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Abstract: These days, multi-criteria decision-making (MCDM) approaches play a vital role in making
decisions considering multiple criteria. Among these approaches, the picture fuzzy soft set model is
emerging as a powerful mathematical tool for handling various kinds of uncertainties in complex real-
life MCDM situations because it is a combination of two efficient mathematical tools, namely, picture
fuzzy sets and soft sets. However, the picture fuzzy soft set model is deficient; that is, it fails to tackle
information symmetrically in a bipolar soft environment. To overcome this difficulty, in this paper,
a model named picture fuzzy bipolar soft sets (PRFBSSs, for short) is proposed, which is a natural
hybridization of two models, namely, picture fuzzy sets and bipolar soft sets. An example discussing
the selection of students for a scholarship is added to illustrate the initiated model. Some novel
properties of PRFBSSs such as sub-set, super-set, equality, complement, relative null and absolute
PRFBSSs, extended intersection and union, and restricted intersection and union are investigated.
Moreover, two fundamental operations of PRFBSSs, namely, the AND and OR operations, are studied.
Thereafter, some new results (De Morgan’s law, commutativity, associativity, and distributivity)
related to these proposed notions are investigated and explained through corresponding numerical
examples. An algorithm is developed to deal with uncertain information in the PRFBSS environment.
To show the efficacy and applicability of the initiated technique, a descriptive numerical example
regarding the selection of the best graphic designer is explored under PRFBSSs. In the end, concerning
both qualitative and quantitative perspectives, a detailed comparative analysis of the initiated model
with certain existing models is provided.

Keywords: picture fuzzy soft set; bipolarity; score function; algorithm; multi-criteria decision-making

1. Introduction

The development and improvement of technology have changed a lot of things in the
past few decades. These changes include new trends and adoptions adding to the problems
and complications emerging with these new possibilities. Conditions often emerge in which
one must make decisions considering many different criteria and dependencies. This is
where the multi-criteria decision-making (MCDM) techniques come in handy. The MCDM
tools and methods allow the consideration of multiple criteria in one place, thus making
the decision-making process smoother and easier.

For dealing with complicated decision problems and undeniable uncertainties in
information, decision making is considered an important branch of science that provides
tools and techniques to tackle such confusions and complications effectively. Early theories,
e.g., the classical set theory, could only handle a limited set of problems and failed to
deal with uncertain and incomplete information. This issue was of prime significance
for decision makers keeping in view the wide area of problems facing uncertainty and
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needing a solution. Following the 16th century works on the development of modern
probability theory, Zadeh [1] solved this problem in 1965 by introducing his revolutionary
fuzzy set theory. Zadeh’s fuzzy sets (FSs) considered an extended range of memberships
for the consideration of the truthfulness of an event, i.e., he mapped the set of objects to the
close interval of [0, 1] rather than the discrete set {0, 1} as in classical sets. This interval-
valued range allowed for the illustration of partial truthfulness in between the true and false
bounds (1 and 0, respectively). This theory found many applications and great interest in the
decision sciences. Some recent works include the application of FSs in risk assessment and
excavation management by Lin et al. [2]; a discussion on the applications and contributions
of FS theory in human reliability by Gholamizadeh et al. [3]; evidential fuzzy multi-criteria
decision making (MCDM) based on belief entropy by Xiao [4]; and more.

The FS theory considered only the memberships declaring how much an object satisfies
some particular aspect. However, decision makers had to face issues considering problems
requiring knowledge of the degree of dissatisfaction degrees as well. To overcome this
issue, Atanassov [5] introduced the intuitionistic fuzzy sets (IFSs) (analogous to the type-I
fuzzy sets) as a natural extension of FSs. An IFS offers two memberships, i.e., a membership
η+ declaring the degree of satisfaction and a non-membership η− declaring the degree of
dissatisfaction of an object concerning some particular parameter, along with the restriction
that bounds the sum of these two degrees by unity. Later extensions of the IFS model include
Pythagorean fuzzy sets (analogous to the type-II fuzzy sets) [6] that softened the restrictions
of IFSs. These Pythagorean fuzzy sets allowed for decision making in situations where the
sum of squares of the two degrees (membership and non-membership) are bounded by
unity, i.e., 0 ≤ (η+)2 + (η−)2 ≤ 1. Many researchers adopted this idea of non-membership
degrees. In 2019, Xiao [7] provided a distance measure for IFSs and applied it to pattern
classification problems. Recently, Wang et al. [8] discussed interval-valued intuitionistic
fuzzy Jenson–Shannon divergence and its application in multi-attribute decision making.
Yu et al. [9] discussed the evolution of IFSs with time through a deep exploration of the
literature. Wang et al. [10] presented some uncertainty measures for Pythagorean fuzzy
sets and discussed their MCDM applications. The discussed theories could not effectively
deal with multi-parameterized data sets. However, while making decisions, one often
encounters problems considering the alternatives regarding several criteria or attributes.
To deal with this issue, Molodtsov [11] launched the theory of soft sets, which acted as
parameterized families of sets. After the initiation of the soft set model, many researchers
investigated different operations for soft sets and explored several applications related to
soft sets [12]. Early hybridizations of models based on soft sets include the hybridization
of soft sets and fuzzy sets known as fuzzy soft sets (FSSs) [13], which was an approach
introduced by Maji et al. [14]. The further improvements and extensions of the soft sets
contributed significantly to the the development of MCDM (see [15–17]).

Apart from these scenarios, there arise many problems and uncertain situations in daily
life requiring the involvement of neutral behavior of alternatives in the data sets. For ex-
ample, in an election, voters may be divided into three groups, those who vote for, those
who vote against, and those who refuse to vote. To solve such problems, Cuong [18–20]
introduced the concept of picture fuzzy sets (PRFSs). These PRFSs can deal with mem-
bership, non-membership, and neutral degrees of given alternatives. After this powerful
invention of PRFS theory, several researchers were attracted to the notion of PRFS and
proposed various new operations and hybrid soft set models under the picture fuzzy
environment. For instance, Ganie et al. [21] developed certain correlation coefficients of
PRFSs to verify how much PRFSs correlate with each other. The prominent applications of
PRFSs include decision making, pattern recognition, clustering analysis, medical diagnosis,
etc. Further extending PRFS theory, Tchier et al. [22] introduced the notion of picture
fuzzy soft expert sets (PRFSESs) and discussed their effective applications towards group
decision making. The literature of PRFS theory is very rich in solving complex MCDM
problems. For instance, Saraji and Streimikiene [23] evaluated the adoption of circular
supply chains in manufacturing sectors under the picture fuzzy approach. Rong et al. [24]
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presented a novel MCDM PRFS-based method for estimating emergency management
schemes. Simic et al. [25] proposed a novel picture fuzzy extension of the CODAS method
for the multiple criteria of a vehicle shredding facility location (see also Wang et al. [26]).
Some more works related to PRFSs include the fuzzy logic operators for PRFSs [27], picture
fuzzy soft sets (PRFSSs) [28], correlation coefficients for PRFSs [29,30], similarity measures
for PRFSs and their applications towards MCDM [31,32], distance measures for PRFSs [33],
bipolar PRFSs [34], 2-tuple linguistic complex q-rung picture fuzzy sets [35], and picture
fuzzy Aczel–Alsina average aggregation operators [36], etc. Some recently explored ap-
plications of PRFSs include online-review-based sentiment analysis for the evaluation of
new electric vehicles under PRFSs by He and Wang [37]; the evaluation of citizens’ satis-
faction level regarding municipality services using the PRF VIKOR method by Yildirim
and Yildirim [38]; and the evaluation of pedagogic systems via PRFS-based group decision
making by Van Pham et al. [39]. Figure 1 elaborates on the differences between IFSs and
PRFSs pictorially, and Table 1 discusses the recent MCDM contributions under picture
fuzzy information.

Table 1. Summary some recent contrubution to picture fuzzy MCDM.

Reference Decision Model Contribution

Simic et al. [25] PRFS-based CODAS
method

MCDM CODAS method extended for picture fuzzy
information and applied to a vehicle shredding facility
location.

Sindhu et al. [34] Bipolar PRFS-based
operators

Aggregation operator, TOPSIS, and VIKOR MCDM
approaches based on bipolar picture fuzzy sets applied to
an MCDM investment problem.

Senapati [36] PRFS-based
Aczel–Alsina operators

MADM method based on picture fuzzy Aczel–Alsina
aggregation operators applied to an investment problem.

Yildirim and
Yildirim [38]

PRFS-based VIKOR
method

Picture fuzzy VIKOR method applied to evaluate the
satisfaction level of citizens with municipality services.

Akram et al. [40] q-Rung PRFS-based
Einstein operators

Einstein operators based aggregation operators applied to
MADM problems for the selection of business sites and
suppliers under q-rung picture fuzzy sets.

Akram [41]
q-Rung PRFS-based
VIKOR and TOPSIS
methods

q-Rung picture fuzzy VIKOR and TOPSIS methods applied
to the selection of housing society and industrial robots.

Haktanir and
Kahraman [42]

PRFS-based CRITIC and
REGIME MCDM
methods

Picture fuzzy CRITIC and REGIME MCDM methods
applied to selection of wearable health technology.

Shit et al. [43] Trapezoidal PRFS-based
harmonic operators

MADM technique based on trapezoidal picture fuzzy
harmonic aggregation operators applied to site selection
for a telecom tower.

Karamti et al. [44] PRFS-based divergence
measure

Picture fuzzy divergence measure-based similarity MCDM
applications to dengue sickness and pattern identification.

Rehman and
Mahmood [45] Picture fuzzy N-soft set

Picture fuzzy N-soft set-based MCDM applications for the
selection of coronavirus vaccine and next-generation
firewall.

Li et al. [46] q-Rung picture
linguistic set

MAGDM technique based on q-rung picture Heronian
mean operators applied to choosing an enterprise resource
planning system.

Mahmood et al. [47] Complex picture fuzzy
N-soft set

Complex picture fuzzy N-soft sets-based MADM
algorithm applied to the performance assessment of
e-waste recycling program and winner prediction for FIFA
world cup 2022.

For other important results related to PRFSs, the readers are referred to [48–50].

In addition, many real-life problems involve positive parameters (favoring parameters)
and symmetrically negative parameters (opposing parameters). Because of this, Shabir and
Naz [51] developed the idea of bipolar soft sets (BRSSs). This structure considers two sets
of parameters; one set contains the favorable parameters, while the other set contains the
parameters opposite to those in the favorable set. In this way, BRSSs effectively depict the
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bipolarity of parameters in complicated decision-making problems. In addition, Naz and
Shabir [52] combined FSs with BRSSs to formulate a hybridized model called fuzzy BRSSs.
Currently, the theory of BRSSs is playing a vital role in different domains to solve several
MCDM problems in the form of various hybridized uncertainty theories (see [53–57]).

Considering the research gaps in the literature (i.e., limitations of models such as
PRFSSs failing to consider the bipolarity of decision attributes and inefficacy of BRSSs in
considering uncertainties in positive, negative and neutral degrees), this work introduces a
model capable of combining the above-discussed qualities in one method.

ηo

η+

η−
Picture fuzzy set

Intuitionistic fuzzy set

(1,0,0)

(0,0,0)

(0,1,0)

(0,0,1)

Figure 1. Comparison among the IFS [5] and PFS [20] models.

The following are the motivations of our proposed study:

1. Existing decision-making structures, including PRFSSs, are unable to deal with the
bipolarity of decision attributes efficiently.

2. Models such as BRSSs and fuzzy BRSSs which are capable of depicting the bipolarity
of attributes fail to handle uncertainties effectively since they fail to consider positive,
negative, and neutral degrees of opinion.

3. Problems such as selection of a fashion designer specific to the company’s needs are
complicated MCDM problems requiring a strong decision-making algorithm.

The contributions of this paper are provided below:

1. A model called picture fuzzy bipolar soft set (or PRFBSS), a natural hybrid extension
of PRFS and BRSS, is proposed.

2. Some novel properties and two fundamental operations of PRFBSSs are presented
and illustrated via corresponding numerical examples.

3. Important results including the commutative, associative, and distributive properties
are presented. Furthermore, De Morgan’s Laws for the proposed properties and
operations are shown.

4. A PRFBSS-based algorithm using score functions for picture fuzzy numbers is pre-
sented to deal with MCDM problems considering the decision attributes in symmetry.
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5. An MCDM application of PRFBSSs, i.e., the selection of a fashion designer for a studio,
is presented and solved using the newly proposed algorithm based on PRFBSSs.

6. Finally, a detailed comparative analysis concerning both qualitative and quantitative
perspectives of the proposed model with certain existing models is provided.

Organization of Paper

The remaining formulation of the paper is given as follows: In Section 2, firstly,
some basic notions, including BRSSs and PRFSs, and some of their fundamental results
are recalled. In Section 3, the main notion of our study called picture fuzzy bipolar soft
sets (or PRFBSSs) is proposed. Some novel properties and fundamental operations of
PRFBSSs are presented and explained with numerical examples. In Section 4, an MCDM
application related to the initiated model is explored, supported by a novel algorithm.
In Section 5, a detailed comparative analysis of the proposed model with certain existing
models is studied. Finally, in Section 6, the concluding remarks are discussed along with
future directions.

2. Preliminaries

This section recalls some fundamental notions, including BRSSs and PRFSs, along
with their score and accuracy functions, which will support the developments in coming
sections. The following is the definition of BRSSs.

Definition 1 ([51]). For a given universal set P and a universe of attributes R, a triple (G , H ,
Q,¬Q) is called a bipolar soft set, or BRSS, over P , where Q ⊆ R if the functions G and H are
provided by G : Q → F (P) and H : ¬Q → F (P), such that

G (p) ∩ H (¬p) = ∅, ∀ p ∈ Q,¬p ∈ ¬Q.

Here F (P) represents the power set of the universal set P , and ¬Q serves as the collection of
opposite attributes as compared to the attributes in Q.

Definition 2 ([20]). For a given universal set P and a universe of attributes R, a picture fuzzy
set (or PRFS) G over the universal set P is provided as below:

G = {〈p, η+(p), ηo(p), η−(p)〉 | p ∈P},

which satisfies the following condition:

0 ≤ η+(p) + ηo(p) + η−(p) ≤ 1, (1)

where η+(p), ηo(p) and η−(p) are the degrees of positive, neutral and negative memberships,
respectively. For simplicity, we call the triple F = (η+

F , ηo
F , η−F ) a picture fuzzy number (PFN).

From now on, we represent the collection of all PRFSs over P as FP .

Definition 3 ([48]). For a PFN F = (η+
F , ηo

F , η−F ), we define its score function s(F ) as below:

s(F ) =
1
2
(1 + (2η+

F )− (
ηo
F

2
)− (η−F )). (2)

Similarly, for a PFN F = (η+
F , ηo

F , η−F ), we define its accuracy function of A(F ) as follows:

A(F ) = (η+
F ) + (ηo

F ) + (η−F ). (3)

Definition 4 ([48]). Let s(F1), s(F2) and A(F1), A(F2) be the score and accuracy functions
of two PFNs F1 = (η+

F1
, ηo

F1
, η−F1

) and F2 = (η+
F2

, ηo
F2

, η−F2
), respectively. Then, F1 < F2 if

and only if:
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(i) s(F1) < s(F2); or
(ii) s(F1) = s(F2) and A(F1) < A(F2).

3. Picture Fuzzy Bipolar Soft Sets

In this section, we first present a new hybrid MCDM model, namely, picture fuzzy
bipolar soft sets (or PRFBSS). Then, we discuss some basic properties and operations along
with examples. We start with the definition of PRFBSS as below:

Definition 5. For a given universal set P and a universe of attributes R, a picture fuzzy bipolar
soft set or PRFBSS over P , denoted by Ω = (G , H , Q,¬Q) where Q ⊆ R and ¬Q ⊆ ¬R, is a
mixture of two mappings G : Q → FP and H : ¬Q → FP , which are respectively defined as:

G (q) = {〈p, η+
G (q)(p), η◦G (q)(p), η−G (q)(p)〉 | p ∈P},

H (¬q) = {〈p, ζ+H (¬q)(p), ζ◦H (¬q)(p), ζ−H (¬q)(p)〉 | p ∈P},

for all q ∈ Q and ¬q ∈ ¬Q with the following conditions:

0 ≤ η+
G (q)(p)+η◦G (q)(p) + η−G (q)(p) ≤ 1, (4)

0 ≤ ζ+H (¬q)(p)+ζ◦H (¬q)(p) + ζ−H (¬q)(p) ≤ 1, (5)

where

0 ≤η+
G (q)(p) + ζ+H (¬q)(p) ≤ 1, (6)

0 ≤η◦G (q)(p) + ζ◦H (¬q)(p) ≤ 1, (7)

0 ≤η−G (q)(p) + ζ−H (¬q)(p) ≤ 1, (8)

and the degrees of positive memberships are η+
G (q)(p) and ζ+H (¬q)(p), the degrees of neutral

memberships are ηo
G (q)(p) and ζo

H (¬q)(p) and those of negative memberships are η−G (q)(p) and
ζ−H (¬q)(p), respectively.

Notice that the set ¬Q contains opposite parameters as compared to the parameters in Q.

The following example explains the Definition 5.

Example 1. Suppose a university ABC has some merit scholarships and to choose the most appropriate
student from the five shortlisted candidates, a committee of senior professors is designed to perform this task.
Let R = {q1 = intelligent, q2 = hard working, q3 = regular,
q4 = cooperative, q5 = well−mannered} be the collection of favorable attributes and let the respec-
tive not-set be ¬R = {¬q1 = dull, ¬q2 = lazy, ¬q3 = irregular, ¬q4 = non− cooperative,
¬q5 = bad−mannered}. After a detailed discussion between committee members, they decide to
take the favorable set of decision attributes Q = {q1, q3, q5} ⊂ R and its corresponding ‘not-set’
in the evaluation process. Consider the set P={p1, p2, . . . , p5} represents five students bearing
different qualities. The evaluation reports for these students are provided by the committee in the
form of a PRFBSS Ω = (G , H , Q,¬Q) as follows, describing the qualities and weaknesses of
students:

G (q1) =
{
(p1, 0.13, 0.03, 0.43), (p2, 0.23, 0.33, 0.19), (p3, 0.53, 0.13, 0.23),

(p4, 0.63, 0.06, 0.13), (p5, 0.73, 0.13, 0.12)
}

,

G (q3) =
{
(p1, 0.44, 0.13, 0.02), (p2, 0.45, 0.13, 0.32), (p3, 0.13, 0.12, 0.11),

(p4, 0.46, 0.26, 0.13), (p5, 0.11, 0.16, 0.39)
}

,

G (q5) =
{
(p1, 0.68, 0.21, 0.01), (p2, 0.11, 0.56, 0.23), (p3, 0.44, 0.23, 0.22),

(p4, 0.56, 0.12, 0.26), (p5, 0.78, 0.01, 0.12)
}

,
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H (¬q1) =
{
(p1, 0.26, 0.36, 0.23), (p2, 0.02, 0.43, 0.12), (p3, 0.33, 0.23, 0.43),

(p4, 0.13, 0.02, 0.63), (p5, 0.13, 0.53, 0.16)
}

,

H (¬q3) =
{
(p1, 0.23, 0.33, 0.01), (p2, 0.25, 0.12, 0.57), (p3, 0.43, 0.25, 0.30),

(p4, 0.19, 0.46, 0.25), (p5, 0.12, 0.36, 0.19)
}

,

H (¬q5) =
{
(p1, 0.06, 0.18, 0.48), (p2, 0.69, 0.13, 0.03), (p3, 0.24, 0.06, 0.12),

(p4, 0.27, 0.22, 0.36), (p5, 0.08, 0.41, 0.39)
}

.

For pi ∈P , qj ∈ Q and ¬qj ∈ ¬Q, Table 2 represents the above PRFBSS Ω = (G , H , Q,¬Q)
with entries

aij = 〈G (pi)(qj), H (pi)(¬qj)〉.

Table 2. Tabular form of the PRFBSS Ω = (G , H , Q,¬Q).

Ω q1,¬q1 q3,¬q3 q5,¬q5

p1 〈(0.13, 0.03, 0.43), (0.26, 0.36, 0.23)〉 〈(0.44, 0.13, 0.02), (0.23, 0.33, 0.11)〉 〈(0.68, 0.21, 0.01), (0.06, 0.18, 0.48)〉
p2 〈(0.23, 0.33, 0.19), (0.02, 0.43, 0.12)〉 〈(0.45, 0.13, 0.32), (0.25, 0.12, 0.57)〉 〈(0.11, 0.56, 0.23), (0.69, 0.13, 0.03)〉
p3 〈(0.53, 0.13, 0.23), (0.33, 0.23, 0.43)〉 〈(0.13, 0.12, 0.11), (0.43, 0.25, 0.30)〉 〈(0.44, 0.23, 0.22), (0.24, 0.06, 0.12)〉
p4 〈(0.63, 0.06, 0.13), (0.13, 0.02, 0.63)〉 〈(0.46, 0.26, 0.13), (0.19, 0.46, 0.25)〉 〈(0.56, 0.12, 0.26), (0.27, 0.22, 0.36)〉
p5 〈(0.73, 0.13, 0.12), (0.13, 0.53, 0.16)〉 〈(0.11, 0.16, 0.39), (0.12, 0.36, 0.19)〉 〈(0.78, 0.01, 0.12), (0.08, 0.41, 0.39)〉

According to the committee’s report, the candidate p5 scores as the most intelligent (q1)
relatively; however, the candidate p2 is the least dull (¬q1) among all. This represents the condition
that a nearly below-average student is not necessarily a dull student. Similarly, p5 obtains the
highest agreement score for being a well-mannered student (q5); however, the relatively bigger
neutral membership and smaller negative membership degree for p1 (considering the same attribute)
make the later candidate able to stand in a fair competition with the former one.

From Definition 5, the PRFBSS (G , H , Q,¬Q) is a union of two PRFSSs (G , Q) and
(H ,¬Q), shown in Tables 3 and 4 with entries G (pi)(qj) and H (pi)(¬qj), respectively.

Table 3. PRFSS (G , Q).

(G , Q) q1 q3 q5

p1 (0.13, 0.03, 0.43) (0.44, 0.13, 0.02) (0.68, 0.21, 0.01)
p2 (0.23, 0.33, 0.19) (0.45, 0.13, 0.32) (0.11, 0.56, 0.23)
p3 (0.53, 0.13, 0.23) (0.13, 0.12, 0.11) (0.44, 0.23, 0.22)
p4 (0.63, 0.06, 0.13) (0.46, 0.26, 0.13) (0.56, 0.12, 0.26)
p5 (0.73, 0.13, 0.12) (0.11, 0.16, 0.39) (0.78, 0.01, 0.12)

Table 4. PRFSS (H ,¬Q).

(H ,¬Q) ¬q1 ¬q3 ¬q5

p1 (0.26, 0.36, 0.23) (0.23, 0.33, 0.11) (0.06, 0.18, 0.48)
p2 (0.02, 0.43, 0.12) (0.25, 0.12, 0.57) (0.69, 0.13, 0.03)
p3 (0.33, 0.23, 0.43) (0.43, 0.25, 0.30) (0.24, 0.06, 0.12)
p4 (0.13, 0.02, 0.63) (0.19, 0.46, 0.25) (0.27, 0.22, 0.36)
p5 (0.13, 0.53, 0.16) (0.12, 0.36, 0.19) (0.08, 0.41, 0.39)

The following discusses subset relations among PRFBSSs and illustrates this concept
via a numerical example.

Definition 6. For a universal set P and two PRFBSSs, Ω1 = (G1, H1, Q1,¬Q1) and
Ω2 = (G2, H2, Q2,¬Q2) over P , the set Ω2 is called a picture fuzzy bipolar soft subset of
Ω1, denoted as Ω2 ⊂̃ Ω1, if:

1. Q2 ⊆ Q1;
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2. G2(q) ⊆ G1(q), that is, η+
G2
(q)(p) ≤ η+

G1
(q)(p), ηo

G2
(q)(p) ≤ ηo

G1
(q)(p) and η−G2

(q)(p) ≥
η−G1

(q)(p), ∀ q ∈Q;
3. H1(¬q) ⊆H2(¬q), that is, ζ+H1

(¬q)(p) ≤ ζ+H2
(¬q)(p), ζo

H1
(¬q)(p) ≤ ζo

H2
(¬q)(p) and

ζ−H1
(¬q)(p) ≥ ζ−H2

(¬q)(p), ∀ ¬q ∈ ¬Q and p ∈P .

Example 2. Consider the PRFBSS Ω = (G , H , Q,¬Q) as taken in Example 1. Suppose, in the
next academic session, another set of five new candidates needs to be evaluated for the merit
scholarship award. This time, the committee decides to drop the manners criterion from the decision
attributes. Hence, for Q1 = {q1 = intelligent, q3 = regular} ⊆ R and Q1 = {¬q1 =
dull, ¬q3 = not regular} ⊆ ¬R, a new PRFBSS Ω1 = (G1, H1, Q1,¬Q1) is provided in
Table 5.

Table 5. Tabular form of the PRFBSS Ω1.

Ω1 q1,¬q1 q3,¬q3

p1 〈(0.09, 0.01, 0.45), (0.27, 0.41, 0.11)〉 〈(0.21, 0.12, 0.04), (0.34, 0.36, 0.09)〉
p2 〈(0.11, 0.09, 0.22), (0.07, 0.44, 0.02)〉 〈(0.12, 0.11, 0.33), (0.36, 0.14, 0.20)〉
p3 〈(0.23, 0.02, 0.24), (0.35, 0.33, 0.12)〉 〈(0.09, 0.02, 0.13), (0.44, 0.26, 0.29)〉
p4 〈(0.23, 0.03, 0.17), (0.15, 0.07, 0.02)〉 〈(0.32, 0.23, 0.15), (0.32, 0.47, 0.02)〉
p5 〈(0.19, 0.11, 0.26), (0.14, 0.55, 0.06)〉 〈(0.09, 0.14, 0.41), (0.22, 0.37, 0.13)〉

It is clear from Definition 6 that (G1, H1, Q1,¬, Q1) ⊂̃ (G , H , Q,¬Q). This subset relation
indicates that the newg students are not as intelligent and regular as their senior fellows.

The concept of the equality relation between PRFBSSs is studied in the following
definition:

Definition 7. Two PRFBSSs Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2) over a
universal set P are said to be equal if Ω1 ⊂̃ Ω2 and Ω2 ⊂̃ Ω1. The equality relation between them
is denoted by Ω1 $ Ω2.

The following definition discusses the notion of a complement to any PRFBSS and
elaborates it with an example.

Definition 8. For an arbitrary PRFBSS Ω = (G , H , Q,¬Q) over the universal set P , its
complement Ωc = (G , H , Q,¬Q) = (G c, H c, Q,¬Q) is again a PRFBSS over P , where:

G c(q) = {〈p, η−G (q)(p), η◦G (q)(p), η+
G (q)(p)〉 | p ∈P},

H c(¬q) = {〈p, ζ−H (¬q)(p), ζ◦H (¬q)(p), ζ+H (¬q)(p)〉 | p ∈P},

for all q ∈ Q and ¬q ∈ ¬Q.

Example 3. Consider again the PRFBSS Ω = (G , H , Q,¬Q), as taken in Example 1. Then,
using Definition 8, its complement Ωc = (G c, Qc, Q,¬Q) is calculated and displayed in Table 6.

Table 6. The complement of PRFBSS (G , H , Q,¬Q).

Ωc q1,¬q1 q3,¬q3 q5,¬q5

p1 〈(0.43, 0.03, 0.13), (0.23, 0.36, 0.26)〉 〈(0.02, 0.13, 0.44), (0.01, 0.33, 0.23)〉 〈(0.01, 0.21, 0.68), (0.48, 0.18, 0.06)〉
p2 〈(0.19, 0.33, 0.23), (0.12, 0.43, 0.02)〉 〈(0.32, 0.13, 0.45), (0.57, 0.12, 0.25)〉 〈(0.23, 0.56, 0.11), (0.03, 0.13, 0.69)〉
p3 〈(0.23, 0.13, 0.53), (0.43, 0.23, 0.33)〉 〈(0.11, 0.12, 0.13), (0.30, 0.25, 0.43)〉 〈(0.22, 0.23, 0.44), (0.12, 0.06, 0.24)〉
p4 〈(0.13, 0.06, 0.63), (0.63, 0.02, 0.13)〉 〈(0.13, 0.26, 0.46), (0.25, 0.46, 0.19)〉 〈(0.26, 0.12, 0.56), (0.36, 0.22, 0.27)〉
p5 〈(0.12, 0.13, 0.73), (0.16, 0.53, 0.13)〉 〈(0.39, 0.16, 0.11), (0.19, 0.36, 0.12)〉 〈(0.12, 0.01, 0.78), (0.39, 0.41, 0.08)〉

Two utmost cases of PRFBSSs are investigated in the following definitions.
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Definition 9. A PRFBSS on a universal set P is called a relative null PRFBSS, symbolized by
(Φ,V, Q,¬Q), if Φ(q)(p) = (0, 0, 1) and V(¬q)(p) = (1, 0, 0) ∀ q ∈ Q, ¬q ∈ ¬Q, p ∈P .

Similarly, a PRFBSS on a universal set P is referred to as a relative absolute PRFBSS,
represented by (V, Φ, Q,¬Q), if V(l)(p) = (1, 0, 0) and Φ(¬l)(p) = (0, 0, 1) ∀ q ∈ Q, ¬q ∈
¬Q, p ∈P .

The following two definitions provide the concepts of fundamental operations (AND
and OR) for PRFBSSs, which are further explained with the support of a numerical example:

Definition 10. For any two PRFBSSs (G1, H1, Q1,¬Q1) and (G2, H2, Q2,¬Q2) over a univer-
sal set P , the AND operation between them, denoted by (G1, H1, Q1,¬Q1) Z (G2, H2, Q2,¬Q2),
is defined as (G1, H1, Q1,¬Q1) Z (G2, H2, Q2,¬Q2) = (Λ, Γ, Q1 ×Q2,¬Q1 × ¬Q2), where,
for all (qi, qj) ∈ Q1×Q2, (¬qi,¬qj) ∈ ¬Q1×¬Q2 and p ∈P , the mappings Λ : Q1×Q2 →
FP and Γ : ¬Q1 ×¬Q2 → FP are given as:

Λ(qi , qj)(p) =
(

min(η+
G1

(qi)(p), η+
G2

(qj)(p)), min(ηo
G1

(qi)(p), ηo
G2

(qj)(p)), max(η−G1
(qi)(p), η−G2

(qj)(p))
)
,

Γ(¬qi ,¬qj)(p) =
(

max(ζ+H1
(¬qi)(p), ζ+H2

(¬qj)(p)), min(ζo
H1

(¬qi)(p), ζo
H2

(¬qj)(p)),

min(ζ−H1
(¬qi)(p), ζ−H2

(¬qj)(p))
)
.

Definition 11. For any two PRFBSSs (G1, H1, Q1,¬Q1) and (G2, H2, Q2,¬Q2) over a univer-
sal set P , the OR operation among them, represented by (G1, H1, Q1,¬Q1) Y (G2, H2, Q2,¬Q2),
is defined as (G1, H1, Q1,¬Q1) Y (G2, H2, Q2,¬Q2) = (Ψ, Υ, Q1 ×Q2,¬Q1 × ¬Q2), where,
for all (qi, qj) ∈ Q1×Q2, (¬qi,¬qj) ∈ ¬Q1×¬Q2 and p ∈P , the mappings Ψ : Q1×Q2 →
FP and Υ : ¬Q1 ×¬Q2 → FP are provided by:

Ψ(qi , qj)(p) =
(

max(η+
G1

(qi)(p), η+
G2

(qj)(p)), min(ηo
G1

(qi)(p), ηo
G2

(qj)(p)), min(η−G1
(qi)(p), η−G2

(qj)(p))
)
,

Υ(¬qi ,¬qj)(p) =
(

min(ζ+H1
(¬qi)(p), ζ+H2

(¬qj)(p)), min(ζo
H1

(¬qi)(p), ζo
H2

(¬qj)(p)),

max(ζ−H1
(¬qi)(p), ζ−H2

(¬qj)(p))
)
.

Example 4. Consider a company that manufactures four new laptops using different hardware and
software combinations. Two tech experts are hired to check the quality of these new models according
to certain attributes. Consider P = {p1, p2, p3, p4} as representing the new laptops and R =
{q1 = high speed, q2 = good battery life, q3 = good connectivity} as representing the set of
favorable parameters. The corresponding not set of attributes is ¬R = {¬q1 = lagging, ¬q2 =
low battery life, ¬q3 = distorted connectivity}. Assume that the first expert considers Q1 =
{q1, q2} ⊆ R and the second expert takes Q2 = {q1, q3} ⊆ R as their favorable set of parameters
to compare the qualities of new laptops. Then, the estimations of experts are provided as PRFBSSs
Ω1 and Ω2, which are displayed in Tables 7 and 8, respectively.

Table 7. Tabular form of the PRFBSS Ω1=(G1, H1, Q1,¬Q1).

Ω1 q1,¬q1 q2,¬q2

p1 〈(0.02, 0.01, 0.19), (0.04, 0.26, 0.31)〉 〈(0.11, 0.31, 0.02), (0.12, 0.16, 0.21)〉
p2 〈(0.03, 0.06, 0.39), (0.13, 0.01, 0.26)〉 〈(0.12, 0.26, 0.31), (0.11, 0.12, 0.59)〉
p3 〈(0.26, 0.31, 0.16), (0.13, 0.30, 0.01)〉 〈(0.13, 0.21, 0.61), (0.11, 0.22, 0.01)〉
p4 〈(0.81, 0.01, 0.02), (0.13, 0.16, 0.36)〉 〈(0.06, 0.02, 0.11), (0.09, 0.16, 0.52)〉

Table 8. Tabular form of the PRFBSS Ω2=(G2, H2, Q2,¬Q2).

Ω2 q1,¬q1 q3,¬q3

p1 〈(0.01, 0.16, 0.23), (0.03, 0.11, 0.45)〉 〈(0.16, 0.19, 0.23), (0.19, 0.29, 0.32)〉
p2 〈(0.11, 0.12, 0.13), (0.21, 0.32, 0.09)〉 〈(0.13, 0.14, 0.03), (0.26, 0.16, 0.39)〉
p3 〈(0.23, 0.61, 0.14), (0.13, 0.24, 0.09)〉 〈(0.34, 0.02, 0.09), (0.26, 0.02, 0.01)〉
p4 〈(0.11, 0.23, 0.19), (0.22, 0.12, 0.16)〉 〈(0.04, 0.01, 0.03), (0.11, 0.12, 0.13)〉
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Then, the AND and OR operations between the PRFBSSs Ω1 and Ω2 are shown in Tables 9 and 10,
respectively.

Table 9. AND operation between Ω1 and Ω2.

Ω1 Z Ω2 (q1, q1), (¬q1,¬q1) (q1, q3), (¬q1,¬q3)

p1 〈(0.01, 0.01, 0.23), (0.04, 0.11, 0.31)〉 〈(0.02, 0.01, 0.23), (0.19, 0.26, 0.31)〉
p2 〈(0.03, 0.06, 0.39), (0.21, 0.01, 0.09)〉 〈(0.03, 0.06, 0.39), (0.26, 0.01, 0.26)〉
p3 〈(0.23, 0.31, 0.16), (0.13, 0.24, 0.01)〉 〈(0.26, 0.02, 0.16), (0.26, 0.02, 0.01)〉
p4 〈(0.11, 0.01, 0.19), (0.22, 0.12, 0.16)〉 〈(0.04, 0.01, 0.03), (0.13, 0.12, 0.13)〉

Ω1 Z Ω2 (q2, q1), (¬q2,¬q1) (q2, q3), (¬q2,¬q3)

p1 〈(0.01, 0.16, 0.23), (0.12, 0.11, 0.21)〉 〈(0.11, 0.19.0.23), (0.19, 0.16, 0.21)〉
p2 〈(0.11, 0.12, 0.31), (0.21, 0.12, 0.09)〉 〈(0.12, 0.14, 0.31), (0.26, 0.12, 0.39)〉
p3 〈(0.13, 0.21, 0.61), (0.13, 0.22, 0.01)〉 〈(0.13, 0.02, 0.61), (0.26, 0.02, 0.01)〉
p4 〈(0.06, 0.02, 0.19), (0.22, 0.12, 0.16)〉 〈(0.04, 0.01, 0.11), (0.11, 0.12, 0.13)〉

Table 10. OR operation between Ω1 and Ω2.

Ω1 Y Ω2 (q1, q1), (¬q1,¬q1) (q1, q3), (¬q1,¬q3)

p1 〈(0.02, 0.01, 0.19), (0.03, 0.11, 0.45)〉 〈(0.16, 0.01, 0.19), (0.04, 0.26, 0.32)〉
p2 〈(0.11, 0.06, 0.13), (0.13, 0.01, 0.26)〉 〈(0.13, 0.06, 0.03), (0.13, 0.01, 0.39)〉
p3 〈(0.26, 0.31, 0.14), (0.13, 0.24, 0.09)〉 〈(0.34, 0.02, 0.09), (0.13, 0.02, 0.01)〉
p4 〈(0.81, 0.01, 0.02), (0.13, 0.12, 0.36)〉 〈(0.81, 0.01, 0.02), (0.11, 0.12, 0.36)〉

Ω1 Y Ω2 (q2, q1), (¬q2,¬q1) (q2, q3), (¬q2,¬q3)

p1 〈(0.11, 0.16, 0.02), (0.03, 0.11, 0.45)〉 〈(0.16, 0.19, 0.02), (0.12, 0.16, 0.32)〉
p2 〈(0.12, 0.12, 0.13), (0.21, 0.12, 0.09)〉 〈(0.13, 0.14, 0.03), (0.11, 0.12, 0.59)〉
p3 〈(0.23, 0.21, 0.14), (0.11, 0.22, 0.09)〉 〈(0.34, 0.02, 0.09), (0.11, 0.02, 0.01)〉
p4 〈(0.11, 0.02, 0.11), (0.09, 0.12, 0.52)〉 〈(0.06, 0.01, 0.03), (0.09, 0.12, 0.52)〉

The following verifies the commutative, associative and distributive laws with respect
to PRFBSS AND and OR operations.

Proposition 1. Let P be a universal set, and let Ω1 = (G1, H1, Q1,¬Q1), Ω2 = (G2, H2, Q2,
¬Q2) and Ω3 = (G3, H3, Q3,¬Q3) be three PRFBSSs on P . Then:

1. Ω1 Z Ω2 = Ω2 Z Ω1;
2. Ω1 Y Ω2 = Ω1 Y Ω1;
3. Ω1 Z (Ω2 Z Ω3) = (Ω1 Z Ω2) Z Ω3;
4. Ω1 Y (Ω2 Y Ω3) = (Ω1 Y Ω2) Y Ω3;
5. Ω1 Z (Ω2 Y Ω3) = (Ω1 Z Ω2) Y (Ω1 Z Ω3);
6. Ω1 Y (Ω2 Z Ω3) = (Ω1 Y Ω2) Z (Ω1 Y Ω3).

Proof.

1. Suppose that

Ω1 Z Ω2 = (G1, H1, Q1,¬Q1) Z (G2, H2, Q2,¬Q2) = (Λ, Γ, Q1 ×Q2,¬Q1 ×¬Q2).

Then, by Definition 10, ∀ (qi, qj) ∈ Q1 ×Q2, we have:

Λ(qi, qj) =
(

min(η+
G1
(qi), η+

G2
(qj)), min(ηo

G1
(qi), ηo

G2
(qj)), max(η−G1

(qi), η−G2
(qj))

)
=
(

min(η+
G2
(qj), η+

G1
(qi)), min(ηo

G2
(qj), ηo

G1
(qi)), max(η−G2

(qj), η−G1
(qi))

)
=Λ̃(qj, qi).
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Similarly, ∀ (¬qi,¬qj) ∈ ¬Q1 ×¬Q2, we have:

Γ(¬qi,¬qj) =
(

max(η+
G1
(¬qi), η+

G2
(¬qj)), min(ηo

G1
(¬qi), ηo

G2
(¬qj)), min(η−G1

(¬qi), η−G2
(¬qj))

)
=
(

max(η+
G2
(¬qj), η+

G1
(¬qi)), min(ηo

G2
(¬qj), ηo

G1
(¬qi)), min(η−G2

(¬qj), η−G1
(¬qi))

)
=Γ̃(¬qj,¬qi).

Such that, ∀ (qj, qi) ∈ Q2 ×Q1 and (¬qj,¬qi) ∈ ¬Q2 ×¬Q1,

(Λ̃, Γ̃, Q2 ×Q1,¬Q2 ×¬Q1) = (G2, H2, Q2,¬Q2) Z (G1, H1, Q1,¬Q1) = Ω2 Z Ω1.

Hence, Ω1 Z Ω2 = Ω2 Z Ω1.
2. Suppose that

Ω1 Y Ω2 = (G1, H1, Q1,¬Q1) Y (G2, H2, Q2,¬Q2) = (Ψ, Υ, Q1 ×Q2,¬Q1 ×¬Q2).

Then, by Definition 11, ∀ (qi, qj) ∈ Q1 ×Q2, we have:

Ψ(qi, qj) =
(

max(η+
G1
(qi), η+

G2
(qj)), min(ηo

G1
(qi), ηo

G2
(qj)), min(η−G1

(qi), η−G2
(qj))

)
=
(

max(η+
G2
(qj), η+

G1
(qi)), min(ηo

G2
(qj), ηo

G1
(qi)), min(η−G2

(qj), η−G1
(qi))

)
=Ψ̃(qj, qi).

Similarly, ∀ (¬qi,¬qj) ∈ ¬Q1 ×¬Q2, we have:

Υ(¬qi,¬qj) =
(

min(η+
G1
(¬qi), η+

G2
(¬qj)), min(ηo

G1
(¬qi), ηo

G2
(¬qj)), max(η−G1

(¬qi), η−G2
(¬qj))

)
=
(

min(η+
G2
(¬qj), η+

G1
(¬qi)), min(ηo

G2
(¬qj), ηo

G1
(¬qi)), max(η−G2

(¬qj), η−G1
(¬qi))

)
=Υ̃(¬qj,¬qi).

Such that, ∀ (qj, qi) ∈ Q2 ×Q1 and (¬qj,¬qi) ∈ ¬Q2 ×¬Q1,

(Ψ̃, Υ̃, Q2 ×Q1,¬Q2 ×¬Q1) = (G2, H2, Q2,¬Q2) Y (G1, H1, Q1,¬Q1) = Ω2 Y Ω1.

Hence, Ω1 Y Ω2 = Ω2 Y Ω1.

The remaining parts (3–6) can be verified with similar arguments.

In the following, we verify the famous De Morgan’s laws for PRFBSS AND and
OR operations.

Proposition 2. Let P be a universal set, and let Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,
¬Q2) be two PRFBSSs on P . Then:

1. (Ω1 Z Ω2)
c = (Ω1)

c Y (Ω2)
c;

2. (Ω1 Y Ω2)
c = (Ω1)

c Z (Ω2)
c.

Proof.

1. From Definitions 8 and 10,

(Ω1 Z Ω2)
c =
(
(G1, H1, Q1,¬Q1) Z (G2, H2, Q2,¬Q2)

)c

=(Λ, Γ, Q1 ×Q2,¬Q1 ×¬Q2)
c

=(Λc, Γc, Q1 ×Q2,¬Q1 ×¬Q2).
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where ∀ (qi, qj) ∈ Q1 ×Q2, we have

Λc(qi, qj) =
(

min(η+
G1
(qi), η+

G2
(qj)), min(ηo

G1
(qi), ηo

G2
(qj)), max(η−G1

(qi), η−G2
(qj))

)c

=
(

max(η−G1
(qi), η−G2

(qj)), min(ηo
G1
(qi), ηo

G2
(qj)), min(η+

G1
(qi), η+

G2
(qj))

)
=
(

max(η+
G c

1
(qi), η+

G c
2
(qj)), min(ηo

G c
1
(qi), ηo

G c
2
(qj)), min(η−G c

1
(qi), η−G c

2
(qj))

)
=Λ̄(qi, qj).

Similarly, ∀ (¬qi,¬qj) ∈ ¬Q1 ×¬Q2, we have:

Γc(¬qi ,¬qj) =
(

max(η+
G1

(¬qi), η+
G2

(¬qj)), min(ηo
G1

(¬qi), ηo
G2

(¬qj)), min(η−G1
(¬qi), η−G2

(¬qj))
)c

=
(

min(η−G1
(¬qi), η−G2

(¬qj)), min(ηo
G1

(¬qi), ηo
G2

(¬qj)), max(η+
G1

(¬qi), η+
G2

(¬qj))
)

=
(

min(η+
G c

1
(¬qi), η+

G c
2
(¬qj)), min(ηo

G c
1
(¬qi), ηo

G c
2
(¬qj)), max(η−G c

1
(¬qi), η−G c

2
(¬qj))

)
=Γ̄(¬qi ,¬qj).

Such that, ∀ (qi, qj) ∈ Q1 ×Q2 and (¬qi,¬qj) ∈ ¬Q1 ×¬Q2,

(Λ̄, Γ̄, Q1 ×Q2,¬Q1 ×¬Q2) =(G c
1 , H c

1 , Q1,¬Q1) Y (G c
2 , H c

2 , Q2,¬Q2)

=(G1, H1, Q1,¬Q1)
c Y (G2, H2, Q2,¬Q2)

c

=(Ω1)
c Y (Ω2)

c.

Hence, (Ω1 Z Ω2)
c = (Ω1)

c Y (Ω2)
c.

2. From Definitions 8 and 11,

(Ω1 Y Ω2)
c =
(
(G1, H1, Q1,¬Q1) Y (G2, H2, Q2,¬Q2)

)c

=(Ψ, Υ, Q1 ×Q2,¬Q1 ×¬Q2)
c

=(Ψc, Υc, Q1 ×Q2,¬Q1 ×¬Q2).

where ∀ (qi, qj) ∈ Q1 ×Q2, we have:

Ψc(qi, qj) =
(

max(η+
G1
(qi), η+

G2
(qj)), min(ηo

G1
(qi), ηo

G2
(qj)), min(η−G1

(qi), η−G2
(qj))

)c

=
(

min(η−G1
(qi), η−G2

(qj)), min(ηo
G1
(qi), ηo

G2
(qj)), max(η+

G1
(qi), η+

G2
(qj))

)
=
(

min(η+
G c

1
(qi), η+

G c
2
(qj)), min(ηo

G c
1
(qi), ηo

G c
2
(qj)), max(η−G c

1
(qi), η−G c

2
(qj))

)
=Ψ̄(qi, qj).

Similarly, ∀ (¬qi,¬qj) ∈ ¬Q1 ×¬Q2, we have:

Υc(¬qi ,¬qj) =
(

min(η+
G1

(¬qi), η+
G2

(¬qj)), min(ηo
G1

(¬qi), ηo
G2

(¬qj)), max(η−G1
(¬qi), η−G2

(¬qj))
)c

=
(

max(η−G1
(¬qi), η−G2

(¬qj)), min(ηo
G1

(¬qi), ηo
G2

(¬qj)), min(η+
G1

(¬qi), η+
G2

(¬qj))
)

=
(

max(η+
G c

1
(¬qi), η+

G c
2
(¬qj)), min(ηo

G c
1
(¬qi), ηo

G c
2
(¬qj)), min(η−G c

1
(¬qi), η−G c

2
(¬qj))

)
=Ῡ(¬qi ,¬qj).

Such that, ∀ (qi, qj) ∈ Q1 ×Q2 and (¬qi,¬qj) ∈ ¬Q1 ×¬Q2,

(Ψ̄, Ῡ, Q1 ×Q2,¬Q1 ×¬Q2) =(G c
1 , H c

1 , Q1,¬Q1) Z (G c
2 , H c

2 , Q2,¬Q2)

=(G1, H1, Q1,¬Q1)
c Z (G2, H2, Q2,¬Q2)

c

=(Ω1)
c Z (Ω2)

c.

Hence, (Ω1 Y Ω2)
c = (Ω1)

c Z (Ω2)
c.

The next four definitions give the notions of extended (restricted) union and intersec-
tion, respectively, along with illustrative numerical examples.
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Definition 12. For any two PRFBSSs Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2)
over a universal set P , their extended union, represented by Ω1 dE Ω2, is again a PRFBSS
((G1 d G2), (H1 eH2), Q1 ∪Q2,¬Q1 ∩ ¬Q2) on P , which is defined as follows:

(G1 d G2)(q) =


G1(q), if q ∈ Q1 −Q2,
G2(q), if q ∈ Q2 −Q1,
G1(q)∪G2(q), if q ∈ Q1 ∩Q2.

(H1 eH2)(¬q) =


H1(¬q), if ¬q ∈ (¬Q1)− (¬Q2),
H2(¬q), if ¬q ∈ (¬Q2)− (¬Q1),
H1(¬q)∩H2(¬q), if ¬q ∈ (¬Q1) ∩ (¬Q2).

where

G1(q)∪G2(q) =
{〈

p, max
(
η+
G1

, η+
G2

)
(q)(p), min

(
ηo
G1

, ηo
G2

)
(q)(p),

min
(
η−G1

, η−G2

)
(q)(p)〉 | p ∈P , q ∈ Q1 ∩Q2

}
,

H1(¬q)∩H2(¬q) =
{
〈p, min

(
ζ+H1

, ζ+H2

)
(¬q)(p), min

(
ζo
H1

, ζo
H2

)
(¬q)(p),

max
(
ζ−H1

, ζ−H2

)
(¬q)(p)〉 | p ∈P , ¬q ∈ ¬Q1 ∩ ¬Q2

}
.

Definition 13. For any two PRFBSSs Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2)
over a universal set P , their restricted union denoted by Ω1 dRΩ2 is a PRFBSS ((G1 dG2), (H1 e
H2), Q1 ∩Q2,¬Q1 ∩ ¬Q2) on P , such that ∀ q ∈ Q1 ∩Q2 6= ∅ and ¬q ∈ ¬Q1 ∩ ¬Q2 6= ∅,

(G1 d G2)(q) = G1(q) ∪ G2(q) and (H1 eH2)(¬q) = H1(¬q) ∩H2(¬q).

Proposition 3. Let P be a universal set and let Ω1 = (G1, H1, Q1,¬Q1),
Ω2 = (G2, H2, Q2,¬Q2) and Ω3 = (G3, H3, Q3,¬Q3) be three PRFBSSs on P . Then:

1. Ω1 dE Ω2 = Ω2 dE Ω1;
2. Ω1 dR Ω2 = Ω1 dR Ω1;
3. Ω1 dE (Ω2 dE Ω3) = (Ω1 dE Ω2)dE Ω3;
4. Ω1 dR (Ω2 dR Ω3) = (Ω1 dR Ω2)dR Ω3.

Proof.

1. From Definition 12:

Ω1 dE Ω2 =(G1, H1, Q1,¬Q1)dE (G2, H2, Q2,¬Q2)

=(G1 d G2, H1 eH2, Q1 ∪Q2,¬Q1 ∪ ¬Q2).

Such that ∀ q ∈ Q1 ∪Q2:

G1 d G2 =


G1 if q ∈ Q1 −Q2,
G2 if q ∈ Q2 −Q1,
G1∪G2 if q ∈ Q1 ∩Q2.

=


G2 if q ∈ Q2 −Q1,
G1 if q ∈ Q1 −Q2,
G2∪G1 if q ∈ Q2 ∩Q1.

= G2 d G1.

Similarly, ∀ ¬q ∈ ¬Q1 ∪ ¬Q2,

H1 eH2 =


H1 if ¬q ∈ ¬Q1 −¬Q2,
H2 if ¬q ∈ ¬Q2 −¬Q1,
H1∩H2 if ¬q ∈ ¬Q1 ∩ ¬Q2.

=


H2 if ¬q ∈ ¬Q2 −¬Q1,
H1 if ¬q ∈ ¬Q1 −¬Q2,
H2∩H1 if ¬q ∈ ¬Q2 ∩ ¬Q1.

= H2 eH1.

This implies that

(G1 dG2, H1 eH2, Q1 ∪Q2,¬Q1 ∪¬Q2) = (G2 dG1, H2 eH1, Q2 ∪Q1,¬Q2 ∪¬Q1).

Hence, Ω1 dE Ω2 = Ω2 dE Ω1.
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2. From Definition 13:

Ω1 dR Ω2 =(G1, H1, Q1,¬Q1)dR (G2, H2, Q2,¬Q2)

=(G1 d G2, H1 eH2, Q1 ∩Q2,¬Q1 ∩ ¬Q2).

Such that ∀ q ∈ Q1 ∩Q2,

G1 d G2 = G1 ∪ G2 = G2 ∪ G1 = G2 d G1,

and ∀ ¬q ∈ ¬Q1 ∩ ¬Q2,

H1 eH2 = H1 ∩H2 = H2 ∩H1 = H2 eH1.

This implies that

(G1 dG2, H1 eH2, Q1 ∩Q2,¬Q1 ∩¬Q2) = (G2 dG1, H2 eH1, Q2 ∩Q1,¬Q2 ∩¬Q1).

Hence, Ω1 dR Ω2 = Ω2 dR Ω1.

The remaining parts (3 and 4) can be proven similarly.

Definition 14. For any two PRFBSSs Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2)
over a universal set P , their extended intersection, represented by Ω1 eE Ω2, is again a PRFBSS
((G1 e G2), (H1 dH2), Q1 ∪Q2,¬Q1 ∩ ¬Q2) on P , which is defined as:

(G1 e G2)(q) =


G1(q), if q ∈ Q1 −Q2,
G2(q), if q ∈ Q2 −Q1,
G1(q)∩G2(q), if q ∈ Q1 ∩Q2.

(H1 dH2)(¬q) =


H1(¬q), if ¬q ∈ (¬Q1)− (¬Q2),
H2(¬q), if ¬q ∈ (¬Q2)− (¬Q1),
H1(¬q)∪H2(¬q), if ¬q ∈ (¬Q1) ∩ (¬Q2).

where

G1(q)∩G2(q) =
{〈

p, min
(
η+
G1

, η+
G2

)
(q)(p), min

(
ηo
G1

, ηo
G2

)
(q)(p),

max
(
η−G1

, η−G2

)
(q)(p)〉 | p ∈P , q ∈ Q1 ∩Q2

}
,

H1(¬q)∪H2(¬q) =
{
〈p, max

(
ζ+H1

, ζ+H2

)
(¬q)(p), min

(
ζo
H1

, ζo
H2

)
(¬q)(p),

min
(
ζ−H1

, ζ−H2

)
(¬q)(p)〉 | p ∈P , ¬q ∈ ¬Q1 ∩ ¬Q2

}
.

Definition 15. For any two PRFBSSs Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2)
over a universal set P , their restricted intersection, denoted by Ω1 eR Ω2, is a PRFBSS ((G1 e
G2), (H1 d H2), Q1 ∩Q2,¬Q1 ∩ ¬Q2) on P , such that ∀ q ∈ Q1 ∩Q2 6= ∅ and ¬q ∈
¬Q1 ∩ ¬Q2 6= ∅,

(G1 e G2)(q) = G1(q) ∩ G2(q) and (H1 dH2)(¬q) = H1(¬q) ∪H2(¬q).

Example 5. Reconsider the PRFBSSs Ω1 and Ω2 in Example 4. Suppose the company wants to
analyze the laptops again, both by taking the maximum scores from the two reports to shortlist
the best laptops and by taking the minimum scores from the two reports to shortlist the worst
ones. Consequently, the extended union Ω1 dE Ω2 and the extended intersection Ω1 eE Ω2 are
represented by Tables 11 and 12, respectively.
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Table 11. Extended union between Ω1 and Ω2.

Ω1 dE Ω2 q1 q2 q3

p1 〈(0.02, 0.01, 0.19), (0.03, 0.11, 0.45)〉 〈(0.11, 0.31, 0.02), (0.12, 0.16, 0.21)〉 〈(0.16, 0.19, 0.23), (0.19, 0.29, 0.32)〉
p2 〈(0.11, 0.06, 0.13), (0.13, 0.01, 0.26)〉 〈(0.12, 0.26, 0.31), (0.11, 0.12, 0.59)〉 〈(0.13, 0.14, 0.03), (0.26, 0.16, 0.39)〉
p3 〈(0.26, 0.31, 0.14), (0.13, 0.24, 0.09)〉 〈(0.13, 0.21, 0.61), (0.11, 0.22, 0.01)〉 〈(0.34, 0.02, 0.09), (0.26, 0.02, 0.01)〉
p4 〈(0.81, 0.01, 0.02), (0.13, 0.12, 0.36)〉 〈(0.06, 0.02, 0.11), (0.09, 0.16, 0.52)〉 〈(0.04, 0.01, 0.03), (0.11, 0.12, 0.13)〉

Table 12. Extended intersection between Ω1 and Ω2.

Ω1 eE Ω2 q1 q2 q3

p1 〈(0.01, 0.01, 0.23), (0.04, 0.11, 0.31)〉 〈(0.11, 0.31, 0.02), (0.12, 0.16, 0.21)〉 〈(0.16, 0.19, 0.23), (0.19, 0.29, 0.32)〉
p2 〈(0.03, 0.06, 0.39), (0.21, 0.01, 0.09)〉 〈(0.12, 0.26, 0.31), (0.11, 0.12, 0.59)〉 〈(0.13, 0.14, 0.03), (0.26, 0.16, 0.39)〉
p3 〈(0.23, 0.31, 0.16), (0.13, 0.24, 0.01)〉 〈(0.13, 0.21, 0.61), (0.11, 0.22, 0.01)〉 〈(0.34, 0.02, 0.09), (0.26, 0.02, 0.01)〉
p4 〈(0.11, 0.01, 0.19), (0.22, 0.12, 0.16)〉 〈(0.06, 0.02, 0.11), (0.09, 0.16, 0.52)〉 〈(0.04, 0.01, 0.03), (0.11, 0.12, 0.13)〉

These analyses indicate the properties of laptops by considering the maximum and minimum
grades using the reports of both experts. However, the combined analyses come out to yield reports
with same scores for the attributes not considered mutually. This further asks for more filtered
analyses considering only the attributes considered by both of the experts. To deal with this,
Tables 13 and 14 provide the restricted union Ω1 dR Ω2 and restricted intersection Ω1 eR Ω2,
respectively.

Table 13. Restricted union between Ω1 and Ω2.

Ω1 dR Ω2 q1

p1 〈(0.02, 0.01, 0.19), (0.03, 0.11, 0.45)〉
p2 〈(0.11, 0.06, 0.13), (0.13, 0.01, 0.26)〉
p3 〈(0.26, 0.31, 0.14), (0.13, 0.24, 0.09)〉
p4 〈(0.81, 0.01, 0.02), (0.13, 0.12, 0.36)〉

Table 14. Restricted intersection between Ω1 and Ω2.

Ω1 eR Ω2 q1

p1 〈(0.01, 0.01, 0.23), (0.04, 0.11, 0.31)〉
p2 〈(0.03, 0.06, 0.39), (0.21, 0.01, 0.09)〉
p3 〈(0.23, 0.31, 0.16), (0.13, 0.24, 0.01)〉
p4 〈(0.11, 0.01, 0.19), (0.22, 0.12, 0.16)〉

The following shows the commutative and associative properties of extended and
restricted PRFBSS intersection.

Proposition 4. Let P be a universal set and let Ω1 = (G1, H1, Q1,¬Q1),
Ω2 = (G2, H2, Q2,¬Q2) and Ω3 = (G3, H3, Q3,¬Q3) be three PRFBSSs on P . Then:

1. Ω1 eE Ω2 = Ω2 eE Ω1;
2. Ω1 eR Ω2 = Ω1 eR Ω1;
3. Ω1 eE (Ω2 eE Ω3) = (Ω1 eE Ω2)eE Ω3;
4. Ω1 eR (Ω2 eR Ω3) = (Ω1 eR Ω2)eR Ω3.

Proof.

1. From Definition 14:

Ω1 eE Ω2 =(G1, H1, Q1,¬Q1)eE (G2, H2, Q2,¬Q2)

=(G1 e G2, H1 dH2, Q1 ∪Q2,¬Q1 ∪ ¬Q2).
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Such that ∀ q ∈ Q1 ∪Q2,

G1 e G2 =


G1 if q ∈ Q1 −Q2,
G2 if q ∈ Q2 −Q1,
G1∩G2 if q ∈ Q1 ∩Q2.

=


G2 if q ∈ Q2 −Q1,
G1 if q ∈ Q1 −Q2,
G2∩G1 if q ∈ Q2 ∩Q1.

= G2 e G1.

Similarly, ∀ ¬q ∈ ¬Q1 ∪ ¬Q2,

H1 dH2 =


H1 if ¬q ∈ ¬Q1 −¬Q2,
H2 if ¬q ∈ ¬Q2 −¬Q1,
H1∪H2 if ¬q ∈ ¬Q1 ∩ ¬Q2.

=


H2 if ¬q ∈ ¬Q2 −¬Q1,
H1 if ¬q ∈ ¬Q1 −¬Q2,
H2∪H1 if ¬q ∈ ¬Q2 ∩ ¬Q1.

= H2 dH1.

This implies that

(G1 eG2, H1 dH2, Q1 ∪Q2,¬Q1 ∪¬Q2) = (G2 eG1, H2 dH1, Q2 ∪Q1,¬Q2 ∪¬Q1).

Hence, Ω1 eE Ω2 = Ω2 eE Ω1.
2. From Definition 15:

Ω1 eR Ω2 =(G1, H1, Q1,¬Q1)eR (G2, H2, Q2,¬Q2)

=(G1 e G2, H1 dH2, Q1 ∩Q2,¬Q1 ∩ ¬Q2).

Such that ∀ q ∈ Q1 ∩Q2,

G1 e G2 = G1 ∩ G2 = G2 ∩ G1 = G2 e G1,

and ∀ ¬q ∈ ¬Q1 ∩ ¬Q2,

H1 dH2 = H1 ∪H2 = H2 ∪H1 = H2 dH1.

This implies that

(G1 eG2, H1 dH2, Q1 ∩Q2,¬Q1 ∩¬Q2) = (G2 eG1, H2 dH1, Q2 ∩Q1,¬Q2 ∩¬Q1).

Hence, Ω1 eR Ω2 = Ω2 eR Ω1.

The remaining parts (3 and 4) can be proven in the same way as the above parts.

Proposition 5. Let Ω1 = (G1, H1, Q1,¬Q1), Ω2 = (G2, H2, Q2,¬Q2) and
Ω3 = (G3, H3, Q3,¬Q3) be three PRFBSSs on the universe P . Then:

1. Ω1 dE (Ω2 eE Ω3) = (Ω1 dE Ω2)eE (Ω1 dE Ω3);
2. Ω1 dR (Ω2 eR Ω3) = (Ω1 dR Ω2)eR (Ω1 dR Ω3);
3. Ω1 eE (Ω2 dE Ω3) = (Ω1 eE Ω2)dE (Ω1 eE Ω3);
4. Ω1 eR (Ω2 dR Ω3) = (Ω1 eR Ω2)dR (Ω1 eR Ω3).

Proof. The proof can be easily deduced from the arguments used in proofs of Propositions 3
and 4.

The following lemma discusses the concepts of minimal and maximal PRFBSSs.

Lemma 1. Let Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2) be two PRFBSSs on a
universe P . Then:

1. Ω1 dE Ω2 is the minimal PRFBSS over P containing both Ω1 and Ω2.
2. Ω1 eR Ω2 is the maximal PRFBSS over P that is contained in both Ω1 and Ω2.

Proof. It is directly followed by Definitions 12 and 15.
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Theorem 1. Let Ω1 = (G1, H1, Q1,¬Q1) and Ω2 = (G2, H2, Q2,¬Q2) be two PRFBSSs on
the universe P . Then:

1. (Ω1 dE Ω2)
c = (Ω1)

c eE (Ω2)
c;

2. (Ω1 dR Ω2)
c = (Ω1)

c eR (Ω2)
c;

3. (Ω1 eE Ω2)
c = (Ω1)

c dE (Ω2)
c;

4. (Ω1 eR Ω2)
c = (Ω1)

c dR (Ω2)
c.

Proof. 1. By Definitions 8 and 12, we obtain

(Ω1 ∪E Ω2)
c = ((G1 d G2)

c, (H1 eH2)
c, Q1 ∪Q2,¬Q1 ∪ ¬Q2),

where:

(G1 d G2)
c(q) =


G c

1 (q), if q ∈ Q1 −Q2,
G c

2 (q), if q ∈ Q2 −Q1,
G c

1 (q)∩G c
2 (q), if q ∈ Q1 ∩Q2.

= (G c
1 e G c

2 )(q), by Definition 14, and

(H1 eH2)
c(¬q) =


H c

1 (¬q), if ¬q ∈ (¬Q1)− (¬Q2),
H c

2 (¬q), if ¬q ∈ (¬Q2)− (¬Q1),
H c

1 (¬q)∪H c
2 (¬q), if ¬q ∈ (¬Q1) ∩ (¬Q2).

= (H c
1 dH 2

2 )(¬q), by Definition 14.

Hence, (Ω1 dE Ω2)
c = (Ω1)

c eE (Ω2)
c.

2. By Definitions 8 and 13, we obtain:

(Ω1 ∪R Ω2)
c = ((G1 d G2)

c, (H1 eH2)
c, Q1 ∩Q2,¬Q1 ∩ ¬Q2),

where, for all q ∈ Q1 ∩Q2,

(G1 d G2)
c(q) =G c

1 (q)∩G c
2 (q)

=(G c
1 e G c

2 )(q), by Definition 15.

Similarly, for all ¬q ∈ ¬Q1 ∩ ¬Q2,

(H1 eH2)
c(¬q) =H c

1 (¬q)∪H c
2 (¬q)

=(H c
1 dH 2

2 )(¬q), by Definition 15.

Hence, (Ω1 dR Ω2)
c = (Ω1)

c eR (Ω2)
c.

The remaining parts (3 and 4) can be easily followed using similar arguments.

4. Application to MCDM

This section first discusses an algorithm under the initiated PRFBSSs, and then im-
plements it on a daily-life MCDM problem to rank available alternatives subject to the
governing criterion. The following Algorithm 1 is used to choose the best alternative or to
find the rankings of alternatives when the estimations are given in the form of a PRFBSS.
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Algorithm 1: Selection of best alternative under PRFBSS environment.

(1) Input:

(i) a universe P having n alternatives,
(ii) a set R of decision-attributes,
(iii) a not set ¬R of decision-attributes opposite to those in R,
(iv) a PRFBSS Ω = (G , H , Q,¬Q) in tabular form based on the

decision-maker’s opinions where Q ⊆ R, and ¬Q ⊆ ¬R.

(2) Construct the score-value table using Definition 3 by finding the scores of all
the PFNs (Fij) regarding favorable set of attributes Q ⊆ R, which are given
in the associated PFSS (G , Q). Then compute the object-wise sum (i.e.,
∑i s(Fij)) of score values in the last column of this table.

(3) Construct the score-value-table using Definition 3 by finding the scores of all
the PFNs (¬Fij) regarding unfavorable set of attributes ¬Q ⊆ ¬R, which
are given in the associated PFSS (H ,¬Q). Then compute the object-wise
sum (i.e., ∑i s(¬Fij)) of score values in the last column of this table.

(4) Calculate the final scores for all the objects using formula
si = ∑i s(Fij)−∑i s(¬Fij).

(5) Find k for which sk = max(si).

Output: The last step declares pk as the most appropriate alternative. In case of
multiple values of k, any of the alternative pk with same score can be considered as
an optimal alternative.

To better understand the processing of Algorithm 1, readers may refer to flowchart
diagram (see Figure 2).

Figure 2. Graphical structure of Algorithm 1.
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Application: Selection of Best Graphic Designer for a Studio

Graphic design is one of the largest industries due to its significance in marketing,
advertisements, showcasing, modeling, movies, and so on. Nowadays, the graphic design
industry needs to grow and glow in all disciplines ranging from arts to sciences to keep
up with the ever-evolving digital tools and to stay competitive with the digital platforms
in showcasing and implement marketing strategies, advertising, and designing. Graphic
design is mainly based on the customer’s needs and the graphic designer’s particular tools
to achieve the required goals. A graphic designer communicates ideas and information
through visual concepts by turning their ideas into digital images and presentations. Using
different graphic design software such as Adobe Photoshop, Adobe Illustrator, Corel Draw,
Blender, Crello, etc., they create immersive visuals that inspire audiences. Graphic design
being a huge field, which includes designing everything from posters to logos, packaging
designs, brand identity designs, etc., graphic designers are employed all over the world
in many places based on their experience, expertise and interests relevant to the specific
areas they excel in. Today, the graphic designing market stands globally at a massive total
of approximately USD 43.4 billion, with the industry growing at a rate of about 2.5% each
year. The growth of the graphic design industry has been at 0.6% annually since 2017, but a
massive growth of 3.7% is expected in 2022 (https://www.ibisworld.com) (accesssed on 3
October 2022).

Among the many different uses of graphic designing, digital marketing and adver-
tisement are the most important. Companies and businesses are switching over to digital
marketing strategies because they are much more cost-efficient than traditional methods
of advertising. Graphic design plays a key role in digital marketing because it is such a
visual industry. Having a strong and appealing design for a company’s website, social
media pages and other marketing channels can help the company to connect with its
audience and increase its brand loyalty. Digital marketing is all about reaching potential
customers on their terms. Customers are constantly online and are looking for businesses
that cater to their needs easily and conveniently. Graphic design is an essential aspect of
digital marketing because it is one of the most visual forms of marketing. It uses images,
visuals and other images to promote products or services and reach customers. The visual
appeal of the designs in digital marketing campaigns is extremely important because it can
make or break a brand. A business loses out on potential customers if the representative
website and social media pages are cluttered, messy or unclear. However, if the website
and social media pages are extremely clean, organized and visually appealing, one will be
able to reach a wider audience and convert more customers. However, choosing the most
appropriate graphic designer for the business is not a piece of cake. Graphic designers
must be chosen that will perform for the recruiter in the best way.

Consider a multinational online marketing company that needs to fill in the vacancy
of a graphic designer to help their clients reach their customers effectively. Suppose
P = {p1, p2, . . . , p15} is the set of fifteen candidates who applied for the vacancy. Now,
the head of the graphic design studio of the company collects personalized demo tests
from each candidate by giving them a model task to promote a certain product through
a catchy video advertisement in a way that keeps the audience engaged and interested
within prescribed time limits, followed by critical comments and discussion with the
candidates about their creation. Based on these tests, the head of the studio decides to
pick out the best candidate considering multiple criteria. Suppose R = {q1, q2, . . . q7}
is the set of favorable criteria considered by the selector, where, for q = 1, 2, . . . , 7, the
criterion qj can serve as active listening, good communication skills, time management,
improvement based on critical comments, patience, co-operation and effective storytelling.
Accordingly, the considered not-set of parameters is ¬R = {¬q1 = impassivity,¬q2 =
bad communication skills,¬q3 = disorganization,¬q4 = stubborness,¬q5 = impatience,
¬q6 = noncooperation,¬q7 = impatience}. After a brief discussion among the members of
the selection committee appointed by the studio, the head of the studio decides to evaluate
each candidate under a favorable subset of parameters Q = {q1, q2, q3, q5, q7} of R.

https://www.ibisworld.com/global/market-size/global-graphic-designers/
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According to the estimations of the committee members about the applicants, a PRFBSS
(G , H , Q,¬Q) is constructed which describes the qualities of the candidates (see Table 15).

Table 15. Tabular form of the PRFBSS (G , H , Q,¬Q).

(G , H , Q,¬Q) q1 q2 q3

p1 〈(0.01, 0.09, 0.32), (0.06, 0.19, 0.36)〉 〈(0.92, 0.02, 0.01), (0.01, 0.09, 0.02)〉 〈(0.16, 0.17, 0.19), (0.17, 0.18, 0.19)〉
p2 〈(0.21, 0.01, 0.11), (0.13, 0.81, 0.02)〉 〈(0.16, 0.01, 0.02), (0.11, 0.01, 0.02)〉 〈(0.39, 0.11, 0.26), (0.11, 0.01, 0.02)〉
p3 〈(0.11, 0.19, 0.66), (0.72, 0.11, 0.01)〉 〈(0.16, 0.26, 0.16), (0.36, 0.19, 0.02)〉 〈(0.11, 0.12, 0.33), (0.11, 0.23, 0.39)〉
p4 〈(0.13, 0.11, 0.12), (0.23, 0.16, 0.02)〉 〈(0.27, 0.01, 0.09), (0.69, 0.01, 0.13)〉 〈(0.12, 0.23, 0.34), (0.13, 0.23, 0.16)〉
p5 〈(0.34, 0.23, 0.21), (0.16, 0.01, 0.02)〉 〈(0.16, 0.26, 0.31), (0.21, 0.23, 0.33)〉 〈(0.16, 0.21, 0.23), (0.39, 0.01, 0.11)〉
p6 〈(0.39, 0.19, 0.06), (0.21, 0.22, 0.12)〉 〈(0.34, 0.11, 0.01), (0.12, 0.11, 0.19)〉 〈(0.09, 0.02, 0.06), (0.09, 0.13, 0.26)〉
p7 〈(0.13, 0.19, 0.26), (0.19, 0.01, 0.23)〉 〈(0.26, 0.13, 0.21), (0.12, 0.33, 0.15)〉 〈(0.16, 0.13, 0.45), (0.17, 0.01, 0.16)〉
p8 〈(0.19, 0.29, 0.30), (0.12, 0.07, 0.08)〉 〈(0.11, 0.12, 0.33), (0.23, 0.11, 0.09)〉 〈(0.62, 0.13, 0.11), (0.02, 0.31, 0.33)〉
p9 〈(0.11, 0.22, 0.33), (0.33, 0.22, 0.11)〉 〈(0.19, 0.23, 0.16), (0.11, 0.21, 0.13)〉 〈(0.16, 0.23, 0.17), (0.11, 0.13, 0.33)〉
p10 〈(0.16, 0.23, 0.31), (0.16, 0.34, 0.21)〉 〈(0.16, 0.23, 0.02), (0.20, 0.21, 0.31)〉 〈(0.16, 0.20, 0.01), (0.01, 0.16, 0.02)〉
p11 〈(0.23, 0.31, 0.11), (0.23, 0.16, 0.19)〉 〈(0.56, 0.16, 0.16), (0.16, 0.32, 0.41)〉 〈(0.11, 0.01, 0.01), (0.01, 0.13, 0.39)〉
p12 〈(0.16, 0.02, 0.21), (0.11, 0.22, 0.31)〉 〈(0.11, 0.16, 0.23), (0.16, 0.31, 0.22)〉 〈(0.11, 0.21, 0.30), (0.11, 0.21, 0.31)〉
p13 〈(0.16, 0.11, 0.23), (0.13, 0.11, 0.12)〉 〈(0.16, 0.16, 0.02), (0.13, 0.71, 0.02)〉 〈(0.19, 0.03, 0.13), (0.36, 0.19, 0.11)〉
p14 〈(0.01, 0.06, 0.70), (0.16, 0.23, 0.21)〉 〈(0.16, 0.01, 0.11), (0.12, 0.01, 0.30)〉 〈(0.11, 0.20, 0.30), (0.12, 0.30, 0.24)〉
p15 〈(0.13, 0.23, 0.11), (0.21, 0.09, 0.06)〉 〈(0.59, 0.23, 0.11), (0.02, 0.19, 0.59)〉 〈(0.12, 0.13, 0.16), (0.13, 0.12, 0.01)〉

(G , H , Q,¬Q) q5 q7

p1 〈(0.01, 0.03, 0.11), (0.02, 0.13, 0.06)〉 〈(0.01, 0.02, 0.03), (0.07, 0.69, 0.01)〉
p2 〈(0.32, 0.21, 0.01), (0.02, 0.01, 0.02)〉 〈(0.02, 0.03, 0.01), (0.02, 0.11, 0.16)〉
p3 〈(0.56, 0.01, 0.19), (0.11, 0.13, 0.19)〉 〈(0.16, 0.16, 0.13), (0.14, 0.19, 0.23)〉
p4 〈(0.26, 0.31, 0.01), (0.21, 0.41, 0.01)〉 〈(0.03, 0.16, 0.19), (0.17, 0.11, 0.21)〉
p5 〈(0.13, 0.23, 0.23), (0.13, 0.01, 0.01)〉 〈(0.21, 0.31, 0.02), (0.69, 0.01, 0.02)〉
p6 〈(0.11, 0.39, 0.03), (0.01, 0.02, 0.96)〉 〈(0.01, 0.79, 0.01), (0.01, 0.01, 0.02)〉
p7 〈(0.86, 0.01, 0.01), (0.13, 0.73, 0.01)〉 〈(0.06, 0.09, 0.03), (0.08, 0.07, 0.08)〉
p8 〈(0.26, 0.02, 0.03), (0.19, 0.29, 0.32)〉 〈(0.81, 0.01, 0.02), (0.73, 0.01, 0.01)〉
p9 〈(0.69, 0.01, 0.02), (0.03, 0.01, 0.01)〉 〈(0.01, 0.02, 0.04), (0.06, 0.09, 0.23)〉
p10 〈(0.01, 0.01, 0.02), (0.39, 0.46, 0.02)〉 〈(0.11, 0.13, 0.19), (0.23, 0.11, 0.16)〉
p11 〈(0.11, 0.23, 0.26), (0.13, 0.12, 0.11)〉 〈(0.26, 0.13, 0.16), (0.91, 0.02, 0.01)〉
p12 〈(0.23, 0.11, 0.01), (0.01, 0.02, 0.07)〉 〈(0.11, 0.12, 0.13), (0.13, 0.16, 0.23)〉
p13 〈(0.11, 0.13, 0.23), (0.16, 0.19, 0.16)〉 〈(0.26, 0.31, 0.32), (0.21, 0.22, 0.23)〉
p14 〈(0.23, 0.45, 0.01), (0.01, 0.02, 0.06)〉 〈(0.41, 0.23, 0.33), (0.56, 0.11, 0.23)〉
p15 〈(0.11, 0.12, 0.31), (0.13, 0.23, 0.27)〉 〈(0.11, 0.23, 0.11), (0.69, 0.01, 0.02)〉

The committee decides to use Algorithm 1 to find the best designer based on the
PRFBSS report. Using Definition 3, the score values of all PRFNs in both PRFSSs (G , Q) and
(H ,¬Q) are computed and then shown in Tables 16 and 17, respectively.

Table 16. Score-values table for PRFSS (G , Q).

(G , Q) q1 q2 q3 q5 q7 ∑ s(F )

p1 0.3275 1.4100 0.5225 0.4475 0.4900 3.1975
p2 0.6525 0.6475 0.7325 0.7625 0.5075 3.3025
p3 0.2325 0.5150 0.4150 0.9625 0.5550 2.6800
p4 0.5425 0.7225 0.3925 0.6775 0.3950 2.7300
p5 0.6775 0.4400 0.4425 0.4575 0.6225 2.6400
p6 0.8125 0.8075 0.5550 0.4975 0.3075 2.9800
p7 0.4525 0.6225 0.4025 1.3525 0.5225 3.3525
p8 0.4675 0.4150 1.0325 0.7400 1.2975 3.9525
p9 0.3900 0.5525 0.5175 1.1775 0.4850 3.1225
p10 0.4475 0.5925 0.6050 0.4975 0.4825 2.6250
p11 0.5975 0.9400 0.6025 0.4225 0.6475 3.2100
p12 0.5500 0.4550 0.4075 0.6975 0.5150 2.6250
p13 0.5175 0.6100 0.6175 0.4625 0.5225 2.7300
p14 0.1450 0.6025 0.4100 0.6125 0.6875 2.4575
p15 0.5175 0.9775 0.5075 0.4250 0.4975 2.9250
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Table 17. Score-values table for PRFSS (H ,¬Q).

(H ,¬Q) ¬q1 ¬q2 ¬q3 ¬q5 ¬q7 ∑ s(¬F )

p1 0.3325 0.4775 0.5300 0.4575 0.3925 2.1900
p2 0.4175 0.5975 0.5975 0.5075 0.4625 2.5825
p3 1.1875 0.8025 0.3575 0.4825 0.4775 3.3075
p4 0.6800 1.1225 0.4925 0.6025 0.5375 3.4350
p5 0.6475 0.4875 0.8325 0.6225 1.1775 3.7675
p6 0.5950 0.4975 0.4275 0.0250 0.4975 2.0425
p7 0.5725 0.4625 0.5875 0.4425 0.5225 2.5875
p8 0.5625 0.6575 0.2775 0.4575 1.2000 3.1550
p9 0.7200 0.4925 0.4125 0.5225 0.4225 2.5695
p10 0.4700 0.4925 0.4600 0.7650 0.6225 2.8100
p11 0.5950 0.3750 0.2825 0.4950 1.4000 3.1475
p12 0.4000 0.4725 0.4025 0.4700 0.4750 2.2200
p13 0.5425 0.4425 0.7575 0.5325 0.5400 2.8150
p14 0.4475 0.4675 0.4250 0.4750 0.9175 2.7325
p15 0.6575 0.1775 0.5950 0.4375 0.1775 2.0450

Finally, Table 18 provides the final scores for each candidate.

Table 18. Final scores table.

P ∑ s(F ) ∑ s(¬F ) s = ∑ s(F )−∑ s(¬F )

p1 3.1975 2.1900 1.0075
p2 3.3025 2.5825 0.7200
p3 2.6800 3.3075 −0.6275
p4 2.7300 3.4350 −0.7050
p5 2.6400 3.7675 −1.1275
p6 2.9800 2.0425 0.9375
p7 3.3525 2.5875 0.7650
p8 3.9525 3.1550 0.7975
p9 3.1225 2.5695 0.5530
p10 2.6250 2.8100 −0.1850
p11 3.2100 3.1475 0.0625
p12 2.6250 2.2200 0.4050
p13 2.7300 2.8150 −0.0850
p14 2.4575 2.7325 −0.2750
p15 2.9250 2.0450 0.8800

Clearly, the candidate p1 aced the selection procedure, scoring higher than all other
candidates. Therefore, the head of the studio decides to hire candidate p1 for the post of
graphic designer.

5. Comparison

In this section, we discuss the comparative analysis of the initiated model with some
previous models, qualitatively and quantitatively. Furthermore, this section highlights the
overall advantages and limitations of the proposed model.

5.1. Advantages

The previously existing models, namely, PRFSs, BRSSs and PRFSSs, prove to be very
powerful in their existing domains; however, they all have limitations. For instance,
models such as PRFSSs are unable to differentiate between the symmetrically opposing
sets of decision attributes or criteria (bipolarity of decision attributes), whereas BRSSs
fails to deal with complicated uncertainties requiring the consideration of degrees of
satisfaction, dissatisfaction and neutrality. The initiated PRFBSSs as a generalization of
these structures allows the consideration of positive, negative and neutral membership
degrees while differentiating the decision attributes with respect to their bipolarities. In this
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way, the initiated model not only overcomes the limitations in the previous tools but also
offers modeling and handling of decision-making problems from a relatively larger domain
as compared to its predecessors. In short, PRFBSSs are stronger, more efficient, more
applicable and more generalizable than the previous models, including PRFSs, BRFSs, fuzzy
BRSSs and PRFSSs.

5.2. Comparison

The developed hybrid model (PRFBSSs) is the combination of two efficient models,
namely, PRFSs [20] and BRSSs [51]. The reason for this development comes from the
limitations of these models, i.e., PRFSs cannot handle the bipolarity of decision attributes,
whereas BRSSs cannot handle uncertainties efficiently. Being a generalization of these
models, the proposed PRFBSS model overcomes these limitations efficiently. To show the
supremacy of PRFBSSs, the problem discussed in the previous section is again solved
using fuzzy BRSSs [52] and PRFSSs [28]. The comparison of the final scores and the final
ranking given by these three models is given in Tables 19 and 20, respectively. From this
comparison, it is clear that fuzzy BRSSs failed to make a distinction between p1 and p7.
This is because of the information lost in the form of negative and neutral membership
degrees. Similarly, PRFSSs failed to differentiate between the ranks of p4, p13 and p10, p12.
Furthermore, the optimal decision offered by PRFSSs does not comply with the decisions
offered by the other two models. The reason for this variation in results is the inability of
PRFSSs to consider the bipolarity of decision attributes. On the other hand, the proposed
PRFBSSs successfully provides a ranking of each alternative at a different rank from the
other alternatives by considering the maximum conditions. In a similar way, models such
as BRSSs, PRFSs, intuitionistic fuzzy soft sets, etc., will fail to provide a solution as efficient
as PRFBSSs. This proves the efficiency of the proposed model over the previous models.
For a pictorial representation of the discussed comparison, readers may refer to Figure 3.
In addition, Table 21 presents a comparative qualitative analysis between the applicability
and properties of the proposed model and previous models.

Table 19. Quantitative comparison of the developed model with different existing models.

Models Fuzzy BRSSs [52] PRFSSs [28] Proposed PRFBSSs

p1 0.78 3.1975 1.0075
p2 0.71 3.3025 0.7200
p3 −0.34 2.6800 −0.6275
p4 −0.65 2.7300 −0.7050
p5 −0.58 2.6400 −1.1275
p6 0.50 2.9800 0.9375
p7 0.78 3.3525 0.7650
p8 0.70 3.9525 0.7975
p9 0.52 3.1225 0.5530
p10 −0.39 2.6250 −0.1850
p11 −0.17 3.2100 0.0625
p12 0.20 2.6250 0.4050
p13 −0.11 2.7300 −0.0850
p14 −0.05 2.4575 −0.2750
p15 −0.12 2.9250 0.8800

Table 20. Comparison among the ranking of the presented model with different existing models.

Hybrid Models Rankings

Fuzzy BRSSs [52] p1 = p7 > p2 > p8 > p9 > p6 > p12 > p14 > p13 > p15 > p11 > p3 > p10 > p4 > p5
PRFSSs [28] p8 > p7 > p2 > p11 > p1 > p9 > p6 > p15 > p4 = p13 > p3 > p5 > p10 = p12 > p14
Proposed PRFBSSs p1 > p6 > p15 > p8 > p7 > p2 > p9 > p12 > p11 > p13 > p10 > p14 > p3 > p4 > p5
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Table 21. Qualitative comparison between decision models.

Decision Model Advantages Limitations

Fuzzy set [1]
Handles uncertainties in data sets depict-
ing partial truths by using fuzzy member-
ships ranging from 0 to 1.

Does not consider a membership de-
gree for disagreement.

Intuitionistic fuzzy set [5]
Uses fuzzy membership and non-
membership degrees with their mutual
sum bounded by unity.

Does not consider the impartiality or
neutral opinion.

Picture fuzzy set [18–20]
Uses positive, neutral and negative mem-
bership degrees with their mutual sum
bounded by unity.

Fails to handle information affected by
multiple decision attributes or parame-
ters.

Soft set [11]
Allows decision making with multiple de-
cision attributes by considering parameter-
ized families of sets together.

Cannot handle uncertain problems
dealing with partial truths in the data
set.

Fuzzy soft set [14]
Allows decision making with multiple de-
cision attributes by considering parameter-
ized families of fuzzy sets.

Fails to depict a measure of disagree-
ment in the parameterized data set.

Intuitionistic Fuzzy soft
set [15]

Deals with intuitionistic fuzzy information
in soft environments.

Does not consider the neutral member-
ship degrees.

q-Rung orthopair fuzzy soft
set [16]

Extends the membership and non-
membership degrees by generalizing the
rank of IFS memberships.

Does not consider the neutrality of the
information.

Interval-valued q-rung or-
thopair fuzzy soft set [17]

Increases flexibility by using fuzzy inter-
vals instead of discrete fuzzy memberships
in q-rung orthopair fuzzy information.

Fails to consider any measures of neu-
tral membership concerning the infor-
mation.

Picture fuzzy soft set [28] Handles picture fuzzy information under
the effect of multiple decision attributes.

Cannot depict the bipolarity of decision
attributes.

q-Rung picture fuzzy set,
q-Rung picture linguistic
numbers [46]

Generalizes the sum-restriction condition
for picture fuzzy sets by combining with q-
rung orthopair fuzzy sets, and uses q-rung
picture linguistic Heronian mean operators
for decision making.

Fails to differentiate between the bipo-
lar sets of decision attributes.

Picture fuzzy N-soft set [45] Handles multinary data in picture fuzzy
soft environment.

Cannot depict the bipolarity of decision
attributes.

Complex picture fuzzy N-
soft set [47]

Uses complex picture fuzzy numbers to
interpret multinary data in N-soft environ-
ment.

Fails to depict bipolarity of decision at-
tributes.

Bipolar soft set [51]
Handles the bipolarity of decision at-
tributes by considering two symmetrically
opposite attribute sets.

Fails to handle uncertain information
in the data set.

Fuzzy bipolar soft set [52] Deals with bipolar soft information in
fuzzy environment.

Fails to consider non-membership de-
grees in bipolar soft environment.

q-Rung othopair fuzzy
bipolar soft set [55]

Deals with q-rung orthopair fuzzy infor-
mation in bipolar soft environment.

Cannot give a measure for neutrality in
the decision makers opinions.

Proposed Picture fuzzy
bipolar soft set

Allows the handling of bipolar soft infor-
mation in picture fuzzy environment.

Free from all the limitations discussed
above.
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Figure 3. Comparison among the initiated PRFBSS model and existing Fuzzy BSS [52] and
PRFSS [28] models.

5.3. Limitations

Like the gaps discussed in the previous literature, our proposed model also has some
limitations which need to be addressed in the future. One of these limitations comes from
the membership sum constraint of the PRFSs, which restricts the proposed model to work
in situations where the sum of positive, negative and neutral membership degrees exceeds
unity. Another problem is the limitation of the proposed model and algorithm to a single
expert. This makes the model less efficient for group decision-making scenarios.

6. Conclusions and Future Directions

Many complicated decision problems in society are affected by several criteria. For in-
stance, job recruitment for various designations need an effective investigation of multiple
attributes of the candidate. Consequently, decision-making problems often require consider-
ation of several criteria affecting the decisions in one place. As a helping hand, multi-criteria
decision-making (MCDM) tools offer efficient solutions while considering multiple decision
criteria affecting the decision-making process. Among these tools, picture fuzzy soft sets
(PRFSSs) allow solutions to complicated uncertain situations considering the degrees of
agreement, disagreement and neutrality in a picture fuzzy soft environment. However,
PRFSSs cannot handle the bipolarity of criteria and are ineffective in problems concerning
bipolar criteria. On the other hand, bipolar soft sets (BRSSs) can easily deal with bipolarity
of criterion. However, unlike PRFSSs, BRSSs fail to consider uncertainties in the informa-
tion efficiently. To fill these gaps, we have presented a new hybrid MCDM model called
picture fuzzy bipolar soft sets (PRFBSSs) by the fusion of PRFSs and BRSSs. The proposed
model is capable of handling picture fuzzy information under two symmetrically opposing
sets of decision attributes. Moreover, we have investigated some novel properties of the
proposed PRFBSS model such as sub-set, super-set, equality, complement, relative null and
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absolute PRFBSSs, extended union and intersection and restricted union and intersection.
Furthermore, two fundamental operations of PRFBSSs, namely, AND and OR operations
are studied. The commutative, associative and distributive properties along with De Mor-
gan’s laws about these initiated notions and operations are presented and verified. An
application regarding the recruitment of a graphic designer for a studio is discussed under
the novel PRFBSSs. The best designer is selected using the proposed algorithm to show
the effective applicability of the initiated model in different real-life complex situations
involving uncertainties in PRFBSS environments. Finally, concerning both qualitative and
quantitative perspectives, we have studied a detailed comparative analysis of the proposed
model with certain existing models.

One limitation of the model is its inability to discuss problems where the sum of
positive, neutral and negative membership degrees exceeds unity. Another limitation is
the restriction of decision making to a single expert’s opinions. For future works, one can
extend our initiated model to

• Rough picture fuzzy bipolar soft sets;
• Picture fuzzy bipolar soft expert sets;
• Picture fuzzy bipolar soft aggregation operators;
• q-Rung picture fuzzy bipolar soft sets;
• Interval-valued picture fuzzy bipolar soft sets;
• Rough picture fuzzy bipolar soft expert sets.
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