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Abstract: Given a graph G with vertex set V(G) and edge set E(G), for the bijective function
f (V(G)) → {1, 2, . . . , |V(G)|}, the associated weight of an edge xy ∈ E(G) under f is w(xy) =

f (x) + f (y). If all edges have pairwise distinct weights, the function f is called an edge-antimagic
vertex labeling. A path P in the vertex-labeled graph G is said to be a rainbow x− y path if for every
two edges xy, x′y′ ∈ E(P) it satisfies w(xy) 6= w(x′y′). The function f is called a rainbow antimagic
labeling of G if there exists a rainbow x − y path for every two vertices x, y ∈ V(G). We say that
graph G admits a rainbow antimagic coloring when we assign each edge xy with the color of the edge
weight w(xy). The smallest number of colors induced from all edge weights of antimagic labeling
is the rainbow antimagic connection number of G, denoted by rac(G). This paper is intended to
investigate non-symmetrical phenomena in the comb product of graphs by considering antimagic
labeling and optimizing rainbow connection, called rainbow antimagic coloring. In this paper, we
show the exact value of the rainbow antimagic connection number of the comb product of graph
Fn B Tm, where Fn is a friendship graph with order 2n + 1 and Tm ∈ {Pm, Sm, Brm,p, Sm,m}, where
Pm is the path graph of order m, Sm is the star graph of order m + 1, Brm,p is the broom graph of order
m + p and Sm,m is the double star graph of order 2m + 2.

Keywords: rainbow antimagic connection number; antimagic labeling; rainbow coloring; comb
product of graphs; graph theory; discrete mathematics

1. Introduction

Let G and H be two connected graphs. Let v be a vertex of graph H. The comb product
between graphs G and H, denoted by G B H, is a graph obtained by taking one copy of G
and |V(G)| copies of H and grafting the i-th copy of H at the vertex v to the i-th vertex of
G. In this study, the graph definition used is based on Chartrand et al. [1].

The study of the graph in this research is focused on rainbow antimagic coloring, which
is a combination of the concepts of antimagic labeling and rainbow coloring. Rainbow
connection definitions can be found in [2,3]. Let G be a connected graph, the edge coloring
of G with the function f (E(G)) → {1, 2, . . . , k}, k ∈ E(G) is k-coloring of graph G, where
adjacent edges can be colored with the same color. Rainbow u − v path is the path in
G if no two edges are the same color. The graph G is a rainbow connection if every
u, v ∈ V(G) has a rainbow path. The edge coloring on G has a rainbow connection called
rainbow coloring. The minimum colors to make G rainbow-connected is called the rainbow
connection number of G and is denoted by rc(G). Rainbow coloring is an interesting study
and has found many results, including [4,5].

Rainbow vertex coloring and rainbow total coloring are other variants of rainbow
coloring. Rainbow vertex coloring was introduced in [6] and rainbow vertex coloring results
can be found in [7,8]. Total rainbow coloring results can be seen in [9,10]. Wallis et al. [11]
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introduced graph labeling. Hartsfield and Ringel [12] introduced antimagic labeling. The
antimagic labeling of graph G is a bijective function of the edge set E(G) to {1, 2, ..., |E(G)|}
and w(v) = Σe∈E(v) f (e), and E(v) is the set of edges incident with the vertex v for vertices
u, v ∈ V(G), w(u) 6= w(v).

Antimagic labeling has had several results, including those of Baca et al. in [13–
16]. Dafik et al. contributed to the antimagic labeling in [17]. In addition, antimagic
labeling results can also be found in [18,19]. The concept of combining graph labeling
and graph coloring was initiated by Arumugam et al. [20]. The bijective function from
edge set E(G) to {1, 2, ...|E(G)|} is w(v) = Σe∈E(v) f (e), and E(v) is the set of edges that are
incident to vertices v, for every v ∈ V(G) The bijective function f for two adjacent vertices
u, v ∈ V(G), w(u) 6= w(v) is called antimagic labeling. The coloring of the vertices on G
with the vertices of v colored with w(v) is the local antimagic label. If we consider the local
antimagic labeling chromatic number, then it is called local antimagic coloring.

Motivated by the combination performed by Arumugam, in [21], Dafik et al. took the
initiative to combine the concepts of antimagic labeling and rainbow coloring on graphs
into a new concept, namely, rainbow antimagic coloring. Septory et al. determined the
lower bound of rainbow antimagic connection number for any connected graph.

Lemma 1 ([22]). Let G be any connected graph. Let rc(G) and ∆(G) be the rainbow connection
number of G and the maximum degree of G, respectively. rac(G) ≥ max{rc(G), ∆(G)}.

While Dafik et al., has two theorems about characterizing the existence of rainbow
u− v path of any graph of diam(G) ≤ 2, the result of rainbow antimagic connection number
of friendship graph and any tree is shown in the following Theorem.

Theorem 1 ([21]). Let G be a connected graph of diameter diam(G) ≤ 2. Let f be any bijective
function from V(G) to the set {1, 2, . . . , |V(G)|}; there exists a rainbow u− v path.

Theorem 2 ([21]). For n ≥ 2, rac(Fn) = 2n.

Theorem 3 ([21]). For Tm, being any tree of order m ≥ 3, rac(Tm) = m− 1.

Some other results about rainbow antimagic connection number can be found in [21–
24]. In this paper, we will study the rainbow antimagic connection number of graph
Fn B Tm where Fn is a friendship graph with order 2n + 1 and Tm ∈ {Pm, Sm, Brm,p, Sm,m},
where Pm is the path graph of order m, Sm is the star graph of order m + 1, Brm,p is the
broom graph of order m + p and Sm,m is the double star graph of order 2m + 2.

2. Results

In this section, we will show our new results about rainbow antimagic connection
number on those above graphs stated in a lemma and theorem. Our strategy is firstly
determined with the lower bound rainbow antimagic connection number of rac(Fn B Tm).
Finally, we show the exact values of rac(Fn B Pm), rac(Fn B Sm), rac(Fn B Brm,p) and
rac(Fn B Sm,m).

Lemma 2. Let Fn B Tm be a comb product of friendship graph Fn and Tm be any tree of order
m ≥ 2. The lower bound of rac(Fn B Tm) ≥ rac(Tm)(|V(Fn)|).

Proof of Lemma 2. Graph Fn B Tm is the comb product of two graphs Fn and Tm, and o is
the vertex of Tm. Graph Fn B Tm is obtained by taking one copy of Fn and |V(Fn)| copies
of Tm and grafting o from the i-th copy of Tm at the i-th vertex of Fn. By this definition, it
implies that graph Fn B Tm contains graph Fn and |V(Fn)| copies of graph Tm. We can
determine rac(Fn B Tm) by finding rac(Fn) and rac(Tm). Based on Theorem 2, we have
rac(Fn) = 2n. Based on Theorem 3, we have rac(Tm) = E(Tm) = m− 1; so, every edge of
all i-th copies of Tm has a different color. Thus, rac(Fn B Tm) ≥ (rac(Tm)(|V(Fn)|).
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Theorem 4. For n, m ≥ 3, rac(Fn B Pm) = 2nm + m− 2n− 1.

Proof of Theorem 4. Graph Fn B Pm is a connected graph with vertex set V(Fn B Pm) =
{a} ∪ {xi, yi, 1 ≤ i ≤ n} ∪ {xij, yij, 1 ≤ i ≤ n , 1 ≤ j ≤ m − 1} ∪ {zj, 1 ≤ j ≤ m − 1}
and edge set E(Fn B Pm) = {axi, ayi, xiyi, xix1, yiy1, 1 ≤ i ≤ n} ∪ {az1} ∪ {zjzj+1, 1 ≤ j ≤
m− 2} ∪ {xijxij+1, yijyij+1, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 2}. The cardinality of |V(Fn B Pm)| =
2nm + m− 1 and the cardinality of |E(Fn B Pm)| = n + m + 2nm.

To prove the rainbow antimagic connection number of rac(Fn B Pm), first, we have
to show the lower bound of rac(Fn B Pm). Based on Lemma 2, we have rac (Fn B Pm) ≥
rac(Pm)(|V(Fn)|). Since rac(Pm) = m− 1, rac(Fn B Pm) ≥ 2nm + m− 2n− 1.

Secondly, we have to show the upper bound of rac(Fn B Pm). Define the vertex
labeling f (V(Fn B Pm))→ {1, 2, ..., 2nm + m− 1} as follows:

f (a) = 2n + 1

f (xi) = 2n + 1− i, for 1 ≤ i ≤ n

f (yi) = 4n + 2− i, for 1 ≤ i ≤ n

f (zj) = 2nj + 2n + j + 1, for 1 ≤ j ≤ m− 1

f (xij) =

{
2n− 2i + 1, for 1 ≤ i ≤ n, j = 1
2nj + j + i, for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 1

f (yij) =

{
2i, for 1 ≤ i ≤ n, j = 1
2nj + 2n + j− i + 1, for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 1

The edge weights of the above vertex labeling f can be presented as

w(axi) = 4n + 2 + i, for 1 ≤ i ≤ n

w(ayi) = 6n + 3− i, for 1 ≤ i ≤ n

w(az1) = 6n + 3

w(zjzj+1) = 6n + 4nj + 2j + 3, for 1 ≤ j ≤ m− 2

w(xixi1) = 4n + 2− i, for 1 ≤ i ≤ n

w(yiyi1) = 4n + 4− i, for 1 ≤ i ≤ n

w(xijxij+1) =

{
6n + 3− i for 1 ≤ i ≤ n, j = 1
2n + 4nj + 2j + 2i + 1 for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 2

w(yijyij+1) =

{
6n + i + 3 for 1 ≤ i ≤ n, j = 1
6n + 4nj + 2j− 2i + 3 for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 2

It is easy to see that the above edge weight will induce a rainbow antimagic coloring
of graph Fn B Pm. Based on Theorem 3, rac(Pm) = m− 1; since E(Pm) = m− 1, the weight
of each edge in graph Pm is different. Therefore, the sum of the weights on |V(Fn)| copies
of graph Pm is (|V(Fn)|)(|E(Pm)|) = 2nm + m− 2n− 1. Based on the description above,
we have that the distinct weight of graph (Fn B Pm) is 2nm + m− 2n− 1. It implies that
the edge weights of f (V(Fn B Pm))→ {1, 2, ..., 2nm + m− 1} induce a rainbow antimagic
coloring of 2nm + m− 1 colors. Thus, rac(Fn B Pm) ≤ 2nm + m− 2n− 1. Comparing the
two bounds, we have the exact value of rac(Fn B Pm) = 2nm + m− 2n− 1.

The next step is to evaluate to prove the existence of a rainbow u− v path Fn B Pm.
Based on the definition of graph Fn B Pm, graph Fn B Pm contains one graph Fn and
|V(Fn)| copies of Pm; so, we can evaluate the rainbow u− v path of graph Fn B Pm by
evaluating the rainbow u− v path on graph Fn and graph Pm. Since diam(Fn) = 2, based
on Theorem 1, there is a rainbow u− v path for every u, v ∈ V(Fn). Based on Theorem
3, rac(Pm) = m − 1; since Pm has m − 1 edges, there is a rainbow u − v path for every
u, v ∈ V(Pm). Therefore, according to the explanation, it can be seen that there is a rainbow
u− v path for every u, v ∈ V(Fn B Pm).
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The illustration of a rainbow antimagic coloring of graph Fn B Pm can be seen in Figure 1.
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Figure 1. The illustration of rainbow antimagic coloring of graph F4 B P4.

Theorem 5. For n ≥ 3, m = 2n− 1, rac(Fn B Sm) = 2nm + m.

Proof of Theorem 5. Graph Fn B Sm is a connected graph with vertex set V(Fn B Sm) =
{a} ∪ {xi, yi, 1 ≤ i ≤ n} ∪ {zj, 1 ≤ j ≤ m} ∪ {xij, yij, 1 ≤ i ≤ n, 1 ≤ j ≤ m} and edge
set E(Fn B Sm) = {axi, ayi, xiyi, 1 ≤ i ≤ n} ∪ {azj, 1 ≤ j ≤ m} ∪ {xixij.yiyij, 1 ≤ i ≤
n, 1 ≤ j ≤ m}. The cardinality of |V(Fn B Sm)| = 2n + m + 2nm + 1 and the cardinality of
|E(Fn B Sm)| = 3n + m + 2nm.

To prove the rainbow antimagic connection number of rac(Fn B Sm), first, we have
to show the lower bound of rac(Fn B Sm). Based on Lemma 2, we have rac (Fn B Sm) ≥
rac(Sm)(|V(Fn)|). Since rac(Sm) = m, rac(Fn B Sm) ≥ 2nm + m.

Secondly, we have to show the upper bound of rac(Fn B Sm). Define the vertex
labeling f (V(Fn B Sm))→ {1, 2, ..., 2n + m + 2nm + 1} as follows:

f (a) = 2n + 1

f (xi) = 4n + i, for 1 ≤ i ≤ n

f (yi) = 6n + 1− i, for 1 ≤ i ≤ n

f (zj) =


8n for j = 1
2j− 1 for 2 ≤ j ≤ dm

2 e
2j + 1 for dm

2 e+ 1 ≤ j ≤ m

f (xij) =



4n + 2− 2i for 1 ≤ i ≤ n, j = 1
1 for i = 1, j = 2
6n + j− 2 for i = 1, 3 ≤ j ≤ m
6n + m + j− 3 for i = 2, 2 ≤ j ≤ 3
6n + m + j− 2 for i = 2, 4 ≤ j ≤ m
6n + im + j−m− i for 3 ≤ i ≤ n, 2 ≤ j ≤ m

f (yij) =

{
2i for 1 ≤ i ≤ n, j = 1
2nm + 2n + m + i + j− im for 1 ≤ i ≤ n, 2 ≤ j ≤ m

The edge weights of the above vertex labeling f can be presented as

w(axi) = 6n + 1 + i, for 1 ≤ i ≤ n
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w(ayi) = 8n + 2− i, for 1 ≤ i ≤ n

w(azj) =


10n + 1 for j = 1
2n + 2j for 2 ≤ j ≤ dm

2 e
2n + 2j + 2 for dm

2 e+ 1 ≤ j ≤ m

w(xixij) =



8n + 2− i for 1 ≤ i ≤ n, j = 1
4n + 2 for i = 1, j = 2
10n + j + i− 2 for i = 1, 3 ≤ j ≤ m
10n + m + j + i− 3 for i = 2, 2 ≤ j ≤ 3
10n + m + j + i− 2 for i = 2, 4 ≤ j ≤ m
10n + im + j−m for 3 ≤ i ≤ n, 2 ≤ j ≤ m

w(yiyij) =

{
6n + 1 + i for 1 ≤ i ≤ n, j = 1
2nm + 8n + m + j− im + 1 for 1 ≤ i ≤ n, 2 ≤ j ≤ m

It is easy to see that the above edge weight will induce a rainbow antimagic coloring
of graph Fn B Sm. Based on Theorem 3, rac(Sm) = m; since E(Sm) = m, the weight of
each edge in graph Sm is different. Therefore, the sum of the weights on |V(Fn)| copies
of graph Sm is (|V(Fn)|)(|E(Sm)|) = 2nm + m. Based on the description above, we have
that the distinct weight of graph (Fn B Sm) is 2nm + m. It implies that the edge weights
of f (V(Fn B Sm))→ {1, 2, ..., 2n + m + 2nm + 1} induce a rainbow antimagic coloring of
2nm + m colors. Thus, rac(Fn B Sm) ≤ 2nm + m. Comparing the two bounds, we have the
exact value of rac(Fn B Sm) = 2nm + m.

The next step is to evaluate to prove the existence of a rainbow u− v path Fn B Sm.
Based on the definition of graph Fn B Sm, graph Fn B Sm contains one graph Fn and
|V(Fn)| copies of Sm; so, we can evaluate the rainbow u− v path of graph Fn B Sm by
evaluating the rainbow u− v path on graph Fn and graph Sm. Since diam(Fn) = 2, based
on Theorem 1, there is a rainbow u− v path for every u, v ∈ V(Fn). Based on Theorem 3,
rac(Sm) = m; since Sm has m edges, there is a rainbow u− v path for every u, v ∈ V(Sm).
Therefore, according to the explanation, it can be seen that there is a rainbow u− v path for
every u, v ∈ V(Fn B Sm).

The illustration of a rainbow antimagic coloring of graph F3 B S5 can be seen in Figure 2.
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Figure 2. The illustration of rainbow antimagic coloring of graph F3 B S5.

Theorem 6. For n, m, p ≥ 3, rac(Fn B Brm,p) = 2nm + 2np + m + p− 2n− 1.
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Proof of Theorem 6. Graph Fn B Brm,p is a connected graph with vertex set V(Fn B
Brm,p) = {a} ∪ {xi, yi, 1 ≤ i ≤ n} ∪ {xij, yij, 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1} ∪ {zj, 1 ≤ j ≤ m−
1} ∪ {zmk, bjk, cjk, 1 ≤ j ≤ m − 1, 1 ≤ k ≤ p} and edge set
E(Fn B Brm,p) = {axi, ayi, xixi1, yiyi1, xiyi, 1 ≤ i ≤ n} ∪ {az1} ∪ {zjzj+1, 1 ≤ j ≤ m− 2} ∪
{xijxij+1, yijyij+1, 1 ≤ i ≤ n, 1 ≤ j ≤ m − 2} ∪ {zmzmk, 1 ≤ k ≤ p} ∪ {ximbik, yimcik, 1 ≤
i ≤ n, 1 ≤ k ≤ p}. The cardinality of |V(Fn B Brm,p)| = 2nm + m + 3mp− 3p and the
cardinality of |E(Fn B Brm,p)| = n + 2nm + m− 1 + p + 2np.

To prove the rainbow antimagic connection number of rac(Fn B Brm,p), first, we
have to show the lower bound of rac(Fn B Brm,p). Based on Lemma 2, we have rac(Fn B
Brm,p) ≥ rac(Brm,p)(|V(Fn)|). Since rac(Brm,p) = m + p − 1, rac(Fn B Brm,p) ≥ 2nm +
2np + m + p− 2n− 1.

Secondly, we have to show the upper bound of rac(Fn B Brm,p). Define the vertex
labeling f (V(Fn B Brm,p))→ {1, 2, ..., 2nm + m + 3mp− 3p} as follows:

f (a) = 2n + 1

f (xi) = 2n + 1− i, for 1 ≤ i ≤ n

f (yi) = 4n + 2− i, for 1 ≤ i ≤ n

f (zj) = 2nj + 2n + j + 1, for 1 ≤ j ≤ m− 1

f (xij) =

{
2n− 2i + 1, for 1 ≤ i ≤ n, j = 1
2nj + j + i, for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 1

f (yij) =

{
2i, for 1 ≤ i ≤ n, j = 1
2nj + 2n + j− i + 1, for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 1

f (zm−1k) = 2nm + 2np + m + k, for 1 ≤ k ≤ p

f (bik) = 2nm + m + ip + k− p, for 1 ≤ i ≤ n, 1 ≤ k ≤ p

f (cik) = 2nm + 2np + m + k− ip, for 1 ≤ i ≤ n, 1 ≤ k ≤ p

The edge weights of the above vertex labeling f can be presented as

w(axi) = 4n + 2 + i, for 1 ≤ i ≤ n

w(ayi) = 6n + 3− i, for 1 ≤ i ≤ n

w(az1) = 6n + 3

w(zjzj+1) = 6n + 4nj + 2j + 3, for 1 ≤ j ≤ m− 2

w(xixi1) = 4n + 2− i, for 1 ≤ i ≤ n

w(yiyi1) = 4n + 4− i, for 1 ≤ i ≤ n

w(xijxij+1) =

{
6n + 3− i for 1 ≤ i ≤ n, j = 1
2n + 4nj + 2j + 2i + 1 for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 3

w(yijyij+1) =

{
6n + i + 3 for 1 ≤ i ≤ n, j = 1
6n + 4nj + 2j− 2i + 3 for 1 ≤ i ≤ n, 2 ≤ j ≤ m− 3

w(zm−1zm−1k) = 4nm + 2np + 2m + k, for 1 ≤ k ≤ p

w(xim−1bik) = 4nm + 2m + i + ip + k− 2n− p− 1, for 1 ≤ i ≤ n, 1 ≤ k ≤ p

w(yim−1cik) = 4nm + 2np + 2m + k− i− ip, for 1 ≤ i ≤ n, 1 ≤ k ≤ p

It is easy to see that the above edge weight will induce a rainbow antimagic coloring of
graphFn BBrm,p. Based on Theorem 3, rac(Brm,p) = m+ p− 1; since E(Brm,p) = m+ p− 1,
the weight of each edge in graph Brm,p is different. Therefore, the sum of the weights on
|V(Fn)| copies of graph Brm,p is (|V(Fn)|)(|E(Brm,p)|) = 2nm + 2np + m + p − 2n − 1.
Based on the description above, we have that the distinct weight of graph (Fn B Sm) is
2nm + 2np + m + p − 2n − 1. It implies that the edge weights of f (V(Fn B Brm,p)) →
{1, 2, ..., 2nm + 3mp + m− 3p} induce a rainbow antimagic coloring of 2nm + 2np + m +
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p− 2n− 1 colors. Thus, rac(Fn B Brm,p) ≤ 2nm + 2np + m + p− 2n− 1. Comparing the
two bounds, we have the exact value of rac(Fn B Brm,p) = 2nm + 2np + m + p− 2n− 1.

The next step is to evaluate to prove the existence of a rainbow u− v path Fn B Brm,p.
Based on the definition of graph Fn B Brm,p, graph Fn B Brm,p contains one graph Fn and
|V(Fn)| copies of Brm,p; so, we can evaluate the rainbow u− v path of graph Fn B Brm,p
by evaluating the rainbow u− v path on graph Fn and graph Brm,p. Since diam(Fn) = 2,
based on Theorem 1, there is a rainbow u − v path for every u, v ∈ V(Fn). Based on
Theorem 3 rac(Brm,p) = m + p− 1, since Brm,p has m + p− 1 edges, there is a rainbow
u− v path for every u, v ∈ V(Brm,p). Therefore, according to the explanation, it can be seen
that there is a rainbow u− v path for every u, v ∈ V(Fn B Brm,p).

The illustration of a rainbow antimagic coloring of graph Fn B Brm,p can be seen in
Figure 3.
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Figure 3. The illustration of rainbow antimagic coloring of graph F4 B Br4,5.

Theorem 7. For n ≥ 3, m = 2n− 2, rac(Fn B Sm,m) = 4nm + 2n + 2m + 1.

Proof of Theorem 7. GraphFn BSm,m is a connected graph with vertex set V(Fn BSm,m) =
{a} ∪ {xi, yi, 1 ≤ i ≤ n} ∪ {zj, 1 ≤ j ≤ m} ∪ {xij, yij, 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {a0} ∪
{ak, 1 ≤ k ≤ m} ∪ {bi, ci, 1 ≤ j ≤ n} ∪ {bik, cik, 1 ≤ i ≤ n, 1 ≤ k ≤ m} and edge set
E(Fn B Sm,m) = {axi, ayi, xiyi, 1 ≤ i ≤ n} ∪ {azj, 1 ≤ j ≤ m} ∪ {aa0} ∪ {a0ak, 1 ≤ k ≤
m} ∪ {xixij, yiyij, 1 ≤ i ≤ n, 1 ≤ j ≤ m} ∪ {xibi, yici, 1 ≤ i ≤ n} ∪ {bibik, cicik, 1 ≤ i ≤
n, 1 ≤ k ≤ k}. The cardinality of |V(Fn B Sm,m)| = 4n + 2m + 4nm + 2 and the cardinality
of |E(Fn B Sm,m)| = 5n + 2m + 4nm + 1. To prove the rainbow antimagic connection num-
ber of rac(Fn B Sm,m), first, we have to show the lower bound of rac(Fn B Sm,m). Based
on Lemma 2, we have rac(Fn B Sm,m) ≥ rac(Sm,m)(|V(Fn)|). Since rac(Sm,m) = 2m + 1,
rac(Fn B Sm,m) ≥ 4nm + 2n + 2m + 1.

Secondly, we have to show the upper bound of rac(Fn B Sm,m). Define the vertex
labeling f (V(Fn B Sm,m))→ {1, 2, ..., 4n + 2m + 4nm + 2} as follows:

f (a) = 2n + 1

f (xi) = 4n + i, for 1 ≤ i ≤ n
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f (yi) = 6n + 1− i, for 1 ≤ i ≤ n

f (zj) =

{
2j + 1 for 1 ≤ j ≤ bm

2 c
2j + 3 for dm

2 e ≤ j ≤ m

f (xij) =



4n + 2− 2i for 1 ≤ i ≤ n, j = 1
1 for i = 1, j = 2
6n + j− 2 for i = 1, 3 ≤ j ≤ m
6n + m + j− 2 for i = 2, 2 ≤ j ≤ 3
6n + m + j− 1 for i = 2, 4 ≤ j ≤ m
6n + im + j−m− i for 3 ≤ i ≤ n, 2 ≤ j ≤ m

f (yij) =

{
2i for 1 ≤ i ≤ n, j = 1
2nm + 4n + m + j− im + 1 for 1 ≤ i ≤ n, 2 ≤ j ≤ m

f (a0) = 8n

f (bi) =

{
6n + m− 1 for i = 1
6n + im for 2 ≤ i ≤ n

f (ci) = 2nm + 4n + 2m + 2− im, for 1 ≤ i ≤ n

f (ak) = 2nm + 4n + 2m + 2 + k, for 1 ≤ k ≤ m

f (bik) =

{
2nm + 4n + m + 2 + k for i = 1, 1 ≤ k ≤ m,
2nm + 4n + m + im + 2 + k for 2 ≤ i ≤ n, 1 ≤ k ≤ m

f (cik) = 4nm + 4n + 2m + k + 2− im, for 1 ≤ i ≤ n, 1 ≤ k ≤ m

The edge weights of the above vertex labeling f can be presented as

w(axi) = 6n + i + 1, for 1 ≤ i ≤ n

w(ayi) = 8n + 1− i, for 1 ≤ i ≤ n

w(xiyi) = 10n + 1, for 1 ≤ i ≤ n

w(azj) =

{
2n + 2j + 2 for 1 ≤ j ≤ bm

2 c
2n + 2j + 4 for dm

2 e+ 1 ≤ j ≤ m

w(xixij) =



8n + 2− i for 1 ≤ i ≤ n, j = 1
4n + 2 for i = 1, j = 2
10n + j + i− 2 for i = 1, 3 ≤ j ≤ m
10n + m + j + i− 2 for i = 2, 2 ≤ j ≤ 3
10n + m + j + i− 1 for i = 2, 4 ≤ j ≤ m
10n + j + im + i−m− 1 for 3 ≤ i ≤ n, 2 ≤ j ≤ m

w(yiyij) =

{
6n + i + 1 for 1 ≤ i ≤ n, j = 1
2nm + 10n + m + j + 2− i− im for 1 ≤ i ≤ n, 2 ≤ j ≤ m

w(aa0) = 10n + 1

w(xibi) =

{
10n + m + i− 1 for i = 1
10n + im + i for 2 ≤ i ≤ n

w(yici) = 2nm + 10n + 2m + 3− i− im, for 1 ≤ i ≤ n

w(a0ak) = 2nm + 12n + 2m + 2 + k, for 1 ≤ k ≤ m

w(bibik) =

{
2nm + 10n + 2m + 1 + k for i = 1, 1 ≤ k ≤ m,
2nm + 10n + m + 2im + 2 + k for 2 ≤ i ≤ n, 1 ≤ k ≤ m

w(cicik) = 6nm + 8n + 4m + k + 4− 2im, for 1 ≤ i ≤ n, 1 ≤ k ≤ m

It is easy to see that the above edge weight will induce a rainbow antimagic coloring
of graph Fn B Sm,m. Based on Theorem 3, rac(Sm,m) = 2m + 1; since E(Sm,m) = 2m + 1,
the weight of each edge in graph Sm,m is different. Therefore, the sum of the weights on
|V(Fn)| copies of graph Sm,m is (|V(Fn)|)(|E(Sm,m)|) = 4nm + 2n + 2m + 1. Based on the
description above, we have that the distinct weight of graph (Fn B Sm,m) is 4nm + 2n +
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2m+ 1. It implies that the edge weights of f (V(Fn BSm,m))→ {1, 2, ..., 4n+ 2m+ 4nm+ 2}
induce a rainbow antimagic coloring of 4nm + 2n + 2m + 1 colors. Thus, rac(Fn B Sm,m) ≤
4nm + 2n + 2m + 1. Comparing the two bounds, we have the exact value of rac(Fn B
Sm,m) = 4nm + 2n + 2m + 1.

The next step is to evaluate to prove the existence of a rainbow u− v path Fn B Sm,m.
Based on the definition of graph Fn B Sm,m, graph Fn B Sm,m contains one graph Fn and
|V(Fn)| copies of Sm,m; so, we can evaluate the rainbow u− v path of graph Fn B Sm,m by
evaluating the rainbow u− v path on graph Fn and graph Sm,m. Since diam(Fn) = 2, based
on Theorem 1, there is a rainbow u− v path for every u, v ∈ V(Fn). Based on Theorem
3, rac(Sm,m) = 2m + 1; since Sm,m has 2m + 1 edges, there is a rainbow u − v path for
every u, v ∈ V(Sm,m). Therefore, according to the explanation, it can be seen that there is a
rainbow u− v path for every u, v ∈ V(Fn B Sm,m).

3. Conclusions

We have studied the rainbow antimagic coloring of the comb product of a friendship
graph with any tree graph. Based on the result, we have a new lower bound of rainbow
antimagic connection number for the comb product of a friendship graph with any tree
Fn BTm and the exact value of the rainbow antimagic connection number of graphFn BTm,
where Tm is path Pm, star Sm, broom Brm,p and double star Sm,m. However, if it is not a tree,
it is still difficult to determine the exact value of the rainbow antimagic connection number.
Therefore, this study raises an open problem:

Determine the exact value of the rainbow antimagic connection number of graph
G B H where H is not a tree.
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