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Abstract: Fractional–stochastic Drinfel’d–Sokolov–Wilson equations (FSDSWEs) forced by multi-
plicative Brownian motion are assumed. This equation is employed in mathematical physics, plasma
physics, surface physics, applied sciences, and population dynamics. The (G′/G)-expansion method
is utilized to find rational, hyperbolic, and trigonometric stochastic solutions for FSDSWEs. Because
of the priority of FSDSWEs, the derived solutions are more useful and effective in understanding
various important physical phenomena. Furthermore, we used the MATLAB package to create
3D graphs for specific solutions in order to investigate the effect of fractional-order and Brownian
motions on the solutions of FSDSWEs.

Keywords: fractional DSW equations; stochastic DSW equations; Brownian motion; (G′/G)-expansion
method
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1. Introduction

Nonlinear evolution equation (NLEE) research has focused on many areas of nonlin-
ear science, including geochemistry, plasma physics, solid-state physics, fluid mechanics,
optical fibers, nuclear physics, and chemical physics. Many authors planned to create trav-
eling wave solutions for NLEEs by using a variety of analytical and numerical approaches.
To achieve exact solutions to these equations, a various of methods were used, such as
Darboux transformation [1], sine–cosine [2,3], Hirota’s function [4], (G′/G)-expansion
[5–7], the robust method [8], the Lyapunov functional [9], gamma transform correction
methods [10], state damping control [11], perturbation [12,13], Riccati–Bernoulli sub-ODE
[14], exp(−φ(ς))-expansion [15], tanh-sech [16,17], and the Jacobi elliptic function [18,19].

Recently, random perturbations in practically physical systems have arisen from a
wide range of external inputs. They cannot be ignored, since noise can create statistical
characteristics and important phenomena. Therefore, stochastic differential equations
(SDEs) appeared and became important in modeling phenomena in atmosphere, fluid me-
chanics, oceanography, chemistry, physics, biology, and other sciences [20–23]. On the other
hand, fractional derivatives are used to represent several important phenomena, including
anomalous diffusion, electrochemistry, acoustics, image processing, and electromagnetism.
One of the advantages of fractional models is that they can be described more accurately
than integer models can, which pushed us to define several major and useful fractional
models. In general, finding exact solutions to SDEs with fractional derivatives is more
difficult than finding exact solutions to classical ones.
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As a result, the following stochastic-fractional Drinfel’d–Sokolov–Wilson equations
(SFDSWEs) are considered:

dψ + [γ1 ϕTδ
x ϕ]dt = ρψdβ, (1)

dϕ + [γ2Tδ
xxx ϕ + γ3ψTδ

x ϕ + γ4 ϕTδ
xψ]dt = ρϕdβ, (2)

where ψ = ψ(x, t), ϕ = ϕ(x, t) and γi for i = 1, 2, 3, 4 are nonzero constants. Tδ, for
0 < δ ≤ 1, is the conformable derivative (CD) [24]. β = β(t) is a standard Brownian motion
(SBM), and ρ is the noise strength.

Drinfel’d–Sokolov–Wilson equations (DSWEs) (1) and (2) with δ = 1 and ρ = 0 de-
velop from shallow-water wave models that Drinfel’d and Sokolov [25,26] first provided,
and Wilson later refined [27]. Additionally, this model is employed in surface physics,
plasma physics, applied sciences, population dynamics, and mathematical physics. Because
of the significance of DSWEs, a number of researchers proposed the exact solutions for this
system via different approaches, including tanh and extended tanh methods [28], the homo-
topy analysis method [29], the F−expansion method [30], the truncated Painlevè method
[31], and the exp-function method [32]. A few authors also used various approaches, such
as the discrimination system for polynomial [33] and Jacobi elliptical function method [34],
to find accurate solutions for fractional DSW.

The originality of this work is to obtain a wide range of stochastic–fractional solutions
for SFDSWEs (1) and (2), including hyperbolic, rational, and trigonometric functions,
by utilizing the (G′/G)-expansion method. This study is the first to acquire stochastic–
fractional solutions of SFDSWEs by using the (G′/G)-expansion method in the presence of
noise and fractional derivatives. In addition, we used MATLAB tools to build 3D plots for
some of the solutions of SFDSWEs (1) and (2), created in this work to highlight how the
SBM influences these solutions. Lastly, we deduce that the noise term and fractional-order
impact the stability and symmetry of the obtained solutions.

The rest of this paper is organized as follows: In Section 2, we introduce the definitions
and properties of CD and SBM. In Section 3, we explain the (G′/G)-expansion method. In
Section 4, to derive the wave equation for SFDSWEs (1) and (2), we employ a suitable wave
transformation. In Section 5, we obtain the analytic solutions of SFDSWEs (1) and (2). In
Section 6, we address the impact of the SBM and fractional order on the solutions. Section 7
presents the paper’s conclusion.

2. Preliminaries

We now introduce the definitions and properties of CD and SBM. We define CD as
follows:

Definition 1 ([24]). The CD of P : R+ → R of order δ is defined as follows:

Tδ
xP(z) = lim

κ→0

P(z + κz1−δ)− P(z)
κ

.

Theorem 1 ([24]). Assume that P1, P2 : R+ → R are δ differentiable functions, then

Tδ
x(P1 ◦ P2)(z) = z1−δP′2(x)P1(P2(x)).

The CD had the following properties:

1. Tδ
z [c1P1(z) + c2P2(z)] = c1Tδ

x P1(z) + c2Tδ
x P2(z), c1, c2 ∈ R,

2. Tδ
z [C] = 0, C is a constant,

3. Tδ
z [zk] = kzk−δ, k ∈ R,

4. Tδ
z P(x) = z1−δ dP

dx .

Definition 2 ([35]). Stochastic process {β(t)}t≥0 is an SBM if
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1. β(0) = 0,
2. For t1 < t2, β(t1)− β(t2) is independent,
3. β(t), t ≥ 0 is a continuous function of t,
4. β(t2)− β(t1) has normal distribution with variance t2 − t1 and mean 0.

Lemma 1 ([35]). E(eαβ(t)) = e
1
2 α2t for α ≥ 0.

3. The (G′/G)-Expansion Method Description

It is helpful to outline the main steps presented in [5]:

1. First, a general form of the nonlinear equation in the fractional space of stochastic
processes is considered:

P(uβt, u, ut,Tδ
xψ,Tδ

xxψ, . . .) = 0. (3)

2. To obtain the traveling wave equation of Equation (3), we introduce

ψ(t, x) = u(ξ)e(ρβ(t)− 1
2 ρ2t), ξ =

1
δ

xδ + θt, (4)

where the localized wave solution u(ξ) is a deterministic function, and θ is a constant.
As a result, we perform the following changes:

∂ψ

∂t
= (−θu′ + ρu

dβ

dt
+

1
2

ρ2u− 1
2

ρ2u)e(ρβ(t)− 1
2 ρ2t),

Tδ
xψ = u′e(ρβ(t)− 1

2 ρ2t),
...

...
...

...
... (5)

Tδ
xn ψ = u(n)e(ρβ(t)− 1

2 ρ2t),

where + 1
2 ρ2u is the itô correction term. Using (5) changes the PDE (3) to a stochastic

ordinary differential equation (SODE):

P(ue(ρβ(t)− 1
2 ρ2t), u8e(ρβ(t)− 1

2 ρ2t), u88e(ρβ(t)− 1
2 ρ2t), . . .) = 0.

3. To remove the stochastic term from Equation (6), we took an expectation on both sides
to obtain a deterministic ODE in the following form:

P(u, u8, u88, . . .) = 0. (6)

4. The ansatz is introduced:

u =
N

∑
k=0

h̄k[
G′

G
]k, such that h̄N 6= 0, (7)

where G solves the second ODE:

G′′ + λG′ + νG = 0, (8)

where λ, ν are undefined constants. In most situations, N is a positive integer that is
calculated. Putting (7) into ODE (6) yields an equation in powers of G′/G.

5. To calculate parameter N, we follow these steps: First, we define the degree of u
as D[u] = N. Second, we determine the highest order nonlinear and highest-order
derivatives in Equation (6) as follows:

D[
dnu
dξn ] = N + n,
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and

D
[

up
(

dnu
dξn

)s]
= pN + s(N + n).

With the N calculated, the coefficients of G′/G are equated in the obtained equation.
As a result, a set of algebraic equations containing h̄k (k = 0, 1, . . . , N), ν, and λ are
produced. We then solve the system to find these constants. Next, relying on the sign
of ∆ = λ2 − 4ν, we have the solutions of Equation (6).

4. Wave Equation for SFDSWEs

To construct the wave equation for SFDSWEs (1) and 2), we apply the following wave
transformation:

ψ(x, t) = v(ξ)e(ρβ(t)− 1
2 ρ2t), ϕ(x, t) = u(ξ)e(ρβ(t)− 1

2 ρ2t), ξ =
1
δ

xδ + θt, (9)

where v and u are real deterministic functions. Substituting Equation (9) into Equations (1)
and (2), and utilizing

dψ = [θv′dt + ρvdβ]e(ρβ(t)− 1
2 ρ2t),

dϕ = [θu′dt + ρudβ]e(ρβ(t)− 1
2 ρ2t),

Tδ
x ϕ = u′e(ρβ(t)− 1

2 ρ2t), Tδ
xψ = v′e(ρβ(t)− 1

2 ρ2t),

Tδ
xxx ϕ = u′′′e(ρβ(t)− 1

2 ρ2t), (10)

we obtain

θv′ + γ1uu′e(ρβ(t)− 1
2 ρ2t) = 0, (11)

θu′ + γ2u′′′ + γ3vu′e(ρβ(t)− 1
2 ρ2t) + γ4uv′e(ρβ(t)− 1

2 ρ2t) = 0. (12)

By taking expectation E(·) for Equations (11) and (12), we have

θv′ + γ1uu′e−
1
2 ρ2tE(eρβ(t)) = 0, (13)

θu′ + γ2u′′′ + [γ3vu′ + γ4uv′]e−
1
2 ρ2tE(eρβ(t)) = 0. (14)

Using Lemma 4, we obtain

θv′ + γ1uu′ = 0, (15)

θu′ + γ2u′′′ + γ3vu′ + γ4uv′ = 0. (16)

Integrating Equation (15), we have

v = −γ1

θ
u2 + C, (17)

where C is the constant of the integral. Putting Equation (17) into (16) and utilizing
Equation (15), we have

γ2u′′′ − [
γ1γ3

2θ
+

γ1γ4

θ
]u2u′ + [θ + Cγ3]u′ = 0. (18)

Integrating Equation (18), we obtain the following wave equation:

u′′ − `1u3 + `2u = 0, (19)

where
`1 =

γ1γ3

6γ2θ
+

γ1γ4

3γ2θ
and `2 =

θ

γ2
+

Cγ3

γ2
.
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5. Analytical Solutions of SFDSWEs

Assuming that the solution of (19) has the form (7), by equating the order of u3 and u′′

in (7), we have N = 1.Now, rewriting Equation (7) with N = 1, we attain

u(ξ) = h̄0 + h̄1[
G′

G
]. (20)

Putting Equation (20) into Equation (19) and utilizing Equation (8), we obtain:

(2h̄1 − `1h̄3
1)[

G′

G
]3 + (3λh̄1 − 3`1h̄0h̄2

1)[
G′

G
]2

+(λ2h̄1 + 2h̄1ν− 3`1h̄1h̄2
0 + `2h̄1)[

G′

G
]

+(νλh̄1 − `1h̄2
0h̄1 + `2h̄0) = 0.

Setting each coefficient of [G′
G ]j for j = 3, 2, 1, 0 equal zero:

2h̄1 − `1h̄3
1 = 0,

3λh̄1 − 3`1h̄0h̄2
1 = 0,

λ2h̄1 + 2h̄1ν− 3`1h̄1h̄2
0 + `2h̄1 = 0,

and
νλh̄1 − `1h̄3

0 + `2h̄0 = 0.

Solving this system, we have for `1 > 0:

h̄1 = ±

√
2
`1

, λ = any real number, h̄0 = ± λ√
2`1

, ν =
λ2

4
− `2

2
. (21)

The roots of auxiliary Equation (8) are:

−λ

2
±
√

`2

2
. (22)

There are three sets for the solutions of Equation (8) relying on the value of `2.
Set I: If `2 = 0, then Roots (22) are equal, and the solution of Equation (8) is:

G(ξ) = c1 exp
(
−λ

2
ξ

)
+ c2ξ exp

(
−λ

2
ξ

)
,

where c1, c2 are constants. Hence, the solution of Equation (19) by using Equation (20) is:

u(ξ) = ±

√
2
`1

[
c2

c1 + c2ξ

]
. (23)

Consequently, the exact solutions of SFDSWEs (1-2) in this status are rational as follows:

ϕ(x, t) = ±

√
2
`1

[
c2

c1 + c2ξ

]
e(ρβ(t)− 1

2 ρ2t), (24)

ψ(x, t) =

{
−2γ1

θ`1

[
c2

c1 + c2ξ

]2
+ C

}
e(ρβ(t)− 1

2 ρ2t),

where ξ = 1
δ xδ + θt.
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Set II: If `2 < 0, then Roots (22) are complex, and the solution of Equation (8) is:

G(ξ) = exp
(
−λ

2
ξ

)[
c1 cos

(√
−`2

2
ξ

)
+ c2 sin

(√
−`2

2
ξ

)]
.

Hence, the solution of Equation (19) is:

u(ξ) = ±
−c1

√
−`2
`1

sin
(√

−`2
2 ξ

)
+ c2

√
−`2
`1

cos
(√

−`2
2 ξ

)
c1 cos

(√
−`2

2 ξ

)
+ c2 sin

(√
−`2

2 ξ

) . (25)

Therefore, the solutions of SFDSWEs (1) and (2) in this status are trigonometric, as follows:

ϕ(x, t) = ±

−c1

√
−`2
`1

sin
(√

−`2
2 ξ

)
+ c2

√
−`2
`1

cos
(√

−`2
2 ξ

)
c1 cos

(√
−`2

2 ξ

)
+ c2 sin

(√
−`2

2 ξ

)
e(ρβ(t)− 1

2 ρ2t), (26)

ψ(x, t) =

C− γ1

θ

−c1

√
−`2
`1

sin
(√

−`2
2 ξ

)
+ c2

√
−`2
`1

cos
(√

−`2
2 ξ

)
c1 cos

(√
−`2

2 ξ

)
+ c2 sin

(√
−`2

2 ξ

)


2e(ρβ(t)− 1
2 ρ2t), (27)

where ξ = 1
δ xδ + θt.

Set III: If `2 > 0, then Roots (22) are real and distinct, and the solution of Equation (8) is:

G(ξ) = c1 exp

[
(
−λ

2
+

√
`2

2
)ξ

]
+ c2 exp

[
(
−λ

2
−
√

`2

2
)ξ

]
.

Therefore, the solution of Equation (19) is:

u(ξ) = ±

√
`2

`1

c1 exp
(√

`2
2 ξ

)
+ c2 exp

(
−
√

`2
2 ξ

)
c1 exp

(√
`2
2 ξ

)
+ c2 exp

(
−
√

`2
2 ξ

) . (28)

Consequently, the solutions of SFDSWEs (1) and (2) in this status are hyperbolic as follows:

ϕ(x, t) = ±

√
`2

`1

c1 exp(
√

`2
2 ξ) + c2 exp(−

√
`2
2 ξ)

c1 exp(
√

`2
2 ξ) + c2 exp(−

√
`2
2 ξ)

e(ρβ(t)− 1
2 ρ2t), (29)

ψ(x, t) =

C− `2γ1

`1θ

 c1 exp
(√

`2
2 ξ

)
+ c2 exp

(
−
√

`2
2 ξ

)
c1 exp

(√
`2
2 ξ

)
+ c2 exp

(
−
√

`2
2 ξ

)


2e(ρβ(t)− 1
2 ρ2t), (30)

where ξ = 1
δ xδ + θt.

Special Cases:
Case 1: setting c2 = 0 in Equations (26) and (27), we obtain for `2 < 0:

ϕ(x, t) = ±

√
−`2

`1
tan

(√
−`2

2
ξ

)
e(ρβ(t)− 1

2 ρ2t), (31)
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ψ(x, t) =

{
C +

`2γ1

`1θ
tan2

(√
−`2

2
ξ

)}
e(ρβ(t)− 1

2 ρ2t). (32)

Case 2: setting c1 = 0 in Equations (26) and (27), we obtain for `2 < 0:

ϕ(x, t) = ±

√
−`2

`1
cot

(√
−`2

2
ξ

)
e(ρβ(t)− 1

2 ρ2t), (33)

ψ(x, t) =

{
C +

`2γ1

`1θ
cot2

(√
−`2

2
ξ

)}
e(ρβ(t)− 1

2 ρ2t). (34)

Case 3: setting c1 = c2 = 1 in Equations (26) and (27), we obtain for `2 < 0:

ϕ(x, t) = ±

√
−`2

`1

[
sec
(√
−2`2ξ

)
− tan

(√
−2`2ξ

)]
e(ρβ(t)− 1

2 ρ2t). (35)

ψ(x, t) =
{

C +
`2γ1

`1θ

[
sec
(√
−2`2ξ

)
− tan

(√
−2`2ξ

)]2
}

e(ρβ(t)− 1
2 ρ2t), (36)

or

ϕ(x, t) = ±

√
−`2

`1

[
1

sec
(√
−2`2(ξ

)
+ tan

(√
−2`2ξ

)]e(ρβ(t)− 1
2 ρ2t). (37)

ψ(x, t) =

C +
`2γ1

`1θ

[
1

sec
(√
−2`2ξ

)
+ tan

(√
−2`2ξ

)]2
e(ρβ(t)− 1

2 ρ2t). (38)

Case 4: setting c1 = c2 = 1 in Equations (29) and (30), we obtain for `2 > 0:

ϕ(x, t) = ±

√
`2

`1
tanh

(√
`2

2
ξ

)
e(ρβ(t)− 1

2 ρ2t), (39)

ψ(x, t) =

{
C− `2γ1

`1θ
tanh2

(√
`2

2
ξ

)}
e(ρβ(t)− 1

2 ρ2t). (40)

Case 5: setting c1 = 1, c2 = −1 in Equations (29) and (30), we obtain for `2 > 0:

ϕ(x, t) = ±

√
`2

`1
coth

(√
`2

2
ξ

)
e(ρβ(t)− 1

2 ρ2t), (41)

ψ(x, t) =

{
C− `2γ1

`1θ
coth2

(√
`2

2
ξ

)}
e(ρβ(t)− 1

2 ρ2t), (42)

where ξ = 1
δ xδ + θt.

Remark 1. If we set ρ = 0, δ = 1 in Equations (39)–(42), we have the same results as those
reported in [28].

6. Effect of Noise and Fractional Order on the Solutions

The impact of the fractional order and noise on the achieved solutions of FSDSWEs (1)
and (2) is examined. The destabilizing and stabilizing effects induced by noisy terms in
deterministic systems are now well-understood according to the literature on the subject
[36,37] and the references therein. The significance of these effects in interpreting the long-
term behavior of actual systems is beyond dispute. Now, to show the impact of noise on the
obtained solutions of FSDSWEs (1) and (2), let us plot the graphs for some solutions, such
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as (39) and (40), by utilizing MATLAB tools with C = 0, γ1 = 1, γ2 = −1, γ3 = γ4 = 3 and
θ = −3. Then `1 = 0.5 and `2 = 3.

First, the impact of noise: In Figure 1, when ρ = 0, there was some irregularity in the
surface and it was not flat.

Kink soliton of the solution of Equation (39) with ρ = 0, δ = 1

Bright soliton of the solution of Equation (40) with ρ = 0, δ = 1

Figure 1. Three-dimensional graphs of Equations (39) and (40) with ρ = 0 and δ = 1.

In Figure 2, if the noise strength appeared and increased, the surface became signifi-
cantly flatter.
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ρ = 1, δ = 1 in Equation (39) ρ = 2, δ = 1 in Equation (40)

ρ = 2, δ = 1 in Equation (39) ρ = 2, δ = 1 in Equation (40)

Figure 2. Three-dimensional graphs of Equations (39) and (40) with ρ = 1, 2 and δ = 1.

In Figure 3, we drew a two-dimensional graph representing the solution ϕ(x, t) in
Equation (39) to illustrate our previous results as follows:

Figure 3. Two-dimensional graph of solution ϕ(x, t) in Equation (39).

Second, the impact of fractional derivatives: Figures 4 and 5 if ρ = 0show that, as δ
increased, the surface was extended:
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ρ = 0, δ = 0.3 ρ = 0, δ = 0.5

ρ = 0, δ = 0.7 ρ = 0, δ = 1

Figure 4. Three-dimensional graphs of Equation (39) with ρ = 0 and various δ.

ρ = 0, δ = 0.3 ρ = 0, δ = 0.5

ρ = 0, δ = 0.7 ρ = 0, δ = 1

Figure 5. Three-dimensional graphs of Equation (40) with ρ = 0 and various δ.

7. Conclusions

In this work, we studied the stochastic–fractional Drinfel’d–Sokolov–Wilson equations.
These equations are used in plasma physics, surface physics, applied sciences, population
dynamics, and mathematical physics. The exact stochastic–fractional solutions to SFDSWEs
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(1) and (2) were successfully attained by utilizing the (G′/G)-expansion method. We
acquired different types of solutions, including hyperbolic, rational, and trigonometric
functions. Due to the significance of SFDSWEs, the obtained solutions are more important
for and beneficial in comprehending a variety of crucial physical phenomena that have
appeared in applied sciences, population dynamics, plasma physics, and surface physics.
Moreover, we applied MATLAB software to discuss how the fractional order and multi-
plicative noise affected the solutions of SFDSWEs. From our results, we concluded that the
solutions were stabilized around zero by multiplicative Brownian motion. Additionally,
when the fractional derivative increased, the surface expanded. In future studies, SFDSWEs
(1) and (2) may be taken into account with either additive noise or infinite dimension
multiplicative noise.
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