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Abstract: Skyline queries, which are based on the concept of Pareto dominance, filter the objects from
a potentially large multi-dimensional collection of objects by keeping the best, most favoured objects
in satisfying the user′s preferences. With today′s advancement of technology, ad hoc meetings or
impromptu gatherings involving a group of people are becoming more and more common. Intuitively,
deciding on an optimal meeting point is not a straightforward task especially when conflicting criteria
are involved and the number of criteria to be considered is vast. Moreover, a point that is near to a
user might not meet all the various users′ preferences, while a point that meets most of the users′

preferences might be located far away from these users. The task becomes more complicated when
these users are on the move. In this paper, we present the Region-based Skyline for a Group of Mobile
Users (RSGMU) method, which aims to resolve the problem of continuously finding the optimal
meeting points, herein called skyline objects, for a group of users while they are on the move. RSGMU
assumes a centroid-based movement where users are assumed to be moving towards a centroid that is
identified based on the current locations of each user in the group. Meanwhile, to limit the searching
space in identifying the objects of interest, a search region is constructed. However, the changes in
the users′ locations caused the search region of the group to be reconstructed. Unlike the existing
methods that require users to frequently report their latest locations, RSGMU utilises a dynamic motion
formula, which abides to the laws of classical physics that are fundamentally symmetrical with respect
to time, in order to predict the locations of the users at a specified time interval. As a result, the
skyline objects are continuously updated, and the ideal meeting points can be decided upon ahead of
time. Hence, the users′ locations as well as the spatial and non-spatial attributes of the objects are
used as the skyline evaluation criteria. Meanwhile, to avoid re-computation of skylines at each time
interval, the objects of interest within a Single Minimum Bounding Rectangle that is formed based on
the current search region are organized in a Kd-tree data structure. Several experiments have been
conducted and the results show that our proposed method outperforms the previous work with
respect to CPU time.

Keywords: preference evaluation; skyline queries; continuous skyline queries; spatial skyline;
non-spatial skyline; group preferences; dominance testing; Kd-tree

1. Introduction

The skyline operator introduced by [1] plays an important role in accurately and
efficiently solving problems that involve user preferences. Given a predefined set of
evaluation criteria, the skyline operator is used to filter a set of interesting objects from a
potentially large multi-dimensional collection of objects by keeping only those objects that
are not worse than any other. The objects in the collection are assumed to be symmetric
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as they have symmetry properties (features) that are used to define the evaluation criteria.
The dominant objects also known as skylines objects are said to be the best, most preferred
set of objects. The process of computing skylines becomes challenging when conflicting
criteria are involved and the number of criteria to be considered is vast. A classic example is
searching for a hotel for a holiday that is cheap and near to a beach. Typically, hotels that are
close to the beach are known to be expensive. While other criteria such as facilities, rating
and service are equally important, distance and price are examples of conflicting criteria.

This paper presents the Region-based Skyline for a Group of Mobile Users (RSGMU)
method, an extension of our previous work [2], which aims to continuously find the
optimal meeting points for a group of users while they are on the move. In this work, these
points are skyline objects derived from the objects that are within the search region of the
group of users, also known as objects of interest. This is in line with today′s advancement of
technology that shows ad hoc meetings or impromptu gatherings are becoming more and
more common, yet deciding on a meeting or gathering point is not a straightforward task.
RSGMU is capable of handling any collections of objects with symmetry properties, such
as restaurants, hotels, cafes, shopping malls and parks, which can be used as a meeting
or gathering place. The difference between RSGMU and SGMU [2] lies on the way the
spatial and non-spatial preferences of the users is treated. In SGMU, these preferences
are handled separately, which results in disjoint sets of skyline objects. The dominated
objects based on spatial preferences are derived from the objects of interest, while the whole
collection of objects in the space is analysed to identify the dominated objects based on
non-spatial preferences. Although SGMU will not miss any important objects with regard
to the non-spatial preferences of the users, the objects that are not within the search region
will obviously not fulfilling the spatial preferences of these users.

There are several existing skyline derivation solutions; however, most of them are lim-
ited due to the following: (i) Although users are assumed to be on the move, their solutions
are tailored made for fulfilling the preferences of a single user [3]; and (ii) approaches that
are designed for computing skylines for a group of users make use of the initial location of
the users in the skyline computation [4–6]. This means the skyline objects are not updated
as users are assumed to be static. Nonetheless, considering the movement of users requires
a mechanism to continuously update the skylines as these skylines might no longer be
relevant to the users. In addition, the following common challenges were aimed to be
resolved by earlier solutions [3–6]: (i) The task of identifying skyline objects for a group of
users is not straightforward as many criteria need to be considered; and (ii) an object of
interest that is near to the users might not meet all the various users′ preferences, while
an object with facilities that meet most of the users′ preferences might be located far away
from these users. The unique challenge aimed by RSGMU is to derive skylines that satisfy
both the spatial and non-spatial preferences of a group of users while they are on the move.
An object that was initially in the top list of the group of users might no longer be the object
of interest once the users have moved away from their initial locations. Hence, a method is
critically needed to not only continuously derive and update the skyline objects based on
the changes in the users′ locations, but to also derive these objects that would assist the
users to foresee the potential meeting points ahead of time.

The following scenario illustrates the problem tackled in this paper. It is assumed that
there are 15 distinct objects representing objects of interests. Additionally, it is assumed
that the search region is based on the initial locations of a group of users, SG, at time t0, as
shown in Figure 1a, while the search region based on the changes in the users′ locations,
S′G, after a specified time interval, say tn, as is shown in Figure 1b. For simplicity, these
users are not depicted in the figure. Ideally, the objects that fall within SG, i.e., o3, o4, o5, o6,
o7, o9, o11, and o13, are compared to filter the dominant objects in fulfilling the preferences
of the group of users. Let us say that the dominated objects within SG at time t0 are o3,
o5, o7, o9 and o13. If none of these objects are chosen as a meeting point at time t0, then
the changes in the users′ locations will result in changes in the search region, as shown
in Figure 1b. Intuitively, the set of objects that falls within S′G, i.e., {o4 , o6, o7, o9}, is a
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subset of the set of objects of SG, and there are objects that are within SG but not within S′G.
Consequently, the pairwise comparisons performed earlier between the objects o3, o5, o11,
and o13 are pointless. Hence, in deriving the skylines for a group of users while they are on
the move, it is crucial to predict the locations of these users in a specified time interval to
avoid unnecessary pairwise comparisons.
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Figure 1. Example of (a) a search region based on the initial locations and (b) search region based on
the new locations of a group of users.

In general, the main contributions of this work can be briefly described as follows:

• We formally introduce the problem of finding the optimal meeting points, also known
as skylines, of a group of users who are on the move and justify the significance of
addressing the problem. In general, the optimal meeting points, i.e., skyline objects,
that best meet the spatial and non-spatial preferences of the users are identified
at a specified time interval until, finally, a skyline object is selected by the group
of users as a meeting point. Several definitions are formally put forward, which
include properties of a user, properties of an object, dominance, non-spatial dominance, spatial
dominance, dominance in a space, skylines of a space, region of interest, search region, and
object of interest.

• We propose an efficient solution, named Region-based Skyline for a Group of Mobile Users
(RSGMU) method, which is designed mainly for deriving skyline objects for a group
of users while they are on the move. RSGMU assumes a centroid-based movement where
users are assumed to be moving towards a centroid. Unlike previous works [3,4,7–10]
that require users to frequently report their latest locations, RSGMU utilises the dynamic
motion formula to predict the locations of the users at a specified time interval, which
results in the skyline objects being continuously updated. In addition, the skyline
results are derived in advance before the users have actually arrived at the location.
Meanwhile, to avoid re-computation of skylines at each time interval, the objects of
interest are organized in a Kd-tree data structure.

• We conduct extensive experiments with various parameter settings to prove RSGMU′s
capabilities in deriving the skyline objects for a group of users while they are on the
move. These parameter settings are time interval, number of objects, data dimensionality,
density, space size, number of users in a group, number of groups of users, and number of
skyline objects.

This paper is organised as follows: Section 2 reviews the methods proposed by previ-
ous studies that are related to the work presented in this paper. Section 3 introduces the
notations and deliberates the terms that are frequently used throughout the paper. It also
presents the problem tackled by this paper. This is followed by Section 4, which presents
the proposed method, RSGMU. This section focuses on the steps to be performed in order
to achieve the main aim of the work. Section 5 evaluates the performance of the proposed
method and compares the results to other previous work. The last section, Section 6,
concludes this work and sheds light on some directions that can be pursued in the future.
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2. Related Works

A great number of skyline algorithms have been proposed since the introduction of
skyline operator by [1]. Among the most notable skyline algorithms are Block Nested-Loop
(BNL) [1], Divide-and-Conquer (D&C) [1], Bitmap [11], Index [11], Nearest Neighbor (NN) [12],
Branch and Bound Skyline (BBS) [13], Sort-Filter-Skyline (SFS) [14], Linear Elimination Sort
for Skyline (LESS) [15], and Sort and Limit Skyline algorithm (SaLSa) [16]. This list is non
exhaustive as more advanced skyline algorithms can be found in the literature [17], each
concerned with various distinct issues. These include Bucket [18], Iskyline [18], Incosky-
line [19], and OIS [20,21], which were developed to tackle issues related to incompleteness
of data. Meanwhile, DyIn-Skyline [22] is an example of an algorithm that is meant for han-
dling both the issues of incompleteness and changes in data; ∆Skyline [23] is an extension
of DyIn-Skyline and focuses on the changing state and structure of a database. On the other
hand, BBIS [24], SkyQUD [25], and SQUiD [26] are algorithms meant for imprecise data,
also known as uncertain data.

Of pertinence to the problem highlighted in this paper, we categorised the existing
skyline algorithms into three categories, namely: (i) skyline queries for a mobile user, (ii)
skyline queries for a group of static users, and (iii) skyline queries for a group of mobile users.
Similar to our solution, the works reported here are those that assumed non-moving objects
except for some studies such as [3,9], in which both static and moving objects are covered.

2.1. Skyline Queries for a Mobile User

A continuous skyline query processing strategy is proposed by [8] using the kinetic data
structure for moving query points. The spatiotemporal coherence is analysed in order to
avoid the need to compute the skyline from scratch at every time instance. The skyline
query result is updated and available continuously. Meanwhile, to resolve the problem
related to range-based skyline queries (RSQ), [9] proposed two algorithms named I-SKY, an
index-based RSQ algorithm, and N-SKY, a non-index RSQ algorithm. Meanwhile, to resolve
the problem related to continuous RSQ query, the incremental construction of the I-SKY
index was devised. They also studied the probabilistic RSQ query problem. Their work is
comprehensive such that both static and moving objects were covered. In addition, the work
by [10] focused on the authentication problem of continuous location-based arbitrary-subspace
skyline queries (LASQs). They developed a prefetching-based approach that enables clients
to compute new LASQ results locally during movement, without frequently contacting the
server for query re-evaluation. On the other hand, [3] studied the problem of range-based
skyline queries (CRSQs) in road networks, where two algorithms named landmark-based
(LBA) and index-based (IBA) were proposed. Furthermore, to handle continuous range-
based skyline queries over moving objects, incremental versions of LBA and IBA were
introduced. Nonetheless, [7] argued that the existing approaches for the continuous skyline
query limit the area of the skyline query to a specific area in the road network; hence, not
many useful query results can be retrieved. To reduce the number of intersection nodes
in the road network, three algorithms were proposed, namely, intersection node aggregation
algorithm (INAA), link remolding algorithm (LMA), and link fitting algorithm (LFA).

2.2. Skyline Queries for a Group of Static Users

The Spatial Skyline Queries (SSQ) was introduced by [4]. SSQ retrieves the objects that
are not dominated by other objects based on spatial domination, i.e., the point′s distance to a
query point. Three algorithms were proposed, namely, R-tree-based Branch-and-Bound Spatial
Skyline (B2S2) and Voronoi-based Spatial Skyline (VS2) for static query points and Voronoi-based
Continuous SSQ (VCS2) for streaming query points. This work was then extended in [5]
for spatial network databases. Two algorithms were proposed, namely, SNS2 and VSNS2,
which compute the spatial skyline with respect to the network distance in a spatial network
database. Later, [6] proposed a new index structure, termed VoR-Tree, which incorporates
Voronoi diagram and Delaunay graph of a set of objects into an R-tree that indexes their
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geometries. The data structure is experimented on various Nearest Neighbour (NN) queries
that include kNN, Reverse kNN, k Aggregate NN, and spatial skyline queries on point data.

Meanwhile, ref. [27] considered spatial skyline query for a group of users having
different positions. The final skyline results were obtained by utilising the non-spatial
features and spatial features of the objects. The proposed method selects a set of spatial
objects whose location for the group is not dominated by another spatial objects, which
is then computed using the VoR-Tree. Having a similar aim as [27], an algorithm named
VR (Voronoi and R-tree) was proposed by [28] for computing skyline of spatial objects
for a group of users located at different locations. Both spatial features and non-spatial
features of the objects were considered, while the VoR-tree and Sum Distance were utilised
to calculate the spatial skyline objects. In 2018, ref. [29] proposed a solution for spatial
skyline query over imperfect data for a set of query points located in different locations.

With a slightly different aim, refs. [2,30] proposed the RSGU method that avoids rescan-
ning the set of objects within an area that has been explored during the skyline computation
of previous groups of users. By partitioning each region into smaller units called fragments,
the overlapping areas are determined, while the results of computing the skylines of each
fragment, known as fragment skylines, are saved and utilised in the subsequent requests.

2.3. Skyline Queries for a Group of Mobile Users

The only work that falls under this category is the work conducted by [4]. In [4],
the Voronoi-based Continuous SSQ (VCS2) was proposed for streaming query points, Q,
whose points change location over time (i.e. mobile). The spatial skyline was updated by
exploiting the pattern of change in Q to avoid unnecessary recomputation of the skyline.

Table 1 summarises the works reported in Section 2.1, Section 2.2, Section 2.3. From
the table, the following can be observed:

(a) Works that focus on continuous skyline query for a single user [3,7–10] assumed an
arbitrary movement. In these methods, the user is required to frequently update their
latest location.

(b) The works by [2,5,6,27–30] that focus on non-continuous skyline query for a group of
users used the initial locations of the users in determining the skyline objects. Hence, the
type of movement either arbitrary or centroid-based was not significant in those studies.
However, users in the group can always update their locations by submitting a new query.

(c) Continuous skyline query for a group of users as studied by [4] assumed an arbitrary
movement where users are required to frequently update their latest locations.

(d) Most of the works used the spatial attributes of the users as well as the spatial and
non-spatial attributes of the objects in obtaining the skyline objects [2,3,7–10,27–30],
except for the works by [4–6], in which the non-spatial attributes of the objects were
not taken into consideration. Hence, [4–6] defined skyline objects as those objects that
best meet the spatial preferences of the group of users.

(e) Our proposed method, RSGMU, differs from the works reported in this paper regard-
ing the following: (i) RSGMU assumes a centroid-based movement to ensure that the
travelling distance of each user is almost the same, so that they are able to meet on
time. (ii) Unlike [2,4,6,27–30], which utilised a specific data structure to organise the
objects in the whole space, RSGMU uses Kd-tree to organise the identified objects of
interest that fall within a certain subspace. Hence, the changes in the users′ locations
involve a smaller number of objects to be traversed. (iii) RSGMU utilises the dynamic
motion formula to predict the locations of the users at a specified time interval, which
results in the skyline objects to be continuously updated. On the other hand, users are
required to frequently update their latest locations in [3,4,7–10] in order to continu-
ously update the skyline objects. (iv) Although most works [2,3,7–10,27–30] used the
spatial attributes of the users as well as the spatial and non-spatial attributes of the
objects in obtaining the skyline objects, they are limited as their solutions are unable
to cater the movement of the users.
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Table 1. Summary of the related works.

Author
Skyline

Algorithm

Evaluation Criteria

Type of Query
Method of

Tracking User′s
Location

Data Structure
Used

Single/
Group

Type of
Movement

User Object

Spatial Spatial Non- Spatial

[8] Continuous Skyline Query
√ √ √

Continuous skyline query Update Kinetic Single Arbitrary

[9] I-SKY, N-SKY, Incremental
I-SKY

√ √ √ Range-based skyline query
(RSQ), continuous RSQ,
Probabilistic RSQ query

Update × Single Arbitrary

[10] Location-based arbitrary-subspace
skyline queries (LASQs)

√ √ √ Continuous range-based
skyline query Update × Single Arbitrary

[3] Landmark-based (LBA),
index-based (IBA)

√ √ √ Continuous
range-based skyline query Update × Single Arbitrary

[7]

Intersection node aggregation
algorithm (INAA), link remolding

algorithm (LMA), link fitting
algorithm (LFA)

√ √ √ Continuous
range-based skyline Update × Single Arbitrary

[4]

Branch-and-Bound Spatial Skyline
(B2S2), Voronoi-based Spatial
Skyline (VS2), Voronoi-based

Continuous SSQ (VCS2)

√ √
× Spatial skyline query (SSQ),

Continuous SSQ Update R-tree,
Voronoi diagram Group Arbitrary

[5] SNS2, VSNS2 √ √
× Spatial skyline query × × Group ×

[6] Voronoi-based and R-tree Spatial
Skyline (VoR-Tree)

√ √
× Spatial skyline query × Voronoi diagram,

Delaunay graph Group ×

[27] VR (Voronoi and R-tree)
√ √ √

Spatial skyline query × R-tree,
Voronoi diagram Group ×

[28] VR (Voronoi and R-tree)
√ √ √

Spatial skyline query × R-tree and
Voronoi diagram Group ×

[29] Group Skyline Algorithm (GSA)
√ √ √

Imperfect spatial skyline query × R-tree and
Voronoi diagram Group ×

[2,30] Region-based Skyline for a Group
of Users (RSGU)

√ √ √
Spatial skyline query × R-tree, fragment Group ×

Our Method Region-based Skyline for a Group
of Mobile Users (RSGMU)

√ √ √
Continuous SSQ Predict/ Update Kd-tree Group Centroid-based
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3. Preliminaries

In this section, the important concepts and terms that are related to the work presented
in this paper are explained, while the notations used throughout the paper are introduced.
This is then followed by the descriptions of the problem tackled in this paper.

3.1. Definitions and Notations

Considering a data set D = 〈R, U, O〉, where U = {u1, u2, . . . , un} is a list of n users,
O = {o1, o2, . . . , om} is a list of m objects, and R = 〈AS, AN〉 where AS representing a
spatial attribute, while AN = {d1, d2, . . . , dl} is a set of non-spatial attributes.

The following definitions define the properties of a user and an object as used
in this work.

Definition 1. Properties of a User: Each user, ui ∈ U, is associated with a spatial attribute that
represents the location of the user at a certain time, t. This is denoted as ui(xi, yi). For instance,
u1(2, 6 of Table 2 denotes the location of user u1. Throughout this paper, the notations t0, tn
and td are associated with the initial state, current state and final state, respectively, of a user.
The final state indicates that a skyline object has been selected. In this work, the initial location of
a user, ui, i.e., at time t0, is assumed given while their subsequent locations are predicted using
the dynamic motion formula in [31]. We used the notations t0, t1, . . . , tn−1, tn, tn+1, . . . , td
to represent the sequence of iterations followed in predicting the locations of the users where
t0 < t1 . . . < tn−1 < tn < tn+1 . . . < td and each ti, 0 ≤ i ≤ d, is associated with a specific time.
Hence, the terms iteration and time are used interchangeably in this paper. Here, the amount of
time between two adjacent iterations is provided by a specified time interval, ∆t. For instance, if
∆t = 10 s, then the difference between the iterations tn−1 and tn is 10 s. It is also assumed that
each user, ui ∈ U, is moving with a constant speed of vi.

Definition 2. Properties of an Object: Each object oj ∈ O has two main elements
denoted by oj =

(
sj, nsj where sj is the value of spatial attribute (location), AS, and

nsj =
{

oj.d1, oj.d2, . . . , oj.dl
}

is a set of values of non-spatial attributes, AN , associated with oj.
The location of an object oj ∈ O is denoted as oj

(
xj, yj

)
. As each object oj ∈ O is assumed to be

static, thus the location of the object is fixed regardless the changes in time. Hence, oj =
(
sj, nsj

)
can be written as oj =

((
xj, yj

)
,
{

oj.d1, oj.d2, . . . , oj.dl
})

. For instance, the object o1 of Table 3
can be written as o1 = ((8, 6), {2, 80}).

Table 2. The spatial attribute of a group of users, Ga, at time t0.

ID Location

u1 (2, 6)

u2 (1.6, 3.2)

u3 (6, 3.2)

Table 3. The spatial and non-spatial attributes of the objects.

ID Location Rating Fee ID Location Rating Fee

o1 (8, 6) 2 80 o9 (14, 9) 2 90

o2 (1, 4) 2 80 o10 (8, 1) 3 95

o3 (1, 2) 3 80 o11 (5.9, 5.8) 2 100

o4 (8, 8) 1 60 o12 (4, 8) 3 95

o5 (7, 3) 2 90 o13 (2, 7) 3 92

o6 (6, 6) 2 80 o14 (−2, 9) 3 100

o7 (3.1, 4) 3 65 o15 (5, 7) 2 93

o8 (10, 3.5) 3 65
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The following definitions define the notion of dominance in this work.

Definition 3 Dominance: Given two objects oi = (si, nsi and oj =
(
sj, nsj ∈ O where i 6= j, oi is

said to dominate oj (denoted by oi ≺ oj if and only if both of the following conditions hold: (1) oi
non-spatially dominates oj oi ≺ns oj and (2) oi spatially dominates oj

(
oi ≺s oj

)
. Without loss of

generality, the definition is applicable for a given bounded space, S, i.e., O is a set of objects in the
space S. Similar note applies for Definition 4 and Definition 5.

Definition 4. Non-spatial dominance: Given two objects oi = (si, nsi) and oj =
(
sj, nsj

)
∈ O where

i 6= j, oi is said to non-spatially dominate oj (denoted by oi ≺ns oj
)

if and only if oi is no worse than
(in this definition, greater value is preferable) oj in all the non-spatial attributes, AN. This is formally
written as follows: oi ≺ns oj if and only if ∀dk ∈ AN, oi.dk ≥ oj.dk ∧ ∃dl ∈ AN, oi.dl > oj.dl . For
instance, given o6 = ((6, 6), {2, 80}) and o8 = ((10, 3.5), {3, 65}), o8 ≺ns o6 since o8 is better than
o6 in both the dimensions Rating and Price, with the assumption that a higher rating and lower fee
are preferable.

Definition 5. Spatial dominance: Given two objects oi = (si, nsi) and oj =
(
sj, nsj

)
∈ O where

i 6= j, oi is said to spatially dominate oj (denoted by oi ≺s oj if and only if for every user uk ∈ U,
the distance between oi and uk, dist(oi, uk), at a certain time, t, is no worse than the distance
between oj and uk, dist

(
oj, uk

)
at time t. This is formally written as follows: oi ≺s oj if and only

if ∀uk ∈ U, dist(oi, uk) ≤ dist
(
oj, uk

)
∧ ∃ul ∈ U, dist(oi, ul) < dist

(
oj, ul

)
. For instance,

the distances between o1 = ((8, 6), {2, 80}) and u1, u2, and u3 of group Ga are 6, 6.98, and 3.44,
respectively; while the distances between o5 = ((7, 3), {2, 90}) and u1, u2 and u3 of group Ga are
5.83, 5.40 and 1.01, respectively. Thus, o5 ≺s o1.

Definition 6. Dominance in a space: Given a bounded space, S (region, MBR, fragment, area,
polygon, etc.), and two objects oi = (si, nsi) and oj =

(
sj, nsj

)
∈ O where i 6= j in S, oi is said to

dominate oj (denoted by oi ≺ oj) in S if and only if (1) oi non-spatially dominates oj (oi ≺ns oj) in
S and (2) oi spatially dominates oj (oi ≺s oj) in S.

Definition 7. Skylines of a space: An object oi ∈ O in a space S is a skyline of S if there are no
other objects oj ∈ O where i 6= j in the space S that dominates oi. In this paper, SkyGp was used to
denote the skyline set for the group Gp of a given space S.

Given the location of a user, ui, at a certain time, t, it is unwise to consider all the
objects in the space, O = {o1, o2, . . . , om}, during the skyline evaluation. It is certain
that objects that are near to the user are the objects of interest to the user. Hence, it is
crucial to identify the region of interest for a given user,Rui , at time t, as presented in the
following definition.

Definition 8. Region of interest: The region of interest, R, of a user ui with location (xi, yi ) at
time t, denoted asRui is the area bound by a circle with radius, R, and (xi, yi ) is the centre point of
the circle.

Presuming a group of mobile users with a set of locations, the region of interest for
a given user should take into consideration the nearest object to the centroid. Here, the
concept of search region, which is a region of interest for a user, Sui , where the radius is
the Euclidean distance between the user′s location and the nearest object to the centroid, is
defined. As the user becomes closer to the nearest object, the search region becomes smaller.

Definition 9. Search region: The search region, S , given a user ui with location (xi, yi ) at time tn,
denoted as Sui is the region of interest of user ui,Rui , where the radius R is the Euclidean distance
between (xi, yi ) and the nearest object on, i.e., (xon , yon). The notation Ruion is used to denote the
radius R of the search region. Obviously, the search region of a given user ui at time tn is part of the
search region of the user ui at time tn−1 where tn−1 < tn, i.e., Sui at time tn ⊂ Sui at time tn−1.
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Having defined a search region, then the objects that fall within the boundary of the
search region are assumed to be the objects of interest to the user. This is clearly defined in
Definition 10.

Definition 10. Object of interest: An object oj ∈ O is the object of interest to a user ui if the object
oj falls within the boundary of Sui .

Based on the above definitions, the problem that is tackled by RSGMU is formulated
as follows: Given a group of users, Gp =

{
u1, u2, . . . , up

}
, where Gp ⊂ U, with each

user, ui ∈ Gp, is associated with a spatial attribute denoted by ui(xi, yi ), which represents
the location of the user ui at time, t0, and ui(x′i, y′i ), which represents the location of
the user ui at a later time, tn, where t0 < tn. Additionally, consider a set of objects,
Op =

{
o1, o2, . . . , oq

}
where Op ⊂ O, that is, within the search region, SG, of Gp at time t0,

where each object oj ∈ O has two main elements denoted by oj =
(
sj, nsj ). Find the optimal

meeting points, i.e., skyline objects, SkyGp , of Gp that best meet the spatial and non-spatial
preferences of the users at time tn with a specified time interval, ∆t, until finally at the time
td the group of users decided to select a skyline object as a meeting point, say oj ∈ SkyGp ,
where t0 < tn < td. Obviously, to continuously derive the skyline objects at time tn with
time interval, ∆t, the changes in the users′ locations should be considered. Additionally,
since the objects within the search region, S′G, of Gp at the time tn is a subset of the objects
within the search region, SG, of Gp at the time tn−1; hence, rescanning the whole objects O
and recomputing the skylines objects based on O in each iteration are unwise.

3.2. Sample Data

The following samples of data are used throughout the paper to clarify the steps
proposed in this work. Table 2 presents the spatial attribute (initial Location) of the users,
while Table 3 presents the spatial (Location) and non-spatial (Rating, Fee) attributes of
15 distinct objects. In computing the skyline objects, it was assumed that higher rating and
lower fee are preferable.

4. The Proposed Method

This section elaborates on the Region-based Skyline for a Group of Mobile Users (RSGMU)
method, which is mainly proposed to solve the problem defined in Section 3. The method
is presented in Figure 2. It consists of five main steps that are: (1) Identify the cen-
troid, (2) Predict the location of a user, (3) Construct a search region, (4) Construct a
Kd-tree, and (5) Derive the skylines. Steps (2) to (5) are repeated in several iterations,
t1, . . . , tn−1, tn, tn+1, . . . , td, until a skyline object is selected as a meeting or gathering
point at time td, where t1 < · · · < tn−1 < tn < tn+1 . . . < td, with time interval, ∆t, as
the amount of time difference in each iteration. These steps utilise the spatial attributes of
both the users and objects. In every iteration, the results of the previous cycle are used. In
Step (5), the spatial and non-spatial skylines are determined; hence, both the spatial and
non-spatial attributes of the objects as well as the spatial attributes of the users are analysed.
Meanwhile, to derive the skyline objects at time t0, the initial location of each user is con-
sidered; hence, Step (2) is omitted. However, if the query is updated (i.e., at least one of the
users updated his/her location/speed), then Step (1) and the subsequent steps as explained
above are performed. Each of these steps is elaborated in the following subsections.
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4.1. Identify the Centroid

When a group of users, Gp =
{

u1, u2, . . . , up
}

, where each user, ui, is located at a
different location, decided to meet, there must be a point to guide the direction of their
movements. Is the norm to select a point in which the travelling distance of each user
is almost the same to ensure the users will be able to meet on time. In this work, it was
assumed that these users will move towards a point that has the tendency to be a centre
based on the users′ locations. This point is called centroid and is denoted by C(xC, yC). The
centroid of a given group of users, C, is determined using the following formula [32]:

C
(

xC =
∑n

i=1 xi
n

, yC =
∑n

i=1 yi
n

)
(1)

where xi is the x coordinate of user ui location, yi is the y coordinate of user ui location, xC
is the average of the x coordinates of all users in the group Gp, and yC is the average of
the y coordinates of all users in the group Gp. Note that this step is performed only once
with users′ locations as given at time t0. This step is reflected in Algorithm 1. Based on the
example shown in Table 2, the centroid of Ga is C(3.2, 4.13).

Algorithm 1: Identify the Centroid

Input: A group of users, Gp =
{

u1, u2, . . . , up
}

with each user given as ui(xi , yi)
Output: Centroid, C(xC , yC)
1. Begin

2. C
(

xC =
∑n

i=1 xi
n , yC =

∑n
i=1 yi

n

)
/* Equation (1)

3. End

4.2. Predict the Location of a User

The aim of this phase is to predict the location of a user while the user is on the
move. To achieve this, we utilised the dynamic motion formula proposed by [31]. Here,
we assumed that each user, ui, is moving in a steady speed, vi, towards the centroid, C,
which was identified in the previous phase. Consequently, the location of ui at time t0
given by ui(xi, yi ) changes to ui(x′i, y′i ) at time, tn, where tn > t0. Intuitively, the objects
that are initially the possible candidate skylines based on ui(xi, yi ), i.e., in the boundary
of the user′s region, are no longer the possible candidates due to the new location of the
user, i.e., ui(x′i, y′i ). This means skylines have to be continuously updated by discarding
the irrelevant objects until an object is selected as a meeting point. Hence, predicting the
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values of x′i and y′i of each user ui ahead of time would assist the users to foresee the
potential meeting points. In the following, we show (i) an arbitrary movement and (ii) a
centroid-based movement and their effect on the objects of interest of a user.

Figure 3a shows an example of an arbitrary movement of a user, u1, with the location
(2, 6) at time t0 and a list of objects, O = {o1, o2, . . . , o15}. Based on the initial location of
u1, let us assume that the region of interest (refer to Definition 8) of u1 with radius R is the
region Ru1 (shown in shaded black). The objects that fall within the region Ru1 are said
to be the objects of interest (refer to Definition 10) to u1 compared to other objects that are
outside of the regionRu1 . Thus, objects o2, o7 and o13 are the possible objects to be visited
by u1, while objects o1, o3, o4, o5, o6, o8, o9, o10, o11, o12, o14 and o15, which are outside of the
regionRu1 , are the uninterested objects to u1. At time tn, where tn > t0, the new location
of u1 is (5, 4.9). Based on this new location and assuming the same radius R, the region of
interest of u1 is no longerRu1 butRu′1 (shown in shaded red). Here, the objects of interest
to user u1 are o6, o7, o11 and o15. It is obvious that there are objects that were initially in the
list of objects of interest, o2 and o13, which are no longer the objects of interest based on the
new location of u1. Additionally, there are objects that were not initially in the list of objects
of interest, o6, o11 and o15, which are now the objects of interest based on the new location
of u1. Therefore, it is essential to predict the new location of a user at time tn where tn > t0,
as the set of objects of interest of a user might be different at different times.
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Figure 3. (a) The regions of interest,Ru1 andRu′1 , when u1 changed their location, (b) The regions
of interest,Ru3 andRu′3 , when user u3 moves towards C.

In a centroid-based movement, it is assumed that the group of users is moving towards
a centroid, C. Hence, the region Ru′i is a subset of the region Rui , as clearly shown in
Figure 3b. As the user becomes closer to the centroid, the search region becomes smaller.
Here, the objects of interest based on Ru3 , i.e., based on the initial location of user u3 at
time t0, are o5, o6, o7, and o11, while the objects of interest based onRu′3 , i.e., based on the
new location of user u3 at time tn, are o5 and o7. This means the objects o6 and o11, which
were initially the objects of interest, are now no longer the objects of interest.

Figure 4 shows a user, ui, with the location (xi, yi ) is moving towards the centroid
C, with the location (xC, yC). Let us assume that at time tn, the new location of ui is
(x′i, y′i ). In order to find the values of x′i and y′i, the following needs to be calculated:

(i) the displacement
→

RuiC, (ii) the cosine θ and sine θ, and (iii) the displacement
→
4R. The

detailed steps are presented below.
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→

RuiC when user ui is moving towards the centroid C.

Step 1: Calculate the displacement RuiC from ui to C. The displacements from point
(0, 0) to ui and from ui to C are presented as displacement vectors,Rui andRuiC, respec-
tively. The net displacement of these two displacements is a single displacement from (0, 0)
to C, which is called RC [31]. The equations to find the displacementRuiC are as follows:

→
Rui +

→
RuiC =

→
RC (2)

→
Rui =

→
xi +

→
yi (3)

→
RC =

→
xC +

→
yC (4)

From Equation (2), we obtained:

→
RuiC =

→
RC −

→
Rui (5)

From Equations (3) and (4), we obtained:

→
RuiC =

(→
xC −

→
xi

)
+
(→

yC −
→
yi

)
(6)

RuiC =

√
(xC − xi)

2 + (yC − yi)
2 (7)

Step 2: Calculate the cosine θ and sine θ. This step calculates the value of θ, which

is an angle between the positive direction of the x axis and the direction of
→

RuiC. Given

the components (xC − xi) and (yC − yi), the orientation of the vector
→

RuiC is calculated as
follows:

From Equation (7), we obtained:

cos θ = (xC − xi)/RuiC (8)

sin θ = (yC − yi)/RuiC (9)

Step 3: Calculate the displacement ∆R at time tn with speed vi. The displacement ∆R
at time tn with speed vi is calculated using the following equations [31]:

∆t = tn − tn−1 (10)

∆R = vi∗∆t (11)
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Step 4: Calculate the x′i and y′i at time tn. The displacement interval
→

∆R is the difference

between the displacements
→

Ru′i and
→

Rui , which were calculated in steps 1 and 3, respectively.

→
∆R =

( →
Ru′i −

→
Rui

)
(12)

From Equation (8), we obtained:

cos θ = (x′i − xi )/∆R (13)

From Equation (13), we obtained:

x′i = xi + ∆R ∗ cos θ (14)

From Equation (9), we obtained:

sin θ = (y′i − yi)/∆R (15)

From Equation (15), we obtained:

y′i = yi + ∆R ∗ sin θ (16)

Based on the example shown in Tables 2, 4 and 5 show the predicted locations of users
u1, u2 and u3 at t1 and t2 with ∆t = 10 s.

Table 4. The new locations of the users at t1.

ID Initial
Location

Speed
vi

Centroid
C

Step 1
RuiC

Step 2 Step 3
∆R x′ y′

cos θ sin θ

u1 (2, 6) 72

(3.2, 4.1)

2.24 0.53 −0.84 0.2 2.1 5.83

u2 (1.6, 3.2) 108 1.83 0.87 0.49 0.3 1.86 3.34

u3 (6, 3.2) 90 2.94 −0.95 0.3 0.25 5.76 3.27

Table 5. The new locations of the users at t2.

ID Initial
Location

Speed
vi

Centroid
C

Step 1
RuiC

Step 2 Step 3
∆R x′ y′

cos θ sin θ

u1 (2.1, 5.83) 72

(3.2, 4.1)

2.04 0.53 −0.84 0.2 2.2 5.66

u2 (1.86, 3.34) 108 1.53 0.87 0.49 0.3 2.12 3.48

u3 (5.76, 3.27) 90 2.69 −0.95 0.3 0.25 5.52 3.34

The steps explained above are shown in Algorithm 2.
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Algorithm 2: Predict the Location of a User

Input: A group of users, Gp =
{

u1, u2, . . . , up
}

with each user given as ui(xi, yi); Centroid
C(xC, yC)
Output: A group of users, Gp =

{
u1, u2, . . . , up

}
with each user’s location being updated as

ui(x′i, y′i )
1. Begin
2. For each ui ∈ Gp do

3. Calculate the displacementRuiC =
√
(xC − xi)

2 + (yC − yi)
2 /* Equation (7)

4. Calculate the cosine θ and sine θ as follows:
cos θ = (xC − xi)/RuiC /* Equation (8)
sin θ = (yC − yi)/RuiC /* Equation (9)

5. Calculate the displacement ∆R at time tn with speed vi, ∆R = vi ∗ ∆t where
∆t = tn − tn−1 /* Equation (11)

6. Calculate x′i and y′i at time tn:
x′i = xi + ∆R ∗ cos θ /* Equation (14)
y′i = yi + ∆R ∗ sin θ /* Equation (16)

7. End
8. End

4.3. Construct a Search Region

The aim of constructing a search region (Refer to Definition 9) is to limit the searching
space to those spaces in which the objects of interest can be easily identified and, conse-
quently, the skyline objects can be located. Given n users in a group, the objects of interest
are those objects that are within the regions of interest of these n users. This is achieved
by: (1) identifying the search region for each user, Sui , and (ii) identifying the search region
given a group of users, SG.

4.3.1. Identify the Search Region for Each User, Sui

In the case where no object is found at the centroid C identified in the previous step,
the nearest object, on, to the centroid has to be determined. The nearest object is an object
with the shortest Euclidean distance from the centroid. Based on the example shown in
Table 2, the nearest object is o7(3.2, 4). The search region for a user, ui, denoted as Sui ,
is the area bound by a circle with radius Ruion . The radius Ruion of Sui is determined by
a straight line from ui to on, i.e., a straight line from (xi, yi ) to (xon , yon ). However, the
nearest object on can also be at the point C, i.e., on(xon , yon) = C(xC, yC). Figure 5 shows
the construction of a search region for user, ui, where (a) the nearest object on is nearer to
the user ui compared to C, (b) the nearest object on is further from the user ui compared
to C, and (c) the nearest object on is at the same point as C. The further the user ui is from
the nearest object on, the larger the search region of ui, Sui , is. Figure 6a presents the search
regions of three users, u1, u2 and u3. It is obvious that the areas covered are different
in sizes with user u1 having the largest search region than u2 and u3 since the distance
between u1 and on is the furthest compared to the distances of u2 and u3 to on.
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Figure 5. The search region of user ui: (a) the nearest object on is nearer to the user ui compared to C,
(b) the nearest object on is further from the user ui compared to C, and (c) the nearest object on is at
the same point as C.

4.3.2. Identify the Search Region Given a Group of Users, SG

This step is simply achieved by performing union on the search region of each user in
the group, i.e., Un

i=1Sui. The shaded area in Figure 6a presents the search region for a group
of users, SG, which is derived as follows: SG = Un

i=1Sui.
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4.4. Construct a Kd-Tree

The changes in the users′ locations of a group at time, tn , caused the search region of
the group SG, built at time tn−1 in the previous phase, to be reconstructed, where tn−1 < tn.
In this work, the changes are captured at a certain time interval, which is assumed to
be specified by the users. With the centroid-based movement, the search region, S′G,
constructed at time tn is a subset of SG, constructed at time tn−1 . This implies that the
objects of interest of S′G are a subset of the objects of interest of SG. Undoubtedly, it is
unwise to scan the whole objects at every time interval, i.e., t0, . . . , tn−1, tn, tn+1, . . . , td,
until a skyline object is selected as a meeting point at time td. Moreover, due to the
objects of interest at every iteration being a subset of objects of interest of the preceding
iterations, these objects should be organised in such a way that the uninterested objects
in each iteration can be easily identified and filtered out from this collection of objects.
To achieve the above, we utilised the Kd-tree. The steps taken in constructing a Kd-tree
are: (1) identify the general region of a group of users, (2) construct a minimum bounding
rectangle (MBR) based on the general region identified in step (1), and (3) build a Kd-tree
based on the MBR that was constructed in step (2). These steps are further clarified in the
following subsections.



Symmetry 2022, 14, 2003 16 of 29

4.4.1. Identify the General Region of a Group of Users

In order to construct a Kd-tree, a region must be defined. The objects that fall within
the region are inserted in the Kd-tree. Here, the region is called general region, GR,
and it is determined by: (1) identifying the farthest user, u f , from the nearest object on,

i.e.,
{

u f

∣∣∣u f ∈ U ∧ ∀uj ∈ U −
{

u f

}
: Ed

(
on, u f

)
> Ed

(
on, uj

)}
; (2) identifying the radius

of the general region RGR by multiplying the radius Ru f on with 2 (the diameter of Ru f )

where Ru f on is a straight line from u f to on, i.e., a straight line from
(

x f , y f ) to (xon , yon );
and (3) drawing a circle that represents the general region GR with RGR as the radius and
on as the center point. Figure 6b shows an example of a general region GR with radius RGR.

4.4.2. Construct a Minimum Bounding Rectangle (MBR) Based on the General Region

Before the Kd-tree can be constructed, a minimum bounding rectangle (MBR) should
be identified. There are two types of MBR, namely, single minimum bounding rectangle
(SMBR) and multiple minimum bounding rectangle (MMBR). In the SMBR, only a single
MBR is constructed for all users in the group with a length and width of the MBR equal to
the diameter of GR. Meanwhile, in MMBR, a MBR is constructed for each user, ui, with a
length and width of each MBR equal to the diameter of Sui . Figure 7a,b show a sample of
SMBR and MMBR, respectively.

Symmetry 2022, 14, 2003 16 of 29 
 

 

the general region of a group of users, (2) construct a minimum bounding rectangle (MBR) 
based on the general region identified in step (1), and (3) build a Kd-tree based on the MBR 
that was constructed in step (2). These steps are further clarified in the following subsec-
tions.  

4.4.1. Identify the General Region of a Group of Users 
In order to construct a Kd-tree, a region must be defined. The objects that fall within 

the region are inserted in the Kd-tree. Here, the region is called general region, 𝐺𝑅, and it 
is determined by: (1) identifying the farthest user, 𝑢௙ , from the nearest object 𝑜௡ , i.e., ൛𝑢௙ห𝑢௙ ∈ 𝑈 ∧ ∀𝑢௝ ∈ 𝑈 − ൛𝑢௙ൟ: 𝐸𝑑൫𝑜௡, 𝑢௙൯ > 𝐸𝑑൫𝑜௡, 𝑢௝൯ൟ;  (2) identifying the radius of the 
general region 𝑅ீோ by multiplying the radius 𝑅௨೑௢೙ with 2 (the diameter of ℛ௨೑) where 𝑅௨೑௢೙ is a straight line from 𝑢௙ to 𝑜௡, i.e., a straight line from (𝑥௙, 𝑦௙) to (𝑥௢೙, 𝑦௢೙); and (3) 
drawing a circle that represents the general region 𝐺𝑅 with 𝑅ீோ as the radius and 𝑜௡ as 
the center point. Figure 6b shows an example of a general region 𝐺𝑅 with radius 𝑅ீோ. 

4.4.2. Construct a Minimum Bounding Rectangle (MBR) Based on the General Region 
Before the Kd-tree can be constructed, a minimum bounding rectangle (MBR) should 

be identified. There are two types of MBR, namely, single minimum bounding rectangle 
(SMBR) and multiple minimum bounding rectangle (MMBR). In the SMBR, only a single 
MBR is constructed for all users in the group with a length and width of the MBR equal 
to the diameter of 𝐺𝑅. Meanwhile, in MMBR, a MBR is constructed for each user, 𝑢௜, with 
a length and width of each MBR equal to the diameter of 𝑆௨೔. Figure 7a,b show a sample 
of SMBR and MMBR, respectively. 

   
(a) (b) (c) 

Figure 7. (a) Single minimum bounding Rectangle (SMBR). (b) Multiple minimum bounding rec-
tangle (MMBR). (c) Minimum bounding rectangle (MBR). 

The following notations are used when referring to a MBR: 𝑏𝑙 = (𝑥௕௟, 𝑦௕௟): the coor-
dinate at the bottom left of the MBR; 𝑏𝑟 = (𝑥௕௥, 𝑦௕௥): the coordinate at the bottom right of 
the MBR; 𝑡𝑙 = (𝑥௧௟, 𝑦௧௟): the coordinate at the top left of the MBR; and 𝑡𝑟 = (𝑥௧௥, 𝑦௧௥): the 
coordinate at the top right of the MBR. Figure 7c depicts these notations. 

The following discusses the construction of SMBR and MMBR. Consider a user, 𝑢௜(𝑥௜, 𝑦௜), the nearest object, 𝑜௡(𝑥௢೙, 𝑦௢೙), radius, 𝑅௨೔௢೙, and 𝑅ீோ (i.e., ℛ௨೑௢೙ × 2). The ver-
texes of the SMBR are calculated as follows: 𝑚𝑖𝑛 𝑥 = 𝑥௢೙ − 𝑅ீோ ; 𝑚𝑎𝑥 𝑥 = 𝑥௢೙ + 𝑅ீோ ; 𝑚𝑖𝑛 𝑦 = 𝑦௢೙ − 𝑅ீோ ; 𝑚𝑎𝑥 𝑦 = 𝑦௢೙ + 𝑅ீோ ; 𝑏𝑙 = (𝑚𝑖𝑛 𝑥, 𝑚𝑖𝑛 𝑦) ; 𝑡𝑙 = (𝑚𝑖𝑛 𝑥, 𝑚𝑎𝑥 𝑦) ; 𝑏𝑟 = (𝑚𝑎𝑥 𝑥, 𝑚𝑖𝑛 𝑦), and 𝑡𝑟 = (𝑚𝑎𝑥 𝑥, 𝑚𝑎𝑥 𝑦). If there are 𝑛 users, only one MBR needs 
to be constructed. Meanwhile, the vertexes of the MMBR are calculated as follows: 𝑚𝑖𝑛 𝑥 = 𝑥௜ − 𝑅௨೔௢೙ ; 𝑚𝑎𝑥 𝑥 = 𝑥௜ + 𝑅௨೔௢೙ ; 𝑚𝑖𝑛 𝑦 = 𝑦௜ − 𝑅௨೔௢೙ ; 𝑚𝑎𝑥 𝑦 = 𝑦௜ + 𝑅௨೔௢೙ ; 𝑏𝑙 = (𝑚𝑖𝑛 𝑥, 𝑚𝑖𝑛 𝑦); 𝑡𝑙 = (𝑚𝑖𝑛 𝑥, 𝑚𝑎𝑥 𝑦); 𝑏𝑟 = (𝑚𝑎𝑥 𝑥, 𝑚𝑖𝑛 𝑦); and 𝑡𝑟 = (𝑚𝑎𝑥 𝑥, 𝑚𝑎𝑥 𝑦). If 
there are 𝑛 users, then 𝑛 MBRs need to be constructed. 

Tables 6 and 7 show samples of calculations of SMBR and MMBR, respectively. 
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The following notations are used when referring to a MBR: bl = (xbl , ybl): the coor-
dinate at the bottom left of the MBR; br = (xbr, ybr): the coordinate at the bottom right of
the MBR; tl = (xtl , ytl): the coordinate at the top left of the MBR; and tr = (xtr, ytr): the
coordinate at the top right of the MBR. Figure 7c depicts these notations.

The following discusses the construction of SMBR and MMBR. Consider a user, ui(xi, yi ),
the nearest object, on(xon , yon ), radius, Ruion , and RGR (i.e., Ru f on × 2). The vertexes of the
SMBR are calculated as follows: minx = xon − RGR; maxx = xon + RGR; miny = yon − RGR;
maxy = yon + RGR; bl = (minx, miny); tl = (minx, maxy); br = (maxx, miny), and
tr = (maxx, maxy). If there are n users, only one MBR needs to be constructed. Meanwhile,
the vertexes of the MMBR are calculated as follows: minx = xi − Ruion ;
maxx = xi + Ruion ; miny = yi − Ruion ; maxy = yi + Ruion ; bl = (minx, miny);
tl = (minx, maxy); br = (maxx, miny); and tr = (maxx, maxy). If there are n users,
then n MBRs need to be constructed.

Tables 6 and 7 show samples of calculations of SMBR and MMBR, respectively.
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Table 6. Example of the calculation of SMBR.

Nearest
Object

xon
yon RGR

MBR

bl(xbl,ybl) br(xbr,ybr) tl(xtl,ytl) tr(xtr,ytr)

o7 3.2 4 6 (−2.8, −2) (9.2, −2) (−2.8, 10) (9.2, 10)

Table 7. Example of the calculation of MMBR.

User x y Ruion

MBR

bl(xbl,ybl) br(xbr,ybr) tl(xtl,ytl) tr(xtr,ytr)

u1 2 6 2.28 (−0.28, 3.72) (−0.28, 8.28) (4.28, 3.72) (4.28, 8.28)

u2 1.6 3.2 1.7 (−0.1, 1.5) (−0.1, 4.9) (3.3, 1.5) (3.3, 4.9)

u3 6 3.2 3 (3, 0.2) (3, 6.2) (9, 0.2) (9, 6.2)

Based on the examples shown in Tables 6 and 7, the SMBR and MMBR are as shown
in Figure 8. From this figure, the following can be observed:

(i) In calculating the coordinates of a MBR, eight operations as described above need to
be performed, i.e., min x, max x, min y, max y, bl, tl, br, and tr. The calculation of the
coordinates of the MBR for MMBR requires 8× n operations, while for SMBR only
eight operations are needed.

(ii) The MMBR is a subset of SMBR and thus the objects that fall within the area of MMBR
are also the objects that fall within the area of SMBR but not vice versa. As such, the
number of objects covered by MMBR is lesser than those covered by SMBR.

(iii) Both MMBR and SMBR might contain uninterested objects; however, the number of
uninterested objects in MMBR is lesser than or equal to the number of uninterested
objects in SMBR.
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4.4.3. Build a Kd-Tree Based on the MBR

Once the MBR is identified, a Kd-tree is constructed, in which objects that fall within
the boundary of the MBR are inserted into the Kd-tree. Figure 9a,b show the Kd-trees
constructed based on SMBR and MMBR, respectively.
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Figure 8. SMBR and MMBR based on the examples shown in Tables 6 and 7. 

4.4.3. Build a Kd-Tree Based on the MBR 
Once the MBR is identified, a Kd-tree is constructed, in which objects that fall within 
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Figure 9. The Kd-tree for objects that fall within (a) SMBR and (b) MMBR.

Since the Kd-tree constructed for SMBR and MMBR is based on the general region
and search region of individual user, respectively, uninterested objects might be among the
elements of the tree. The shaded area in Figure 10 is the area where the uninterested objects
might fall. Based on this example, objects o1, o4, o10, o12, o14 and o15 are the uninterested
objects. The common uninterested objects for both SMBR and MMBR are o1, o10, and o12.
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The Kd-tree is traversed to identify the objects that fall within the search region of the
group of users, i.e., the objects of interest to the group of users. In general, any objects that
fall within the search region of an individual user are the objects of interest to the group of
users. In order to achieve this, the following steps are performed:

(1) Traverse the Kd-tree in a depth first traversal manner.
(2) For each visited object in the Kd-tree, oi, if the object falls within the region of any

search region of an individual user, Suj , then the object is considered as one of the
objects of interest for the group of users. There are three possible cases based on
the location of an object and its relevance position to a search region. These cases
are as follows:

(a) The object is outside the search region of an individual user, Sui . Here, if the
Euclidean distance between the object oi and the user uj is greater than the
radius of the search region, Ruj , then oi is said to be outside the boundary of
Suj . This condition is written as Ed(oi , uj

)
> Ruj .

(b) The object falls within the search region of an individual user, Suj . Here, if the
Euclidean distance between the object oi and the user uj is less than the radius
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of the search region, Ruj , then oi is said to be within the boundary of Suj . This
condition is written as Ed(oi , uj

)
< Ruj .

(c) The object intersects with the boundary of a search region of an individual
user, Suj . Here, if the Euclidean distance between the object oi and the user uj
is equal to the radius of the search region, Ruj , then oi is said to intersect with
the boundary of Suj . This condition is written as Ed(oi , uj

)
= Ruj .

The objects that satisfy cases (b) or (c) are the objects of interest to the group of users.
The notation LO is used to denote this set of objects, while objects that satisfy case (a) are
the uninterested objects. Algorithm 3 shows the detail steps as elaborated in this section.

Algorithm 3: Construct a Kd-tree Algorithm

Input: A group of users, Gp =
{

u1, u2, . . . , up
}

with each user given as ui(xi, yi); A set of
objects O = {o1, o2, . . . , om}; The nearest object to C, on; A search region of each user ui, Sui with
radius Rui

Output: A list of objects of interest, LO
1. Begin
2. LO = {}
3. For each ui ∈ Gp do
4. Obtain the Euclidean distance between ui and on, Ed(on, ui)
5. End
6. Obtain the farthest user, u f , from on, where{

u f

∣∣∣u f ∈ Gp ∧ ∀uj ∈ Gp −
{

u f

}
: Ed

(
on, u f

)〉
Ed
(

on, uj

)}
7. Identify the radius of the general region RGR = Ru f on × 2
8. Construct the general region GR = area bound by a circle with radius RGR and on as the

center point
9. Construct an MBR with the following vertices:

minx = xon − RGR; maxx = xon + RGR;
miny = yon − RGR; maxy = yon + RGR;
bl = (minx, miny); tl = (minx, maxy);
br = (maxx, miny), and tr = (maxx, maxy)

10. For each oi ∈ O do
11. If oi is within the MBR, then insert oi into the Kd-tree
12. End
13. Obtain the object of interest, LO, by traversing the Kd-tree:

If ∃uj ∈ Gp, Ed(oi , uj

)
< Ruj or ∃uj ∈ Gp, Ed(oi , uj

)
= Ruj , then LO = LO ∪ oi

14. End

We conducted two simple analyses to confirm that having a single MBR (SMBR) is
better than constructing a MBR for each user, i.e., MMBR. Figure 11a shows the results
of processing time required in constructing a SMBR compared to MMBR. In this analysis,
the TIGER dataset with 50 restaurants in [0, 1000]*[0, 1000] space was utilised, while the
number of users varied from 1 to 30. These users were randomly selected from the TIGER
dataset. The results show that the processing time of SMBR is always 0.018 s regardless the
number of users, while the processing time of MMBR increases when the number of users
increases. Meanwhile, Figure 11b shows the results of the second analysis that described
the processing time required when the whole process presented in this section is performed,
i.e., construct the MBR and build as well as traverse the Kd-tree. The same dataset was
used with 16 users in [0, 1000]*[0, 1000] space. The number of objects varied from 50 to 150.
These objects were randomly selected from the dataset. The results clearly show that the
processing time increases when the number of objects increases; however, the processing
time of SMBR is lower than the processing time of MMBR. Based on these analyses, SMBR
was utilised in this work.
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4.5. Derive the Skylines

This step derives and updates the skyline objects, SkyGp , for a group of users, Gp, at a
specified time interval, ∆t. The skyline objects were derived by considering both the spatial
and non-spatial attributes of the objects of interest, LO, identified in Section 4.4 as well as
the spatial attribute of the user. The value of the spatial attribute of a user ui at time t0 is
the initial location of the user ui, given by ui(xi, yi ), while at time tn, where tn > to, the
value is as predicted at time tn and denoted by ui(x′i, y′i ). Hence, in order to derive SkyGp ,
both SkynsGp

and SkysGp
need to be identified, where SkynsGp

reflects those objects of LO

that non-spatially dominate the other objects, while SkysGp
represents those objects of LO

that spatially dominate the other objects. Here, the Definition 4. Non-spatial Dominance,
Definition 5. Spatial Dominance, Definition 6. Dominance in a Space, and Definition 7. Skylines
of a Space, defined in Section 3, are important. The detail steps are presented in Algorithm 4.

4.5.1. Derive the Spatial Skylines

This step applies the spatial dominance testing provided in Definition 5. Spatial
Dominance towards the LO list. First, the distance between each object, oi, and each user,
uj, is determined, denoted as oi − uj. Given a group of l users, there will be l values of
distances with regard to the object oi, i.e., oi − u1, oi − u2, . . . , oi − ul . These values are
treated as the values of dimensions to be used in the spatial skyline computation. Then,
the total distance between an object, oi, to each user, uj, in the group of users is calculated

and saved into a parameter named Sum Distance− oi, i.e., Sum Distance− oi =
l

∑
p=1

oi − up.

The value of Sum Distance− oi is used as a selection criterion in determining the object
that should be considered in each iteration of the spatial skyline computation. The smallest
value of Sum Distance− oi indirectly indicates that most users in the group are close to
the object oi and has more chances to dominate the other objects. An example is shown
in Table 8. In the table, the columns oi − u1, oi − u2 and oi − u3 are the distances of each
object, oi, and each user u1, u2 and u3, respectively, while the Sum Distance− oi column in
the table presents the total distance of an object to each user in the group of users. In this
example, it is assumed that LO = {o2 , o3, o5, o6, o7, o11, o13} and the locations of each user
are as predicted at time t1 with ∆t = 10 s.

Based on Table 8, the object with the lowest Sum Distance, i.e., o7 with Sum Distance−
o7 = 6.23 was selected and compared to the other objects of LO. Using the Definition 5.
Spatial Dominance, o7 ≺s o3. The dominated object, o3, was removed from the LO list and
the same process was repeated with the remained objects in LO. Based on the example
provided, SkysGa

= {o2, o5, o7, o11, o13}.

4.5.2. Derive the Non-Spatial Skylines

To derive SkynsGp
, the Definition 4. Non-spatial Dominance was used. The list of objects

of interest, LO, identified in Section 4.4 was again analysed; however, in this step, the
analysis was based on the non-spatial attributes of the objects. Based on the given LO
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and the non-spatial attributes = {Rating, Fee}, SkynsGa
= {o7} since o3 ≺ns o2, o3 ≺ns o5,

o3 ≺ns o6, o7 ≺ns o3, o7 ≺ns o11 and o7 ≺ns o13.

Table 8. Spatial attributes of objects at time t1.

ID oi−u1 oi−u2 oi−u3 Sum Distance−oi

o2 2.13 1.07 4.81 8.01

o3 3.98 1.58 4.92 10.48

o5 5.66 5.14 1.26 12.06

o6 3.90 4.91 2.73 11.54

o7 2.08 1.40 2.75 6.23

o11 3.80 4.72 2.53 11.05

o13 1.17 3.66 5.29 10.12

4.5.3. Derive the Final Skylines

The final skyline objects, SkyGp , for the group of users, Gp, at time tn is given
by SkyGp = SkynsGp

∪ SkysGp
. For the above example, SkyGa = SkynsGa

∪ SkysGa
=

{o2, o5, o7, o11, o13}.

Algorithm 4: Derive the Skylines Algorithm

Input: A list of objects of interest, LO = {o1, o2, . . . , oo}; A group of users,
Gp =

{
u1, u2, . . . , up

}
Output: Final skylines, SkyGp

1. Begin
2. Let TLO = LO
3. For each oi ∈ TLO do
4. For each oj ∈ TLO do
5. If oi ≺ns oj then TLO = TLO − oj /* Definition 4
6. Else If oj ≺ns oi then TLO = TLO − oi /* Definition 4
7. End
8. End
9 SkynsGp

= TLO
10. Let TLO = LO
11. For each oi ∈ TLO do
12. For each For each uj ∈ Gp do
13. Get the distance between oi and uj, oi − uj
14. End

15. Sum Distance− oi =
p
∑

j=1
oi − uj

16. End
17. Sort the objects of TLO based on the Sum Distance− oi in ascending order
18. For each oi ∈ TLO do
19. For each oj ∈ TLO do
20. If oi ≺s oj then TLO = TLO − oj /* Definition 5
21. Else If oj ≺s oi then TLO = TLO − oi /* Definition 5
22. End
23. End
24. SkysGp

= TLO
25. SkyGp = SkynsGp

∪ SkysGp
/* Definition 7

26. End

5. Results and Discussion

We designed and conducted several extensive experiments in an attempt to fairly
evaluate the performance and prove the efficiency of RSGMU. The implementation of
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RSGMU was performed on VB.NET 2013, while the experiments were conducted on
Intel Core i7 3.6 GHz processor with 32 GB of RAM and Windows 8 professional. Each
experiment was run 10 times and the average value with regard to processing time of these
runs was reported. The performance results of RSGMU were compared to those of the VR
algorithm proposed by [28]. Although the work in [4] focused on continuous query, only
the spatial attribute of the user and the objects were analysed in deriving the skyline objects,
i.e., no performance results were reported in [4], in which both spatial and non-spatial
attributes of the objects were considered in the skyline computation. Meanwhile, two
types of datasets were used in the experiments, namely, synthetic and TIGER datasets. The
TIGER dataset is a real dataset commonly used in the spatial skyline queries [4,5,28]. The
dominated objects are derived based on the assumption that lower values are preferable
compared to higher ones. The parameter settings are shown in Table 9, with values in bold
representing the default values. The performance results of RSGMU and the VR algorithm
were reported based on these parameter settings in the following paragraphs.

Table 9. The parameter settings of the synthetic and TIGER datasets.

Parameter Settings Datasets

Synthetic Long Beach Tiger

Number of dimensions 2, 4, 6, 8, 10 2, 4, 6, 8, 10

Number of users in a group 4, 8, 15, 20, 25 4, 8, 15, 20, 25

Number of objects 20,000, 50,000, 80,000 50,747

Space

[0, 250]*[0, 250],
[0, 500]*[0, 500],
[0, 750]*[0, 750],

[0, 1000]*[0, 1000]

[0, 250]*[0, 250],
[0, 500]*[0, 500],
[0, 750]*[0, 750],

[0, 1000]*[0, 1000]

Density - 0.56%, 1.60%, 7%, 15%, 34%

Time interval ∆t 10 s 10 s

Velocity 40–120 km/h 40–120 km/h

Effect of Time Interval, ∆t: The main aim of this experiment is to investigate the effect
of time interval, ∆t, on the performance of RSGMU. In this experiment, the parameter
settings for the synthetic dataset were as follows: the time interval varied with the following
values: 10 s, 20 s, 30 s and 40 s; the number of dimensions was set to six dimensions and the
number of users in a group was 15 in [0, 1000]*[0, 1000], while the number of objects was
set to 50 K. For the TIGER dataset, the same parameter settings as above were used, except
that the number of objects was maintained at its initial number, i.e., 50,747 objects, with the
number of dimensions being fixed to 2. Figure 12 presents the number of skyline objects
and number of objects of interest for each time interval for both datasets, synthetic and
TIGER. At time t0, the number of skyline objects and the number of objects of interest for all
time intervals are the same. This is because, in each run, the search region constructed for
the group of users is based on the initial location of each user. Hence, each ∆t deals with
the same set of objects of interest and consequently derive the same set of skyline objects.
This is as shown in Figure 12a–d at Iteration 1. Nonetheless, the number of iterations for
each time interval differs; for instance, the average number of iterations when ∆t = 10 s
is 35, while ∆t = 40 s took 11 iterations to reach td. Here, td is the final state when one of
the users has reached the nearest object, on, to the centroid (see Section 4.3.1). Undeniably,
the smaller the ∆t, the more iterations are performed with little difference in the number
of objects of interest and skyline objects between iterations. Nevertheless, the final state
of each ∆t indicates that all ∆t produce the same number of skyline objects. Based on this
experiment, we decided to use ∆t = 10 s in the subsequent experiments to ensure that
objects in the space were rigorously explored. Moreover, to avoid bias in the comparisons,
the ∆t with the longest time (highest number of iterations) to reach td was chosen.
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Effect of Number of Objects: The parameter settings for the synthetic dataset in this
experiment were as follows: the number of dimensions was fixed to six and the number of
users in a group was 15 in [0, 1000]*[0, 1000], while the number of objects varied with the
following values: 20 K, 50 K and 80 K. Since the TIGER dataset contains only 50,747 objects,
it was excluded from this experiment. Figure 13 presents the processing time gained by
the RSGMU and the VR algorithm [28] based on the synthetic dataset. Intuitively, when
the number of objects increases, the processing time also increases. From the figure, it is
obvious that the number of objects has a significant impact on the performance of both the
RSGMU and the VR algorithm. Nevertheless, RSGMU was better than the VR algorithm in
all the runs. This is because, the VR algorithm constructs both the Voronoi and R-Tree based
on the objects of the entire dataset. These structures are then traversed to identify those
objects that fall within the search region of the users that is derived based on their current
locations. This means that, whenever the users′ locations changed, the whole structures
have to be traversed to identify the objects that are within the new search region of the
users. Meanwhile, RSGMU constructs a Kd-tree based on the objects that fall within the
search region of the users. Hence, objects that are not within the search region are removed
from being analysed as early as possible. When the users′ locations changed, the Kd-tree is
traversed and updated to reduce unnecessary computation. As a result, RSGMU managed
to reduce the processing time significantly with an average of 35% improvement compared
to the VR algorithm.
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Effect of Data Dimensionality: In this experiment, the parameter settings for the synthetic
dataset were as follows: the number of dimensions varied from 2 to 10 dimensions
and the number of users in a group was 15 in [0, 1000]*[0, 1000], while the number of
objects was set to 50 K. For the TIGER dataset, the same parameter settings as above
were used, except that the number of objects was maintained to its initial number, i.e.,
50,747 objects in [0, 1000]*[0, 1000]. The comparison of the results of processing time pre-
sented in Figure 14a,b reveals that the performance of RSGMU is better than the perfor-
mance of VR algorithm for both the synthetic and TIGER datasets. In fact, RSGMU shows
a steady performance even when the number of dimensions is increased, while a slight
increment in processing time can be seen in the VR algorithm. The same reasons provided
earlier apply here. The RSGMU gained improvements with regard to processing time with
an average of 44% and 45% for the synthetic and TIGER datasets, respectively, as compared
to the VR algorithm.

Symmetry 2022, 14, 2003 24 of 29 
 

 

Effect of Data Dimensionality: In this experiment, the parameter settings for the syn-

thetic dataset were as follows: the number of dimensions varied from 2 to 10 dimensions 

and the number of users in a group was 15 in [0, 1000]*[0, 1000], while the number of 

objects was set to 50 K. For the TIGER dataset, the same parameter settings as above were 

used, except that the number of objects was maintained to its initial number, i.e., 50,747 

objects in [0, 1000]*[0, 1000]. The comparison of the results of processing time presented 

in Figure 14a,b reveals that the performance of RSGMU is better than the performance of 

VR algorithm for both the synthetic and TIGER datasets. In fact, RSGMU shows a steady 

performance even when the number of dimensions is increased, while a slight increment 

in processing time can be seen in the VR algorithm. The same reasons provided earlier 

apply here. The RSGMU gained improvements with regard to processing time with an 

average of 44% and 45% for the synthetic and TIGER datasets, respectively, as compared 

to the VR algorithm. 

  
(a) (b) 

Figure 14. The results of processing time with varying dimensionality. (a) Synthetic. (b) TIGER. 

Effect of Density: This experiment, which aims at investigating the effect of density on 

the performance of the proposed method, utilised only the TIGER dataset. This is due to 

the fact that the TIGER dataset contains eight distinct types of objects as listed in Table 10, 

with each type having a certain number of objects as shown by the No. of objects column 

of the table. The density rate was derived by simply dividing the No. of objects with the 

whole population. Thus, the % of the type of object in the whole population reflects the density 

rate of a particular type of object in the area. For instance, the density rates of hospital and 

institution are 
�=	


��	�
× 100% = 0.56% and 

���
	

��	�

× 100% = 34%, respectively. From Table 

10, it is observed that institution is the densest objects. 

Table 10. The density rate of the types of objects in the TIGER dataset. 

Types of Objects % of the Type of Object in the Whole Population No. of Objects 

Hospital 0.56 284 

Restaurant 1.60 812 

Church 7 3552 

School 15 7612 

Institution 34 17,254 

Building 10.84 5502 

Hotel 13 6597 

Populated place 18 9134 

The parameter settings for this experiment were as follows: the number of objects 

was 50,747, the number of users in a group was 15 in [0, 1000]*[0, 1000], and the number 

of dimensions was fixed to two. The density rates used were as follows: 0.56% (hospital), 

1.60% (restaurant), 7% (church), 15% (school), and 34% (institution). From Figure 15, it is 

obvious that the higher the density rate, the higher is the processing time. The perfor-

mance of RSGMU and the VR algorithm shows similar trends in which it starts to show a 

Figure 14. The results of processing time with varying dimensionality. (a) Synthetic. (b) TIGER.

Effect of Density: This experiment, which aims at investigating the effect of density on
the performance of the proposed method, utilised only the TIGER dataset. This is due to
the fact that the TIGER dataset contains eight distinct types of objects as listed in Table 10,
with each type having a certain number of objects as shown by the No. of objects column
of the table. The density rate was derived by simply dividing the No. of objects with the
whole population. Thus, the % of the type of object in the whole population reflects the density
rate of a particular type of object in the area. For instance, the density rates of hospital and
institution are 284

50747 × 100% = 0.56% and 17254
50747 × 100% = 34%, respectively. From Table 10,

it is observed that institution is the densest objects.
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Table 10. The density rate of the types of objects in the TIGER dataset.

Types of Objects % of the Type of Object in
the Whole Population No. of Objects

Hospital 0.56 284

Restaurant 1.60 812

Church 7 3552

School 15 7612

Institution 34 17,254

Building 10.84 5502

Hotel 13 6597

Populated place 18 9134

The parameter settings for this experiment were as follows: the number of objects
was 50,747, the number of users in a group was 15 in [0, 1000]*[0, 1000], and the number
of dimensions was fixed to two. The density rates used were as follows: 0.56% (hospital),
1.60% (restaurant), 7% (church), 15% (school), and 34% (institution). From Figure 15, it is
obvious that the higher the density rate, the higher is the processing time. The performance
of RSGMU and the VR algorithm shows similar trends in which it starts to show a drastic
increment when the density rate is 15% until it reaches 34%. This is due to the fact that
the number of institutions (34%) is slightly more than twice the number of schools (15%).
Nonetheless, the percentage of improvement gained by RSGMU is 12% compared to the
VR algorithm.
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Effect of Space Size: The parameter settings used in this experiment for the TIGER
dataset were as follows: the number of objects was fixed to 50,747 objects, the number of
users in a group was 15, and the number of dimensions was set to two. For the synthetic
dataset, the same parameter settings as above were used, except that the number of objects
was set to 50 K objects. For both datasets, the space size varied as follows: [0, 250]*[0, 250],
[0, 500]*[0, 500], [0, 750]*[0, 750], and [0, 1000]*[0, 1000]. From Figure 16, it is evident that,
when the space size increases, the processing time also increases, as reflected in the results
of both solutions. Nonetheless, RSGMU achieved better performance as compared to VR
and managed to reduce the processing time significantly with an average of 37% and 42%
improvement for the synthetic and TIGER datasets, respectively.
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Effect of Number of Users in a Group: In this experiment, the number of mobile users in
a group varied in the range of 4–25, while the parameter settings for the synthetic dataset
were as follows: the number of objects was fixed to 50 K and the space was fixed to
[0, 1000]*[0, 1000], while the number of dimensions was set to 6. For the TIGER dataset,
the same parameter settings as above were used, except that the number of objects was
maintained at its initial number, i.e., 50,747 objects, with the number of dimensions being
fixed to two. From Figure 17a,b, it is evident that both RSGMU and the VR algorithm
show a steady increase in the processing time, which reflects that the number of users in a
group has an impact on the performance of both solutions. However, RSGMU achieved
a better performance as compared to VR with an average of 36% improvement for the
synthetic dataset and 38% for the TIGER dataset, since unnecessary skyline computations
were avoided by organising only those objects that fall within the search region of the users
in a Kd-tree.
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Effect of Number of Groups of Users: In this experiment, the parameter settings for the
synthetic dataset were as follows: the number of objects was fixed to 50 K, the number of
users in each group was set to 15, and the number of dimensions was fixed to six. For the
TIGER dataset, the same parameter settings as above were used, except that the number
of objects was maintained at its initial number, i.e., 50,747 objects in [0, 1000]*[0, 1000],
with the number of dimensions being fixed to two. Meanwhile, the number of groups of
users varied from 2 to 32 groups for both datasets. Figure 18a,b present the processing time
achieved by the RSGMU and VR algorithm [28], based on the synthetic and TIGER datasets,
respectively. From these figures, RSGMU shows a steady performance, which reflects that
there is a slight increment in the processing time in each run due to the increment in the
number of groups of users. The same trend is true for the performance of the VR algorithm.
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Nonetheless, RSGMU achieved a better performance compared to VR with an average of
36% and 41% improvements for the synthetic and TIGER datasets, respectively.
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Number of Skyline Objects: In this experiment, the correctness of RSGMU was validated
by comparing the skyline objects derived by RSGMU against those skyline objects produced
by the VR algorithm. The parameter settings for the synthetic dataset were as follows: the
number of objects was fixed to 50 K, the space was set to [0, 1000]*[0, 1000] and the number
of dimensions was fixed to six, while the number of users in a group varied in the range
of 4–25. For the TIGER dataset, the same parameter settings as above were used, except
that the number of objects was maintained at its initial number, i.e., 50,747 objects, with the
number of dimensions being fixed to two. From Figure 19a,b, it is evident that the number
of skyline objects derived by RSGMU is the same number of skyline objects produced by
the VR algorithm in all the runs; hence, the correctness of RSGMU was verified.
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Figure 19. The results of number of skyline objects under different number of users in a group.
(a) Synthetic. (b) TIGER.

6. Conclusions

This paper presented the Region-based Skyline for a Group of Mobile Users (RSGMU)
method, which aims to continuously find the optimal meeting or gathering points for
a group of users while they are on the move. RSGMU consists of five steps, namely:
(1) Identify the centroid, (2) Predict the location of a user, (3) Construct a search region,
(4) Construct a Kd-tree, and (5) Derive the skylines. These steps are repeated in several
iterations until a skyline object is selected as a meeting or gathering point. RSGMU assumes
a centroid-based movement where users are assumed to be moving towards a centroid. Unlike
previous works that require users to frequently report their latest locations, RSGMU utilises
the dynamic motion formula to predict the locations of the users at a specified time interval,
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which results in the skyline objects to be continuously updated. Moreover, the skyline
results can be derived ahead of time in order to assist the users to foresee the potential
meeting points. Furthermore, to avoid the recomputation of skylines at each time interval,
the objects of interest that are within a single minimum bounding rectangle that is formed
based on the current search region are organized in a Kd-tree data structure. Several
experiments with various parameter settings were conducted and the results show that our
proposed method outperforms previous work with respect to CPU time.

Further enhancement that can be achieved towards the work presented in this paper
includes considering asymmetric objects, i.e., objects having different properties. Most
works assumed all objects in the collection have identical features, such as rating and price;
however, considering and suggesting asymmetric objects as meeting or gathering points
can provide more insight to the users. This means that the collection of objects contains
different classes of objects with each class of objects having different properties. Skyline
objects can be derived based on these different classes of objects.
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