes, L.; Brown, D. Text classification algorithms: A survey.

Information 2019, 10, 150.
13. Aggarwal, C.; Zhai, C. A survey of text classification algorithms. In Mining Text Data; Springer: Boston, MA, USA, 2012;

pp. 163–222.
14. Ikonomakis, M.; Kotsiantis, S.; Tampakas, V. Text classification using machine learning techniques. WSEAS Trans. Comput. 2005, 4,

966–974.
15. Kumar, T.; Park, J.; Bae, S. Intra-Class Random Erasing (ICRE) augmentation for audio classification. In Proceedings of the

Korean Society of Broadcast Engineers Conference; The Korean Institute of Broadcast and Media Engineers: Anseong, Korea, 2020;
pp. 244–247.

16. Park, J.; Kumar, T.; Bae, S. Search for optimal data augmentation policy for environmental sound classification with deep neural
networks. J. Broadcast Eng. 2020, 25, 854–860.

17. Chandio, A.; Shen, Y.; Bendechache, M.; Inayat, I.; Kumar, T. AUDD: Audio Urdu digits dataset for automatic audio Urdu digit
recognition. Appl. Sci. 2021, 11, 8842.

18. Turab, M.; Kumar, T.; Bendechache, M.; Saber, T. Investigating Multi-Feature Selection and Ensembling for Audio Classification.
arXiv 2022, arXiv:2206.07511.

19. Roy, A.M. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in
brain-machine interfaces Biomed. Signal Process. Control 2022, 74, 103496.

20. Roy, A.M. A multi-scale fusion CNN model based on adaptive transfer learning for multi-class MI-classification in BCI system.
bioRxiv 2022. [CrossRef]

21. Roy, A.M. Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassifi-
cation in brain–computer interface Eng. Appl. Artif. Intell. 2022, 116, 105347. [CrossRef]

22. Ranjbarzadeh, R.; Tataei Sarshar, N.; Jafarzadeh Ghoushchi, S.; Saleh Esfahani, M.; Parhizkar, M.; Pourasad, Y.; Anari, S.;
Bendechache, M. MRFE-CNN: Multi-route feature extraction model for breast tumor segmentation in Mammograms using a
convolutional neural network. Ann. Oper. Res. 2022,11. [CrossRef]

23. Baseri Saadi, S.; Tataei Sarshar, N.; Sadeghi, S.; Ranjbarzadeh, R.; Kooshki Forooshani, M.; Bendechache, M. Investigation of
Effectiveness of Shuffled Frog-Leaping Optimizer in Training a Convolution Neural Network. J. Healthc. Eng. 2022, 2022, 4703682.
[CrossRef] [PubMed]

24. Saadi, S.; Ranjbarzadeh, R.; Amirabadi, A.; Ghoushchi, S.; Kazemi, O.; Azadikhah, S.; Bendechache, M.; Others Osteolysis: A
literature review of basic science and potential computer-based image processing detection methods. Comput. Intell. Neurosci.
2021, 2021, 4196241. [CrossRef] [PubMed]

25. Valizadeh, A.; Jafarzadeh Ghoushchi, S.; Ranjbarzadeh, R.; Pourasad, Y. Presentation of a segmentation method for a diabetic
retinopathy patient’s fundus region detection using a convolutional neural network. Comput. Intell. Neurosci. 2021, 2021, 7714351.

26. Jafarzadeh Ghoushchi, S.; Memarpour Ghiaci, A.; Rahnamay Bonab, S.; Ranjbarzadeh, R. Barriers to circular economy implemen-
tation in designing of sustainable medical waste management systems using a new extended decision-making and FMEA models.
Environ. Sci. Pollut. Res. 2022, 32. [CrossRef]

27. Ranjbarzadeh, R.; Dorosti, S.; Jafarzadeh Ghoushchi, S.; Safavi, S.; Razmjooy, N.; Tataei Sarshar, N.; Anari, S.; Bendechache,
M. Nerve optic segmentation in CT images using a deep learning model and a texture descriptor. Complex Intell. Syst. 2022, 8,
3543–3557.

28. Ghoushchi, S.; Ranjbarzadeh, R.; Dadkhah, A.; Pourasad, Y.; Bendechache, M. An extended approach to predict retinopathy in
diabetic patients using the genetic algorithm and fuzzy C-means. BioMed Res. Int. 2021, 2021, 5597222. [CrossRef] [PubMed]

29. Roy, A.M. Evolution of martensitic nanostructure in NiAl alloys: Tip splitting and bending. Mater. Sci. Res. India. 2020, 17, 3–6.
[CrossRef]

30. Roy, A.M. Finite element framework for efficient design of three dimensional multicomponent composite helicopter rotor blade
system. Eng 2021, 2, 69–79. [CrossRef]

http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.3390/ai3020016
http://dx.doi.org/10.1109/ACCESS.2020.3017135
http://dx.doi.org/10.3390/ai2030026
http://dx.doi.org/10.1016/j.compag.2022.106694
http://dx.doi.org/10.1101/2022.03.17.481909
http://dx.doi.org/10.1016/j.engappai.2022.105347
http://dx.doi.org/10.1007/s10479-022-04755-8
http://dx.doi.org/10.1155/2022/4703682
http://www.ncbi.nlm.nih.gov/pubmed/35368933
http://dx.doi.org/10.1155/2021/4196241
http://www.ncbi.nlm.nih.gov/pubmed/34646317
http://dx.doi.org/10.1007/s11356-022-19018-z
http://dx.doi.org/10.1155/2021/5597222
http://www.ncbi.nlm.nih.gov/pubmed/34258269
http://dx.doi.org/10.13005/msri.17.special-issue1.02
http://dx.doi.org/10.3390/eng2010006

Symmetry 2022, 14, 1976 15 of 15

31. Li, W.; Wang, Z.; Li, J.; Polson, J.; Speier, W.; Arnold, C. Semi-supervised learning based on generative adversarial network: A
comparison between good GAN and bad GAN approach. In Proceedings of the CVPR Workshops; Long Beach, CA, USA, 16–20
June 2019; pp. 55–65.

32. Kingma, D.; Mohamed, S.; Jimenez Rezende, D.; Welling, M. Semi-supervised learning with deep generative models. In
Proceedings of the Advances In Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27.

33. Khan, W.; Kumar, T.; Cheng, Z.; Raj, K.; Roy, A. M.; Luo, B. SQL and NoSQL Databases Software architectures performance
analysis and assessments - A Systematic Literature review. arXiv 2022, arXiv:2209.06977.

34. Kimura, A.; Ghahramani, Z.; Takeuchi, K.; Iwata, T.; Ueda, N. Few-shot learning of neural networks from scratch by pseudo-
example optimization. arXiv 2018, arXiv:1802.03039.

35. Weston, J.; Ratle, F.; Mobahi, H.; Collobert, R. Deep learning via semi-supervised embedding. In Neural Networks: Tricks of the
Trade; Springer: Cham, Switzerland, 2012; pp. 639–655.

36. Li, Y.; Pan, Q.; Wang, S.; Peng, H.; Yang, T.; Cambria, E. Disentangled variational auto-encoder for semi-supervised learning. Inf.
Sci. 2019, 482, 73–85. [CrossRef]

37. Tachibana, R.; Matsubara, T.; Uehara, K. Semi-supervised learning using adversarial networks. In Proceedings of the 2016
IEEE/ACIS 15th International Conference On Computer And Information Science (ICIS), Okayama, Japan, 26–29 June 2016;
pp. 1–6.

38. Berkhahn, F.; Keys, R.; Ouertani, W.; Shetty, N.; Geißler, D. Augmenting variational autoencoders with sparse labels: A unified
framework for unsupervised, semi-(un) supervised, and supervised learning. arXiv 2019, arXiv:1908.03015.

39. Asadulaev, A.; Kuznetsov, I.; Filchenkov, A. Interpretable few-shot learning via linear distillation. arXiv 2019, arXiv:1906.05431.
40. Lee, D. Others Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. Workshop Chall.

Represent. Learn. ICML 2013, 3, 896.
41. Haiyan, W.; Haomin, Y.; Xueming, L.; Haijun, R. Semi-supervised autoencoder: A joint approach of representation and

classification. In Proceedings of the 2015 International Conference On Computational Intelligence And Communication Networks
(CICN), Jabalpur, India, 12–14 December 2015; pp. 1424–1430.

42. Robbins, H.; Monro, S. A stochastic approximation method. Ann. Math. Stat. 1951, 22, 400–407. [CrossRef]
43. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the IEEE International Conference On Computer Vision, Santiago, Chile, 7–13 December2015; pp. 1026–1034.
44. Mohammed Abd-Alsalam Selami, A.; Freidoon Fadhil, A. A study of the effects of gaussian noise on image features. Kirkuk Univ.

J.-Sci. Stud. 2016, 11, 152–169. [CrossRef]
45. Russo, F. A method for estimation and filtering of Gaussian noise in images. IEEE Trans. Instrum. Meas. 2003, 52, 1148–1154.

[CrossRef]
46. Kaur, P.; Singh, J. A study on the effect of Gaussian noise on PSNR value for digital images. Int. J. Comput. Electr. Eng. 2011, 3, 319.

[CrossRef]
47. Hussain, S. Resources for Urdu language processing. In Proceedings of the 6th Workshop On Asian Language Resources,

Hyderabad, India, 11–12 January 2008.
48. Plötz, T.; Fink, G. Markov models for offline handwriting recognition: A survey. Int. J. Doc. Anal. Recognit. (IJDAR). 2009, 12,

269–298. [CrossRef]
49. Lee, C.; Leedham, C. A new hybrid approach to handwritten address verification. Int. J. Comput. Vis. 2004, 57, 107–120. [CrossRef]
50. Ul-Hasan, A.; Ahmed, S.; Rashid, F.; Shafait, F.; Breuel, T. Offline printed Urdu Nastaleeq script recognition with bidirectional

LSTM networks. In Proceedings of the 2013 12th International Conference On Document Analysis and Recognition, Washington,
DC, USA, 25–28 August 2013; pp. 1061–1065.

51. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.Lecun.Com/exdb/mnist/ (accessed
on 11 December 2021).

52. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,
arXiv:1708.07747.

http://dx.doi.org/10.1016/j.ins.2018.12.057
http://dx.doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.32894/kujss.2016.124648
http://dx.doi.org/10.1109/TIM.2003.815989
http://dx.doi.org/10.7763/IJCEE.2011.V3.334
http://dx.doi.org/10.1007/s10032-009-0098-4
http://dx.doi.org/10.1023/B:VISI.0000013085.47268.e8
http://yann. Lecun.Com/exdb/mnist/

	Introduction
	Related Work
	Semi-Supervised Learning
	Few-Shot Learning

	Proposed Approach
	Decoder Architecture
	Work Flow

	Newly Introduced Urdu Digits Dataset
	Dataset Motivation
	Dataset Collection
	Microsoft (MS) Paint-Based Collection
	Online Data Collection
	Paper-Based Data Collection

	Experiment and Results
	Datasets
	Result from Semi-Supervised Learning
	Results from Few-Shot Learning

	Parametric Study
	Performance of SSL
	Performance of FSL

	Conclusions
	References

