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Abstract: Existing facial expression recognition methods have some drawbacks. For example, it
becomes difficult for network learning on cross-dataset facial expressions, multi-region learning on
an image did not extract the overall image information, and a frequency multiplication network
did not take into account the inter-class and intra-class features in image classification. In order to
deal with the above problems, in our current research, we raise a symmetric mode to extract the
inter-class features and intra-class diversity features, and then propose a triple-structure network
model based upon MobileNet V1, which is trained via a new multi-branch loss function. Such a
proposed network consists of triple structures, viz., a global branch network, an attention mechanism
branch network, and a diversified feature learning branch network. To begin with, the global branch
network is used to extract the global features of the facial expression images. Furthermore, an
attention mechanism branch network concentrates to extract inter-class features. In addition, the
diversified feature learning branch network is utilized to extract intra-class diverse features. The
network training is performed by using multiple loss functions to decrease intra-class differences
and inter-class similarities. Finally, through ablation experiments and visualization, the intrinsic
mechanism of our triple-structure network model is proved to be very reasonable. Experiments on
the KDEF, MMI, and CK+ datasets show that the accuracy of facial expression recognition using the
proposed model is 1.224%, 13.051%, and 3.085% higher than that using MC-loss (VGG16), respectively.
In addition, related comparison tests and analyses proved that our raised triple-structure network
model reaches better performance than dozens of state-of-the-art methods.

Keywords: facial expression recognition; MobileNet V1; symmetry and asymmetry; machine learning;
deep learning; attention mechanism

1. Introduction

With the progress of technology, human–machine communication has been merged
into our lives [1–4]. The applications of facial expression recognition (FER) have become
ever more essential, such as human–computer interaction, online testing, medical care,
etc. [5–7]. When applying a facial expression classification system, the various expressions
have serious differences. That can be demonstrated by the FACS (Facial Action Coding
System) [8]. AU (action unit) [9] and expressions have some correspondence. For example,
there is a greater symmetrical similarity between happiness and contempt compared
with the symmetrical similarity between happiness and sadness because happiness and
contempt contain AU12, and there is no intersection between the AU domain of happiness
and sadness. Similar facial expressions can sometimes make it difficult to make a distinction.

Computer recognition of facial expressions mainly consists of three steps, viz., image
preprocessing, feature extraction, and classification. Among them, feature extraction is

Symmetry 2022, 14, 2055. https://doi.org/10.3390/sym14102055 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14102055
https://doi.org/10.3390/sym14102055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2122-0240
https://orcid.org/0000-0003-4860-9184
https://doi.org/10.3390/sym14102055
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14102055?type=check_update&version=1


Symmetry 2022, 14, 2055 2 of 26

an important step. It relates to the recognition accuracy of facial expressions. Traditional
feature extraction methods are mainly designed manually, such as Gabor wavelet, local
binary pattern (LBP), histogram of gradient (HOG), etc. Rujirakul et al. [10] proposed a
facial expression recognition method that contained histogram equalization (HE), principal
component analysis (PCA), and extreme learning machine (ELM). HE was utilized for
preprocessing to adjust the histogram curve of the input image. Then, PCA was employed
to extract the features. Finally, ELM was employed for classification. Kumary et al. [11] put
forward a facial expression recognition system which was the feature selection approach
from the quantum-inspired binary gravitational search algorithm (QIBGSA). The idea
of the QIBGSA was a modified binary version of the gravitational search algorithm by
impersonating the properties of quantum mechanics. The experiment has achieved certain
results. Islam et al. [12] presented a framework for recognizing human emotion through
facial expression recognition by analyzing a large number of facial expression images
and the possible locations of the expression regions in these images to manually segment
the expression regions in an efficient and unique way. The experiment obtained better
results. Xi et al. [13] raised surface electromyography (sEMG)-based emotion distribution
learning (EDL) for predicting the intensity of underlying emotions. Choudhary et al. [14]
proposed a systematic comparison of the facial features. Traditional methods in facial
expression recognition applications can be found in [15–18]. Traditional feature extraction
methods have many drawbacks, such as incomplete and limited information extraction,
and insufficient robustness of image size and illumination.

As computer software and hardware evolve, environments for deep learning are well
developed. The advantage of the convolutional neural network (CNN) is remarkable. The
CNN can extract the features of images more completely and has strong robustness to the
size and illumination of the images. It also has achieved good results in facial expression
recognition. AlexNet [19,20], VGGNet [21,22], GoogLeNet [23], etc., have been commonly
used for facial expression recognition. Due to the poor effect of traditional methods of
facial expression recognition, Wu et al. [24] optimized and improved the internal structure
based on LeNet-5 network. Batch normalization had been added to settle the over-fitting
issue of the network owing to distinct features. Maximum pooling and average pooling
were symmetrically used to fully extract facial expression features and to reduce the
redundant data. Using deep learning to recognize facial expressions can enable the learning
of important and robust features for different samples. This is a key problem with facial
expression recognition. Ye et al. [25] presented a region-based convolutional fusion network
(RCFN) to solve the problems by three aspects, which were a built muscle movement model,
a constructed network, and constrained punitive loss. The experiment results showed that
RCFN was effective in commonly used datasets. Singh et al. [26] proposed the classification
of FER which used CNNs based on static images. Feature extraction was used to extract
features of the facial part, such as eyes, nose, and eyebrows. The experiment achieved better
results. Chen et al. [27] put forward an improved method of facial expression recognition
based on CNN. A new convolution neural network structure was designed which uses
a convolution kernel to extract key features and max pooling to reduce the redundant
features. There are also deep learning methods in facial expression recognition applications,
such as [28–37].

Many deep learning methods brought excellent results in cases of large amounts of
computation, limiting their applications for small devices or offline scenarios. To effectively
address this problem, Zhou et al. [38] proposed a frequency multiplication network (FMN),
which was a deep learning method running in the frequency domain and could significantly
reduce network capacity and computing workload. Combined with the uniform rectangle
feature (URF), this method further improves the performance and reduces the training
workload. Cotter et al. [39] put forward a new lightweight deep learning model, Mobi-
ExpressNet for FER. The model relied on depthwise separable convolutions to limit the
complexity and used a fast down sampling method and several layers in the architecture
to keep the model size very small. It achieved good results. Nan et al. [40] proposed a
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lightweight A-MobileNet model. The method significantly improved recognition accuracy
without increasing the number of model parameters.

The continuous development of facial expression recognition technology has led to
the continuous advancement of face detection and recognition technology. This promotes
the development of facial expression recognition technology. Ding et al. [41] proposed a
shared generative adversarial network, SharedGAN, to expand the gallery dataset. Experi-
mental results illustrated the effectiveness of SharedGAN and showed satisfactory results.
Abdulhussain et al. [42] presented a new scheme for face recognition which used hybrid
orthogonal polynomials to extract features.

The above facial expression recognition methods have been improved in several
aspects, but some problems still exist:

(1) The cross-dataset facial expression comes from different facial expression datasets
with fuzziness and asymmetry, so differences among facial expressions are huge. It
becomes more difficult for network learning on cross-dataset facial expressions, which
results in a decrease in recognition accuracy.

(2) Multi-region learning on an image does not extract the overall image information.
The corresponding network lacks global information. So, it also makes identification
more difficult.

(3) A frequency multiplication network could reduce the network complexity, but it does
not take into account the inter-class and intra-class features in image classification.
This results in a low facial expression recognition rate.

Focusing on the above problems, we put forward a symmetric mode to extract the
inter-class features and intra-class diversity features, and then propose a triple-structure
network model, which is trained via a new multi-branch loss function. The proposed
network consists of triple structures, i.e., a global branch network, an attention mechanism
branch network, and a diversified feature learning branch network. The proposed network
is based upon MobileNet V1, which has the characteristics of being lightweight and a
high recognition rate. The focus is different from each branch loss function. The global
branch network mainly focuses on learning the global features of images. The attention
mechanism branch network mainly concentrates on learning the inter-class features, and
the diversified feature learning branch network mainly focuses on learning the intra-class
diversity features.

In summary, the main contributions of our work are as follows:

(1) A facial expression recognition network is proposed based upon MobileNet V1. Our
network is a simple and effective network, which can achieve a better recognition rate.

(2) We propose an improved multi-loss function network, which includes a global branch
network, an attention mechanism branch network based on SENet, and a diversi-
fied feature learning branch network. The global branch network is employed to
extract the global features of facial expression images. A symmetric mode is raised
to extract the inter-class key features and intra-class diversity features. In detail, the
attention mechanism branch network concentrates to extract inter-class key features,
while the diversified feature learning branch network is used to extract intra-class
diverse features.

(3) We put forward a multi-branch network. The network avoids only focusing on the
local or global regions of the image, but both global and local images participate in
the learning.

The remainder of this study is organized as described next. Section 2 introduces related
works, including MobileNet V1 and SENet. Section 3 depicts the details of our proposed
network of triple structures. In Section 4, the effectiveness of our network is verified by
comparison and ablation experiments with some facial expression recognition models,
respectively. In Section 5, to further test the effectiveness of our network, a class activation
map visualization is performed on each branch of the model. Section 6 summarizes and
discusses future research plans.
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2. Related Works

In this section, we slightly look back at the previous related research about MobileNet
V1 and SENet and highlight their merits and achievements.

2.1. MobileNet V1

When performing facial expression recognition, so as to obtain a certain effect, some
complex networks such as AlexNet, VGGNet, and GoogLeNet are often used. However, the
complex networks will influence the magnitude and computational speed of the network.
For example, when the complex networks were employed in automatic detection, the
real-time nature of visual tasks and other factors need to be considered by reason of the
limitations such as the computational speed on a platform. MobileNet V1 employs a
simple and effective architecture of hyperparameters, which can enable fewer network
parameters and speed up computation. Additionally, the network is very practicable for
facial expression recognition. Figure 1 shows the MobileNet V1 network structure.
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Figure 1. The structure of the MobileNet V1 network.

The core layer of MobileNet V1 is a deep separable filter. Deep separable convolution
is a form of deconvolution. The standard convolution operation is divided into two steps:
(1) extracting feature maps, (2) superimposing the extracted feature maps. The depth
separable convolution separates the course of two layers. Firstly, one layer is the depthwise
convolution, which is employed to extract features for each channel. Lastly, the other
layer is a point-by-point convolution, which employs a 1 × 1 convolution to integrate
the output of the first step. This decomposition is an uncomplicated and valid method
that can significantly reduce superfluous calculations and optimize the network structure.
Diagrams of standard convolution, depthwise convolution, and pointwise convolution
are shown Figures 2–4, respectively. The size of the input feature map is DF × DF ×M.
Here, M stands for the number of input channels, DF represents the size of the feature
map, and N denotes the number of output channels, and the parameters of a standard
convolutional layer show Dk × Dk ×M× N, and Dk indicates the size of the convolution
kernel. If the size of the output feature map does not change, the computing costs of the
standard convolution are

C = Dk × Dk ×M× N × DF × DF (1)

The MobileNet V1 model employs deep separable convolutions to shatter the inter-
action between the number of output channels and the size of the kernel to effectively
decrease redundant computing. The computing costs of depthwise convolution are

C1 = Dk × Dk ×M× DF × DF (2)

Depthwise convolution which only filters the input channels does not generate new
features, and an additional pointwise convolution is required to integrate the features
gained by output filters to comprise new multi-channel features. So, depthwise convolution
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is more quick than standard convolution. The computing costs of pointwise convolution
C2 are characterized by

C2 = M× N × DF × DF (3)
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So as to decrease computing resources, the standard convolution integral is decom-
posed into depthwise convolution and pointwise convolution, as shown by

C1 + C2

C
=

Dk × Dk ×M× DF × DF + M× N × DF × DF
Dk × Dk ×M× N × DF × DF

=
1
N

+
1

D2
k

(4)

If the relatively large value of N is considered, then assuming a 5× 5 convolution ker-
nel, the depthwise separable convolution is 25 times smaller than the standard convolution
in terms of computational complexity. One step can show that compared with the standard



Symmetry 2022, 14, 2055 6 of 26

convolutional neural network, MobileNet V1 significantly decreases computing costs and
narrow model size, enhancing computing speed of the model.

To resolve the question of facial expression recognition (FER) technology on masked
faces, Yang et al. [43] proposed a method which could add face masks to existing FER
datasets automatically. The results were feasible for the method.

Sadik et al. [44] improved the MobileNet model and implemented transfer learning
technique. The outcome was satisfactory. Petrosiuk et al. [45] proposed a method which
solved the problem of insufficient data volume in sets of images with different facial ex-
pressions. The developed technology of transfer learning of MobileNet and the subsequent
“fine tuning” of the network parameters has led to new developments. Related experiments
obtained good results.

It can be obtained from the above formula derivation and application examples, under
the premise of the same feature map, that the computation and parameters of depthwise
separable convolutions are greatly reduced. The MobileNet V1 network is a simple and
effective network. Therefore, in this study, we chose MobileNet V1, which can raise the
recognition rate of facial expression.

2.2. SENet

The SENet (squeeze-and-excitation networks) was first proposed by Hu et al. [46] and
won the champion of the image classification task in the 2017 ILSVRC challenge. SENet
is an attention mechanism that can be seamlessly merged into the CNN architecture with
low overheads.

The core of the model is to let the MobileNet V1 learn different weights for different
features, where the SENet can extract more corresponding facial expression features. The
features that are not concerning to the facial expression are suppressed, and the learning
between feature channels is reinforced to obtain more facial expression feature information,
significantly ameliorating the facial expression recognition rate of the network. Figure 5 is
a structural diagram of SENet, which largely consists of two parts: squeeze and excitation.
These two parts finished the suited calibration of the feature channel.
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The squeeze and excitation module promotes the network denotation capability by
exploiting channel dependencies. The particulars of the SENet are displayed with Figure 5.
Through the module, significant features are stressed on the channels while inhibiting
redundant features. The squeeze function of Figure 5 is expressed as follows:

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j), (5)

where zc is the c-th element of the squeezed channels and Fsq represents the squeeze
function. uc is the c-th channel of the input. H and W stand the height and width of the
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input images. Then, an excitation function tacks the squeeze operation, which aims to fully
seize the channel-wise interrelation. The excitation displays as below:

sc = Fex(z, W) = σ(Wuδ(Wdzc)) (6)

in which Fex stands for the excitation function and zc is the input squeezed signal from the
last layer. δ represents the ReLU activation function, Wd ∈ Rc× c

r is the channel using the
1× 1 kernel size and the dimensionality reduction ratio r to scale down. Wu ∈ R c

r×c is the
channel with the ratio of r after being activated by ReLU. The final output of the block x̃c is
rescaled using the channel sc shown below:

x̃c = Fscale(uc, sc) = sc·uc (7)

For the feature map (X ∈ Rw×h×c) input to the SENet, the output feature (X̃ ∈ Rw×h×c)
was passed to the squeeze function (Figure 5 Fsq) and the excitation function (Figure 5 Fex).
The squeeze function was used to embed information from the global receptor into the
channel descriptor in each layer. The squeeze function generated a sequence in 1× 1× c,
which indicated the interrelation among each layer. The excitation function later was used
to carry out feature recalibration through reweighting the original feature mappings. So as
to decrease the model parameters and preserve the high FER accuracy, Zhong et al. [47]
put forward a simple and effective network based on squeeze-and-excitation (SENet) and
ResNet. Beside the state-of-the-art methods using the visual geometry group (VGG) or
other networks, the model improved the accuracy and reduced the model size, which was
rival according to model size and recognition rate.

To resolve the problem of emotional recognition of speech, Zhao et al. [48] used parallel
convolutional layers (PCN) integrated with the squeeze-and-excitation network (SENet)
to extract relationships from 3D spectrograms across time steps and frequencies. The
experiment achieved good results.

From the above formula derivation and application examples, it can be concluded that
using SENet under the same conditions can better learn important features and suppress
redundant features. Thus, the learned features are more important, which is beneficial to
better enhance the facial expression recognition rate. Therefore, the paper chose to employ
SENet, which can validly improve the recognition rate.

Table 1 displays a summary of the relevant works.

Table 1. A summary of the related works.

Core Component Advantage

MobileNet V1 A deep separable filter Light and better recognition rate
SENet Squeeze and excitation Low overhead, integrated into the CNN architecture

3. The Proposed Triple-Structure Network Model

In this study, we propose a symmetric mode to extract the inter-class features and
intra-class diversity features, and then put forward a triple-structure network model based
on MobileNet V1, which is trained via a new multi-branch loss function. Such a proposed
network consists of triple structures, which incorporates a global branch network, an
attention mechanism branch network, and a diversified feature learning branch network.
The overall architecture model of the proposed triple-structure network model is shown in
Figure 6.

In what follows, we show the details for the proposed triple-structure network model.
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3.1. The General Idea of the Triple-Structure Network Model

Inspired by Ref. [49], our network introduces mutual channel loss (MC-loss) to discover
multiple discriminative regions and restrict feature distribution. MC-loss has the following
advantages:

� It makes the network easier to train, because the network does not introduce any
additional network parameters.

� The method combines global and local regions and forces the network to capture
subtle differences by discriminant components.

� It can effectively improve the recognition rate for solving fine-grained image classification.

In the meantime, MC-loss avoids too much attention to localized regions of an image.
Thus, a global branch has been introduced to extract information from the overall regions
of an image.

Based on the above advantages, our study applies MC-loss to facial expression recog-
nition. The network is adjusted according to the differences between the expression image
set and the fine-grained image set. For example, fine-grained image classification empha-
sizes the problem of distinguishing among subcategories of common visual categories.
Meanwhile, facial expression recognition emphasizes the classification of facial motion.

MobileNet V1 is used instead of the ResNet/VGG on MC-loss. Additionally, MC-loss
has utilized the discriminative component to promote network learning. However, the
discriminative component contains a random attention mechanism, such as the feature Fi
corresponding to each class of the feature F extracted by the basic network is randomly
discarded by the half. This random discarding method influences the recognition accuracy.
Our network employs the attention mechanism branch network to take the place of the
discriminative component. The attention mechanism branch does not contain the random
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discarding method. This branch can effectively distinguish the inter-class features of facial
expression images.

The overall framework is displayed in Figure 6. Based on the basic backbone network
of MobileNet V1, our network consists of triple structures (or branches), i.e., the global
branch network (branch1), the attention mechanism branch network (branch2), and the
diversified feature learning branch network (branch3).

Branch1 learns mainly the global features. Branch2 acquires primarily to extract inter-
class key features, and branch3 focuses to extract intra-class diverse features. Note that
branch2 and the branch3 construct a symmetric mode to extract the inter-class features and
intra-class diversity features.

The total network loss function Loss can be defined as follows:

Loss = Lbranch1 + µLbranch2 + λLbranch3. (8)

Lbranch1 represents the branch1 loss function. Lbranch2 stands for the branch2 loss function.
Lbranch3 denotes the branch3 loss function. µ and λ are hyper-parameters. During the
training phase, the global network branch (branch1) can fully learn the inter-class and intra-
class features in facial expression images through the guidance of branch2 and branch3.
Thus, branch2 and branch3 do not participate in the test phase.

3.2. Basic Backbone Network and Global Branch Network

In our research, to enter an image, we first extract the feature map by feeding the
image into MobileNet V1. The extracted feature maps are represented as F ∈ RH×W×N . H
stands for the height, W represents the width, and N is the number of channels.

Additionally, we need to set the value of N to be equal to C× ξ. C is the number of classes
in a dataset. ξ stands for the number of feature channels employed to express each class.

Therefore, the n-th vectored feature channel of F can be expressed by

Fn ∈ RWH , n = 1, 2, . . . , N. (9)

Please notice that we reshaped each channel matrix of F of dimension W × H to
a vector of size W multiplied by H, i.e., WH. Therefore, the grouped feature channels
relevant to the i-th class is pointed to by Fi ∈ RWH , where i = 0, 1, 2, . . . , C− 1, namely:

Fi =
{
Fi×ξ+1,Fi×ξ+2, . . . ,Fi×ξ+ξ

}
. (10)

As a consequence, we obtained the grouped deep features F, in which F = {F0, F1, . . . , Fc−1}.
g(Fi) represents the Fi processed by the fully connected layer. We made use of the cross-
entropy loss function LCE, calculating the dissimilarity between the ground-truth label y
and the predicted probability pred. Here, pred is expressed by the following form:

pred =

[
eg(F0), eg(F1) . . . , eg(Fc−1)

]T

∑c−1
i=0 eg(Fi)

(11)

To sum up, the loss function of branch1 (i.e., Lbranch1) can be described as below:

Lbranch1 = LCE(y, pred) (12)

3.3. Attention Mechanism Branch Network

In facial expression recognition, because muscle activity is very similar to intra-class
facial expression, the intra-class similarity is high. Distinguishing different facial expres-
sions is a significant step in recognition that directly affects the accuracy of recognition.
Feature extraction is carried out for facial expression images, while differentiated weighting
is performed on the extracted features. Features processed by SENet can improve the
discrepant features, and thus better distinguish different emotions.



Symmetry 2022, 14, 2055 10 of 26

For this reason, we employed SENet to assign weights to facial expression features,
which makes the important feature channels play a bigger role and weakens the unim-
portant feature channels. Through the SENet operation, the weight of each channel is
different, which makes it easier to distinguish efficiently different facial expressions. We
define predSenet as follows:

predSenet =

[
egSENet(F0), egSENet(F1), . . . , egSENet(Fc−1)

]T

∑c−1
i=0 egSENet(Fi)

(13)

Here, gSENet(Fi) represents the feature Fi processed by SENet. We used the cross-
entropy loss function LCE to calculate the dissimilarity between the ground-truth label y
and the predicted probability predSENet.

Following that, the loss function of branch2 (i.e., Lbranch2) can be characterized by the
following formula:

Lbranch2 = LCE(y, predSENet). (14)

3.4. Diversified Feature Learning Branch Network

Considering facial expression images, different feature channels of the same class
should focus on dissimilar areas of the facial expression images, instead of the total of the
channels concentrating on discriminative areas. For example, the global branch network
and the attention mechanism branch network have difficulty in capturing different regions
on the same facial expressions, resulting in a low recognition rate.

To better solve the above problem, a diversified feature learning branch network
was introduced to our research. We attempted to learn multiple regions within a class
and utilize multiple losses to supervise the training, which allows multiple regions to
work commonly and symmetrically complement each other. The fundamental purpose
of the diversity loss function is to yield the feature maps within a class, which is different
regions during learning. Thus, the learned feature of the class is more diverse. The specific
expression of the loss function of branch3 (i.e., Lbranch3) is shown as follows:

Lbranch3 =
1
c

c−1

∑
i=0

h(Fi) (15)

in which

h(Fi) =
WH

∑
k=1

max
j = 1, 2, . . . , ε︸ ︷︷ ︸

CCMP

[
eFi,j,k

∑WH
k,=1 eFi,j,k,

]
︸ ︷︷ ︸

So f tmax

(16)

Here, W expresses the width of the feature map, and H represents the height of
the feature map. ε stands for the number of characteristic graphs in each intra-class of
expressions. As shown in Figure 6, the feature map is normalized by softmax, and then
dealt with by CCMP (cross channel max pooling). The CCMP comes from the concept
of maxout [50], which takes out the channels of each class and their maximum values.
Through the above, some distinguished features within a class can be concentrated on a
one-dimensional feature map. Then, salient regions of each group of features are obtained
by accumulation, which are averaged to obtain the feature diversity loss Lbranch3.

4. Experiments and Analyses
4.1. Experimental Dataset

To evaluate the proposed triple-structure network model, we conducted experiments
on the MMI [51], KDEF [52], and CK+ [53] databases. KDEF images are captured in
controlled lab environments, containing 4900 images consisting of 70 people, of which 35
are females and 35 are males, aged between 20 to 30, which display 7 basic facial expressions.
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We only employed the 980 front view images. MMI is also a lab-controlled database with
six basic expressions. We selected the three peak pictures from each sequence. CK+ is
also a lab-controlled database with seven basic expressions. As in the case of the MMI
database, we chose also the three peak frames from each sequence. Figure 7 shows part
of the processed images. The first three images are the processed pictures in the MMI,
and the middle three pictures are the processed pictures in the KDEF dataset, and the last
three pictures are the processed images in the CK+ dataset. Table 2 displays the number of
different emotion pictures in KDEF, MMI, and CK+ datasets. In this study, we tested a total
of 2570 images: 609 for the MMI dataset, 980 for the KDEF dataset, and 981 for CK+.
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Table 2. The number of different emoticon pictures in KDEF, MMI, and CK+ datasets.

Class Happy Anger Sad Disgust Surprise Fear Neutral Contempt

KDEF 140 140 140 140 140 140 140 0
MMI 42 32 32 28 41 28 0 0
CK+ 69 45 28 59 83 25 0 18

In order to prevent over fitting and increase prediction robustness, we conducted data
augmentation to the MMI, KDEF, and CK+ datasets. Specifically, we randomly created
10 cropped images of size 224 × 224 for the original images, whose sizes were all 240 × 240.
Furthermore, we also collected 10 processed images for each facial expression to test by
cropping the top left corner, bottom left corner, top right corner, bottom right corner, the
center, and subsequently taking the reflection of each of these cropped images. We made
the final decision by taking the average results of these 10 processed images to reduce the
classification error.

4.2. Experimental Settings

The experiments were used in the environment of Python 3.6.10, pytorch 1.6.0, Ten-
sorFlow 1.14.0 and an operating system of 18.04.1-Ubuntu. The proposed triple-structure
network model in the experiments was run on a computer with Intel(R) Xeon(R) CPU
E5-2620v3@2.40GHz in CPU and two 12G Nvidia GeForce GTX1080Ti graphics cards in
GPU. In the experiments, GPUs were used to speed up the model calculation and reduce
the training time. The stochastic gradient descent (SGD) method of momentum parameters
in small batches was selected as the model parameter optimizer. The learning rate of the
network was initially set to 0.1. Between the 150th and 225th iterations, the rate was set to
0.01. Beyond 225 iterations, we set it to 0.001. µ and λ were set to 1.5 and 20, respectively.
The rest of the relevant settings are shown in Table 3 below.

Table 3. Related parameter settings.

Items Settings

SGD 0.9
Loss function Cross Entropy Loss

Training period 300 times
Batch size 128
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4.3. Ablation Experiments

For the sake of analysis, we performed an extensive ablation study by removing
certain portions of our proposed triple-structure network model to see how that affected
performance. This was carried out using the MMI, KDEF, and CK+ databases.

Our triple-structure network model is mainly composed of three branches, i.e., a
global branch network (MobileNet), an attention branch network (SENet), and a diversified
feature learning branch network (Div). To verify its effectiveness, we compared it with
MobileNet, MobileNet+SENet, and MobileNet+Div, respectively. MobileNet stands for a
global branch network. MobileNet+SENet represents the combination of the global branch
network and attention mechanism branch network. Finally, MobileNet+Div denotes the
combination of the global branch network and diversified feature learning branch network.
Since our study is inspired by Ref. [49], the network of [49] was also used as a comparison.
Each network was under the same setting as in Section 4.2. Table 4 displays the outcomes
of comparative data. The recognition accuracy (%) was used for performance evaluation.

Table 4. Ablation studies for key modules of our triple-structure network model on the KDEF, MMI,
and CK+ databases.

Branch KDEF MMI CK+

MC-loss (VGG16) [49] 95.306 70.508 95.957
MobileNet 95.204 77.627 94.255

MobileNet+SENet 96.122 77.796 96.595
MobileNet+Div 95.510 79.322 95

Our network model 96.530 83.559 99.042

From the backbone network, MobileNet had a good recognition rate for facial ex-
pression images. In the case of the KDEF dataset, we can discover the advantages of our
proposed triple-structure network model. Compared with the backbone network, the
recognition rate of MobileNet+SENet was increased by nearly 1%. Because the KDEF
dataset is mainly composed of images of young men and women aged 20 to 30, inter-class
features have great differences. Therefore, the recognition effect was significantly improved.
However, when MobileNet+Div learns intra-class features, the similarity of intra-class
features was too high. Therefore, the recognition rate of MobileNet+SENet was better than
that of MobileNet+Div. Our triple-structure network model combines the strengths of
the MobileNet+SENet and the MobileNet+Div. Therefore, the recognition rate has been
significantly improved.

In Table 4, the recognition rate of the MMI dataset was obviously not as high as the
one in the KDEF dataset. This was due to the following reasons: the age, facial shape,
facial occlusions, and so on, resulting in the overall recognition effect as not as ideal as
the KDFE dataset. In the MMI dataset, compared with MobileNet, the improvement of
the recognition rate of MobileNet+SENet was not obvious. This was due to the huge
differences in facial expression images or face occlusions. Therefore, it is difficult to have
further improvement. In the MobileNet+Div, it learned a wealth of intra-class features in
the MMI dataset. Thus, the learnable range of intra-class features was increased, which
makes a remarkable improvement. Our triple-structure network model combines the
advantages of the MobileNet+SENet and the MobileNet+Div, so the overall improvement
effect was better in the MMI dataset. The feature extraction network applied in Ref. [49] is
VGG16 (with MC-loss (VGG16)). It can be discovered from the comparison of Table 4 that
Ref. [49] has a little advantage in the KDEF dataset. This is because the facial expression
differences in the KDEF dataset are small. The MMI dataset can reflect the benefits of our
triple-structure network model, which shows that our triple-structure network model also
has great advantages for expression images with large differences.

Since the expressions in the CK+ database have obvious characteristics and are mainly
composed of young men and women, they have achieved good recognition results in
the MobileNet. With the progress of learning, MobileNet+SENet had a good effect in
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learning the inter-class features in the CK+ database, because the distinction of the inter-
class features in the CK+ database was obvious, so the learning effect was good. Ref. [49]
obtain better results in the CK+ database, but its effect is not so obvious compared with
our network. Note that our network learns from multiple aspects, but Ref. [49] randomly
throws away some inter-class features, resulting in its recognition effect being not as good
as our network.

4.4. Comparison with Other Methods

Table 5 displays the performance comparisons with the same approaches. To summa-
rize, our triple-structure network model obtained competitive results on KDEF.

Ref. [10] uses the traditional PCA method to extract features and employs ELM
for classification, because the feature information extracted by CNN is richer than PCA.
Therefore, the recognition rate of [10] is lower than that of our triple-structure network
model. Ref. [11] makes use of LBP and Gabor filtering methods to extract features. Due to
the limitations of traditional feature extraction methods, its recognition rate is not as high
as our triple-structure network model. Ref. [12] learns the possible locations of expression
regions in many images, but the expression regions vary widely across datasets. Recognized
cross-image datasets tend to lead to more recognition errors and use traditional feature
extraction methods, which is not an ideal result.

The muscle models proposed in Ref. [25] are segmented, the key region features are
fused, and a penalty loss function is added simultaneously. These methods can enhance the
expression recognition rate. However, there is also a gap compared to the global-to-local
loss function in our triple-structure network model. Ref. [54] utilizes the FER network to
effectively identify FER with the help of the softmax classifier. Since only a single network
is used and there is no multi-angle learning, the recognition accuracy of the network of [54]
is not so high as that of our triple-structure network model.

Table 5. The recognition accuracy (%) of the related methods in the KDEF datset.

Methods KDEF

HE+DeepPCA+ELM [10] 83.00
QIBGSA [11] 92.35

Ref. [12] 86.84
RCFN [25] 91.60

FER-net [54] 83.00
Our network model 96.53

Table 6 shows the performance comparisons with the same approaches. To summarize,
our triple-structure network models obtained competitive results from the MMI datasets.

Table 6. The recognition accuracy (%) of the related methods in the MMI dataset.

Methods MMI

FMN [38] 81.39
DLP+CNN [55] 78.46

DeRL [56] 73.23
[57] 80.70

Our network 83.56

Ref. [38] shows good advantages but did not involve regional learning. Single global
learning leads to a low recognition rate. By comparison, our triple-structure network
model is more ideal. Ref. [55] proposes an expectation maximization algorithm that
estimates emotion labels. This reveals those facial expressions of the real world that
often express complex or even mixed emotions, and multi-label facial expressions often
lead to false recognition in learning and result in low classification accuracy. Ref. [56]
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employs de-expression residual learning (DeRL) to extract the information about expression
components to recognize facial expressions. Since neutral expressions are generated in the
generative model, it will inevitably result in the deformation of some expressions. Thus,
the recognition rate is not as good as that of our triple-structure network model which used
the original images directly. Ref. [57] learns the spatial features and temporal dynamics
of FER, but the corresponding temporal and spatial dynamics learning results in many
learning features, which are causing redundancy. Overall, our triple-structure network
model performs the best.

Table 7 shows the performance comparisons with the same approaches. To summarize,
our triple-structure network model obtained competitive results on the CK+ datasets.

Table 7. The recognition accuracy (%) of the related methods in the CK+ dataset.

Methods CK+

MF-MLP [58] 98.06
Ref. [59] 98.01

HAAR+LDA+IBH-based ELM [60] 97.62
HAAR+PCA+IBH-based ELM [60] 96.27

Ref. [61] 94.8
SGWT [62] 96.15

Our network 99.042

Ref. [58] proposed a multi-feature-based MLP (MF-MLP) classifier which is focused
on the facial appearance detection problem. MF-MLP used LBP to extract features, but
traditional feature extraction methods have some limitations. Therefore, the performance of
our network is better than that of MF-MLP. Ref. [59] presented a smile classification method
which is based on an association of row transform-based feature extraction algorithm and
ensemble classifier. The methods lacks global features, so the effect is not as good as that
of our network. Ref. [60] used the LDA and PCA to decrease the dimensions of the face
images and maintain the most important features. The effective information extracted by
LDA and PCA is not as comprehensive and robust as CNN, and the experimental effect is
slightly worse than our network. Ref. [61] used the VGG16 model for a modified trained
model and attaches additional layers on it. However, the model lacks local information,
and so our network has a certain advantage. Ref. [62] leveraged spectral graph wavelet
transform to extract information. Mobile V1 can automatically find key feature information,
while spectral graph wavelet transform can only be used to extract information (containing
redundant information). Therefore, our network performs better than spectral graph
wavelet transform.

In [10–12,58,60], they all used the traditional feature extraction methods. Due to
the traditional methods having their limitations in feature extraction, their recognition
rate is not as high as that of our triple-structure network model. This again verifies that
the traditional feature extraction method does have certain limitations for the feature
information extraction of images. Comparing the results of the method in this paper
with [25,38,54,59,61], it can be concluded that single local or global learning is not as
good as joint local and global learning. The images used in Refs. [55,56] contain multiple
expressions, extracting many redundant features, resulting in a low recognition rate.

According to the experimental results and analyses, the proposed triple-structure
network model is more competitive than other methods.

4.5. Confusion Matrices and the Classification Report

In Figures 8–19, Hap represents happy, Ang is anger, and Sad stands for sad. Dis
means disgust, Sup is surprise, and Fea denotes fear. Neu means neutral and Con is
contempt. The precision is the proportion of correctly predicted data in each class to all
data of that class. The recall rate (recall) reflects the proportion of correctly predicted data
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in each class to all data predicted to be of that class. F1 reflects the performance of the
model by combining the two indicators of precision and recall, as shown below:

F1 = 2× P + R
P× R

(17)

In (17), P represents precision and R is recall. TR is total recall, and TP is total precision,
and TF1 is total F1-score.
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In the task, four popularly used evaluation metrics, namely, accuracy, precision, recall,
and F1-score [63–66], were deliberated in the research to contrast the performance of our
network to 21 models. However, the values of all the metrics were computed from the
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confusion matrix. Confusion matrices can compute the values of metrics, which were
employed further to dissect the function of our network. Figure 12 displays the confusion
matrix of the KDEF dataset. The size of the confusion matrix is seven by seven as seven
facial expressions were premeditated for this research. The confusion matrices for MMI
datasets are shown in Figure 8, and their produced metrics are displayed in Figure 11,
Figure 14, and Figure 17. The confusion matrices in Figure 9 are displayed for KDEF
datasets, and their generated metrics are reported in Figure 12, Figure 15, and Figure 18.
Similarly, the confusion matrices for CK+ datasets are shown in Figure 10, and their
produced metrics are reported in Figure 13, Figure 16, and Figure 19.

From the precision, it can be seen that the method in the paper does have a significant
effect on identifying the probability of being classified as correct, especially in Figures 12
and 13 (KDEF and CK+). From the recall, it can be seen that the proportion of the correctly
predicted data in each category is still quite high, especially in Figures 15 and 16 (KDEF
and CK+).

F1 takes into account the precision and recall rate. F1 can be seen on the CK+ and
KDEF dataset, which show a good performance in Figures 18 and 19. It may be that
the MMI dataset contains some occluded images, which leads to its poor performance in
precision, recall, and F1. However, compared with other methods in terms of recognition
accuracy, our network still has a great advantage as shown in Table 6.

It is clear from Figures 8–19 that the proposed network brings good classification
accuracy along with other metrics for KDEF, MMI, and CK+ datasets in almost all the
instances. An exhaustive review of these methods is outside the range of our research,
and that can be mentioned to [16–18,29–36]. It is clear from Table 8 that Ref. [35] gives
good outcomes for the KDEF dataset and AlexNet gives good results for the CK+ data only.
However, our recognition rate is completely beyond Broad learning and AlexNet. We can
summarize that our network is effective, but it shows the right prediction accuracy in more
instances compared to 21 models.

Table 8. Performance comparison of our network with classification accuracy (%) on two datasets
viz. CK+ and KDEF.

No. Method Ref. CK+ KDEF

1 AlexNet 97 76
2 HOG-TOP [15] 65 55
3 SCNN [28] 61 55
4 MCNN [28] 85 67
5 SCNN-LBP [16] 83 70
6 SCNN-gray [16] 94 78
7 P-VGG16 [16] 91 78
8 WMDC [16] 97 81
9 WFTS [29] 91 74
10 ACNN-LBP [17] 95 66
11 Fusion(ACNN-LBP+GF) [17] 94 69
12 STF+LSTM. [18] 82 81
13 Ensemble DCNNs [30] 67 58
14 DCNN-BC [31] 73 70
15 IACNN [32] 95 67
16 2B(N+M)Softmax [33] 87 81
17 CF+GT [34] 86 80
18 Broad learning [35] 81 89
19 Deep-emotion [36] 94 81
20 VGG19 [37]-1 96 81
21 ResNet150 [37]-2 89 72
22 Our network 99.042 96.53
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4.6. Performance Comparison of Execution Time

In comparison, we provide comparative results against 21 state-of-the-art algorithms,
for example, HOG-TOP [15], SCNN [28], MCNN [28], SCNN-LBP [16], SCNN-gray [16],
P-VGG16 [16], WMDC [16], WFTS [29], ACNN-LBP [17], Fusion(ACNN-LBP+GF) [17],
STF+LSTM [18], DCNN-BC [31], IACNN [32], 2B(N+M) Softmax [33], CF+GT [34], Broad
learning [35], Deep emotion [36], VGG19 [37]-1, and ResNet150 [37]-2, on two datasets.
However, the contrast is limited to average recognition accuracy only. Some methods in
Table 9 were executed on videos. Rare works premeditated a fewer number of classes.
Table 9 shows the average classification accuracy obtained by the above mentioned 21
methods. It is obvious from Table 9 that our network conquers the twenty-one above
models on CK+ and KDEF, and it occurs due to the use of a triple-structure network model.
However, the above models are still contrasted according to training and testing time. The
training time of a model usually relies on the size of the network, size of the input images,
and so on. In the research, the above models were used in the light of their respective
specifications. We used tenfold cross validation and 300 epochs when training our network
on KDEF and CK+ datasets. The training and testing times required by the above 22
models, including our network on the two databases, are displayed in Table 9. However,
testing time for onefold cross validation is noted only in Table 9. Testing time per image
(TTPI) is the same for all the images of a database as their size is equal. IACNN takes about
700 min to train KDEF and about 633 min to train CK+, which is quite large. While the
proposed method processes an image in 0.278 s, our method is still quite dominant in terms
of accuracy.

Table 9. A comparison of the performance of our research in terms of execution time on the two
datasets, i.e., CK+ and KDEF.

No. Method Ref. TTPI
Training Time Testing Time for All the Images

CK+ KDEF CK+ KDEF

1 AlexNet 0.2412 47 51 0.8236 0.8429
2 HOG-TOP [15] 0.45 92.33 115 1.3264 1.1576
3 SCNN [28] 0.1812 1.5 2.5 0.8985 0.9001
4 MCNN [28] 0.1872 2 2.5 0.9127 0.9168
5 SCNN-LBP [16] 0.1801 16.33 25 0.8991 0.9008
6 SCNN-gray [16] 0.1801 16.33 25 0.8991 0.9008
7 P-VGG16 [16] 0.4309 158.33 175 1.5238 1.5523
8 WMDC [16] 0.4699 174.99 200 1.9789 1.9965
9 WFTS [29] 0.8956 10 16.6 1.9912 1.9989

10 ACNN-LBP [17] 0.3945 20 30 1.1321 1.1394
11 Fusion(ACNN-LBP+GF) [17] 0.4612 110 135 1.9984 2.0102
12 STF+LSTM. [18] 0.4329 215.33 240 2.8628 2.9845
13 Ensemble DCNNs [30] 0.4917 220 300 2.6296 2.7013
14 DCNN-BC [31] 0.1725 28 37.33 1.443 1.4523
15 IACNN [32] 0.3946 633 700 1.9165 1.973
16 2B(N+M)Softmax [33] 0.2814 85.33 93.33 0.9892 0.9946
17 CF+GT [34] 0.3218 100 115.33 2.451 2.5503
18 Broad learning [35] 0.1023 1.5 2 0.3323 0.3812
19 Deep-emotion [36] 0.2908 50 66.66 0.9165 0.9346
20 VGG19 [37]-1 0.6128 23 26.5 1.9901 2.0981
21 ResNet150 [37]-2 0.7123 67 76.5 2.618 2.7833
22 Our network model 0.278 482.98 507.2 4.393 4.642

5. Visualization for the Triple-Structure Network Model

To further confirm the effectiveness of the proposed triple-structure network model,
a class activation map visualization [67] was performed on each branch of the model.
A feature map formed by weighted overlapping of feature atlases can demonstrate the
importance of each location to its classification. The first column in Figures 20–22 are the
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original images. The second column is the feature channel map (Feature map1) extracted
by the global branch network (MobileNet). The third column is the feature channel map
(Feature map2) extracted by MobileNet+SENet. The fourth column is the feature channel
map (Feature map3) extracted by MobileNet+Div. Finally, the fifth column is the Merged
Feature map extracted by our triple-structure network model.
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The first three rows of Figure 20 are angry, and the last three rows reflect happiness.
The first three rows of Figure 21 are fear, and the last three rows correspond to happiness.
The first three rows of Figure 22 are sad, and the last three rows reflect happiness. The
second column of Figures 20–22 shows that the global branch network can learn globally
about images. In the third column, attention mechanism learning is stressed. In addition,
the key learning area of the image is enhanced. The fourth column emphasizes the diverse
intra-class, which shows that the learning is performed for multiple regions of the image.
The fifth column combines the above advantages for more in-depth learning. The first
three rows and the last three rows of Figure 20 are, respectively, angry and happiness,
which belongs to an inter-class relationship. It can be observed from Figure 20 that the
learning focus on the two types of expressions is different. The key learning area of the
angry expression image is around the eyes. The learning area of the expression image is
concentrated on the mouth for happiness. This discovery emphasizes the concentration of
learning different areas of inter-classes. As for Figure 21, the focus on fear is the eyes and
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mouth, and the focus on happiness is around the mouth. As for Figure 22, the focus on sad
is the eyebrows and mouth, and the focus on happiness is around the mouth.
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The expressions for the first three rows in Figures 20–22 are, respectively, angry,
fear, and sad. The three are similar in that they focus more on the area around the eyes.
Meanwhile, the fear learning has an additional learning towards the area around the mouth
and sad has an additional learning towards the area around the eyebrows. The expressions
for the last three rows of Figures 20–22 are happiness. This process is focused on the
learning of intra-class features. In addition to the mouth, there is also learning around the
eyes, which emphasizes the learning of the diversity of intra-class features.
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6. Conclusions

We proposed a symmetric mode to extract the inter-class features and intra-class
diversity features, and then put forward a triple-structure network model, which is trained
by a new multi-branch loss function. Such a triple-structure network model comprises a
global branch network, an attention mechanism branch network, and a diversified feature
learning branch network. Our research consists of the below aspects:

(1) We slightly looked back at the previous related works about MobileNet V1 and SENet.
Moreover, we highlighted their merits and achievements, which also favors our
research idea.

(2) A triple-structure network model was presented. The global branch network focuses
on learning global features, the attention branch network concentrates on learning
inter-class features, and lastly the diverse feature learning branch network focuses
on learning the diversity of intra-class features. Then, the judgment process of the
network model comprehensively utilizes global features, inter-class features, and
intra-class features. It not only can focus on the overall structure, but also can capture
the diverse intra-class and the difference inter-class with a symmetric mode.

(3) Finally, experiments were performed on the KDEF, MMI, and CK+ datasets in which
the classification accuracy reached 96.530%, 83.559%, and 99.042%, respectively.
Through ablation experiments and visualization, the intrinsic mechanism of our triple-
structure network model was proved to be very reasonable. Moreover, experiments
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on MMI, KDEF, and CK+ databases demonstrated that our proposed triple-structure
network model performs better than dozens of state-of-the-art methods from [10,49],
HE+DeepPCA+ELM [11], QIBGSA [12,25], RCFN [38,54], FMN [55], DLP+CNN [56],
DeRL [57,58], MF-MLP [60], and HAAR+LDA+IBH-based ELM [61,62].

Based on the experimental results and analyses in Sections 4.3 and 4.4, the proposed
network is more competitive than other methods. However, there are still some limitations.
For example, our network can only process images, not text and speech. With the develop-
ment of modern society, the combination of video, voice, and text has been integrated into
our world, which shows the limitations of our network.

Although our network applies multiple branches to learn with different focuses, the
actual learning is to extract important features of the image to achieve a good recognition
rate. However, multi-branch learning can achieve the learning of important features, and it
also brings repeated learning and repeated iterations, which results in a waste of computing
resources. A key direction we should study is how to propose a network to achieve focused
learning of image features, thereby reducing the pressure on computing resources, and
enabling better application in practice.

As a next step, we plan to propose a network to achieve focused learning of image
features with a reduction on the pressure of computing resources. In the future, it is
worthy to research how to construct an expression analysis model with more powerful
generalization ability. In addition, we will consider utilizing orthogonal polynomials [68]
as a feature extraction tool for facial recognition, which may provide important help in
improving the recognition rate.
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