Article

Characterizations of Chemical Networks Entropies by K-Banhatti Topological Indices

Muhammad Usman Ghani 1,*, Francis Joseph H. Campena 2,*, Shahbaz Ali 3,*, Sanaullah Dehraj 4, Murat Cancan 5, Fahad M. Alharbi 6 and Ahmed M. Galal 7,8

1 Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan
2 Department of Mathematics and Statistics, College of Science, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Metro Manila, Philippines
3 Department of Mathematics, The Islamia University Bahawalpur Rahim Yar Khan Campus, Rahim Yar Khan 64200, Pakistan
4 Department of Mathematics and Statistics Quaid-e-Awam University of Engineering, Science and Technology, Sakrand Road, Nawabshah 67480, Sindh, Pakistan
5 Faculty of Education,Yuzuncu Yil University, Van 65090, Turkey
6 Department of Mathematics, Al-Qurufudah University College, Umm Al-Qura University, Mecca, Saudi Arabia
7 Department of Mechanical Engineering, College of Engineering in Wadi Alddawasir, Prince Sattam bin Abdulaziz University, Saudi Arabia
8 Production Engineering and Mechanical Design Department, Faculty of Engineering, Mansoura University, Mansoura P.O. Box 35516, Egypt

* Correspondence: usmanghani85a@gmail.com or math201701014@kfueit.edu.pk (M.U.G.); francis.campena@dlsu.edu.ph (F.J.H.C.)

Abstract: Entropy is a thermodynamic function in physics that measures the randomness and disorder of molecules in a particular system or process based on the diversity of configurations that molecules might take. Distance-based entropy is used to address a wide range of problems in the domains of mathematics, biology, chemical graph theory, organic and inorganic chemistry, and other disciplines. We explain the basic applications of distance-based entropy to chemical phenomena. These applications include signal processing, structural studies on crystals, molecular ensembles, and quantifying the chemical and electrical structures of molecules. In this study, we examine the characterisation of polyphenylenes and boron (B_{12}) using a line of symmetry. Our ability to quickly ascertain the valences of each atom, and the total number of atom bonds is made possible by the symmetrical chemical structures of polyphenylenes and boron B_{12}. By constructing these structures with degree-based indices, namely the K Banhatti indices, ReZG_{1}-index, ReZG_{2}-index, and ReZG_{3}-index, we are able to determine their respective entropies.

Keywords: boron B_{12}; polyphenylenes P[s,t]; entropy’s related K-Banhatti indices; entropy’s related redefined Zagreb indices

1. Introduction

In mathematical chemistry, topological indices are numerical values that describe the topology of molecular structures. The chemical process conceptual framework is a significant area of applied mathematics. This theory can be used to model issues in the real world. Since their inception, chemical networks have drawn the attention of researchers because of their widespread applications. The correlation coefficient (r) between the physicochemical characteristics and topological indices is determined in order to assess the utility of a topological index to forecast the physicochemical behavior of a chemical compound [1,2]. Additionally, it falls within a class of challenging chemical graph theory applications for precise molecular issue resolutions. In the fields of chemical sciences...
and chemical graph theory, this theory is crucial. The QSAR/QSPR analysis included physicochemical properties and topological indices such as the 1st multiple Zagreb index, 2nd multiple Zagreb index, and hyper Zagreb index [3,4]. Recently, Ali et al. defined the atom–bond sum–connectivity index in [5].

Let \(G(V_G, E_G) \) be a graph, with the vertices and edges denoted by \(V_G \) and \(E_G \), respectively. In chemical graph theory, a molecular graph is a simple connected graph that contains chemical atoms and bonds, which are commonly referred to as atoms and atom-bonds, respectively [6,7].

The valency of atom bonds (line segments) and a few Banhatti indices, each of which had the following description [8], was used by Kulli to begin constructing valency-based topological indices in 2016 [9–11].

The 1st and 2nd K-Banhatti indices are as follows, respectively:

\[
B_1(G) = \sum_{a_i,a_j \in E_G} (d_{a_i} + d_{a_j}) \quad \& \quad B_2(G) = \sum_{a_i,a_j \in E_G} (d_{a_i} \times d_{a_j}) \tag{1}
\]

The 1st and 2nd hyper K-Banhatti indices are as follows, respectively:

\[
HB_1(G) = \sum_{a_i,a_j \in E_G} (d_{a_i} + d_{a_j})^2 \quad \& \quad HB_2(G) = \sum_{a_i,a_j \in E_G} (d_{a_i} \times d_{a_j})^2 \tag{2}
\]

The 1st and 2nd K-generalized Banhatti indices are as follows, respectively:

\[
GB_1(G) = \sum_{a_i,a_j \in E_G} (d_{a_i} + d_{a_j})^a \quad \& \quad GB_2(G) = \sum_{a_i,a_j \in E_G} (d_{a_i} \times d_{a_j})^a \tag{3}
\]

The redefined Zagreb indices \(ReZG1, ReZG2, \) and \(ReZG3 \) were 1st proposed by Ranjini [12] in 2013:

\[
ReZG_1 = \sum_{a_i,a_j \in E_G} \frac{d_{a_i} + d_{a_j}}{d_{a_i} \times d_{a_j}} \quad \& \quad ReZG_2 = \sum_{a_i,a_j \in E_G} \frac{d_{a_i} \times d_{a_j}}{d_{a_i} + d_{a_j}} \tag{4}
\]

The 3rd redefined Zagreb index is defined as

\[
ReZG_3 = \sum_{a_i,a_j \in E_G} (d_{a_i} \times d_{a_j})(d_{a_i} + d_{a_j}) \tag{5}
\]

Entropy is the measurement of the amount of thermal energy per unit of temperature in a system that cannot be used for productive labour. Entropy is a measure of a system’s molecular disorder or unpredictability since work is produced by organised molecular motion, see new works on graph theory in [13,14]. Entropy was initially discussed by Shannon in his well-known [15] from 1948. The entropy of a probability distribution measures the unpredictable nature of information content or the uncertainty of a system. Entropy was then used to analyse chemical networks and graphs in order to comprehend the structural information contained within these networks. Recently, graph entropies have become more well-liked in a variety of academic disciplines, including biology, chemistry, ecology, and sociology. Graph theory and network theory have both undertaken substantial study on invariants, which are utilised as information functionals in science and have been around for a long time. The degree of every atom is vitally crucial [16–18]. The following sections will discuss graph entropy measures that have been applied to analyse biological and chemical networks in chronological order for further information [19].

In this article, we construct the boron \(B_{12} \) and polyphenylenes \(P_{[n, \mu]} \). We determine the K-Banhatti entropies, redefined 1st, 2nd and 3rd Zagreb entropies by using K-Banhatti indices [20–22], 1st Zagreb index, 2nd Zagreb index, 3rd Zagreb index and the concept of
The entropy of an edge-weighted graph G is defined in [34], which was published in 2009. Ghani et al. defined the modified definition of entropy in [35]. A network with lines that are weighted has the equation $G = (V_G, E_G, \mu(a_i a_j))$, where V_G, E_G, and the vertex set, edge set, and edge-weight of edge $(a_i a_j)$ are each represented by $\mu(a_i a_j)$:

$$ENT_{\mu(G)} = - \sum_{a_i, a_j \in E_G} \frac{\mu(a_i a_j)}{\sum_{a_i, a_j \in E_G} \mu(a_i a_j)} \log \left\{ \frac{\mu(a_i a_j)}{\sum_{a_i, a_j \in E_G} \mu(a_i a_j)} \right\}$$

(6)

- **Entropy related to the 1st K-Banhatti index**

Assume $\mu(a_i a_j) = d_{aj} + d_{ja}$. Then, the 1st K-Banhatti B_1 index (1) is thus provided by

$$B_1(G) = \sum_{a_i, a_j \in E_G} \left\{ d_{ai} + d_{aj} \right\} = \sum_{a_i, a_j \in E_G} \mu(a_i a_j).$$

By putting these parameters into Equation (6), the 1st K-Banhatti entropy is

$$ENT_{B_1(G)} = \log (B_1(G)) - \frac{1}{B_1(G)} \log \left\{ \prod_{a_i, a_j \in E_G} \left[d_{ai} + d_{aj} \right]^{d_{aj} + d_{ja}} \right\}.$$

(7)

- **Entropy related to the 2nd K-Banhatti index**

Assume $\mu(a_i a_j) = d_{ai} \times d_{aj}$. Then, the 2nd K-Banhatti B_2 index (1) is thus provided by

$$B_2(G) = \sum_{a_i, a_j \in E_G} \left\{ (d_{ai} \times d_{aj}) \right\} = \sum_{a_i, a_j \in E_G} \mu(a_i a_j).$$

By putting these parameters into Equation (6), the 2nd K-Banhatti entropy is

$$ENT_{B_2(G)} = \log (B_2(G)) - \frac{1}{B_2(G)} \log \left\{ \prod_{a_i, a_j \in E_G} \left[d_{ai} \times d_{aj} \right]^{d_{ai} \times d_{aj}} \right\}.$$

(8)

- **Entropy related to the 1st K hyper Banhatti index**

Assume $\mu(a_i a_j) = (d_{aj} + d_{ja})^2$. Then, the 1st K hyper Banhatti HB_1 index (2) is thus provided by

$$HB_1(G) = \sum_{a_i, a_j \in E_G} \left\{ (d_{aj} + d_{ja})^2 \right\} = \sum_{a_i, a_j \in E_G} \mu(a_i a_j).$$

By putting these parameters into Equation (6), the 1st K hyper Banhatti entropy is

$$ENT_{HB_1(G)} = \log (HB_1(G)) - \frac{1}{HB_1(G)} \log \left\{ \prod_{a_i, a_j \in E_G} \left[d_{ai} + d_{aj} \right]^{2(d_{aj} + d_{ja})^2} \right\}.$$

(9)

- **Entropy related to the 2nd K hyper Banhatti index**

Assume $\mu(a_i a_j) = (d_{aj} \times d_{ja})^2$. Then, the 2nd K hyper Banhatti index (2) is thus provided by

$$HB_2(G) = \sum_{a_i, a_j \in E_G} \left\{ (d_{aj} \times d_{ja})^2 \right\} = \sum_{a_i, a_j \in E_G} \mu(a_i a_j).$$
By putting these parameters into Equation (6), the 2nd K hyper Banhatti entropy is

\[\text{ENT}_{\text{HB}_2(G)} = \log(\text{HB}_1(G)) - \frac{1}{\text{HB}_1(G)} \log \left\{ \prod_{a_i,a_j \in E_G} \left[\frac{d_{ai} \times d_{aj}}{d_{ai} + d_{aj}} \right]^{2(d_{ai} + d_{aj})^2} \right\}.\] (10)

- **The first redefined Zagreb entropy**

 Assume \(\mu(a_i,a_j) = \frac{d_{ai} d_{aj}}{d_{ai} + d_{aj}} \). Then, the 1st redefined Zagreb index (4) is thus provided by

 \[\text{ReZG}_1 = \sum_{a_i,a_j \in E_G} \left\{ \frac{d_{ai} + d_{aj}}{d_{ai} d_{aj}} \right\} = \sum_{a_i,a_j \in E_G} \mu(a_i,a_j).\]

 By putting these parameters into Equation (6), the 1st redefined Zagreb entropy is

 \[\text{ENT}_{\text{ReZG}_1} = \log(\text{ReZG}_1) - \frac{1}{\text{ReZG}_1} \log \left\{ \prod_{a_i,a_j \in E_G} \left[\frac{d_{ai} + d_{aj}}{d_{ai} d_{aj}} \right] \right\}.\] (11)

- **The second redefined Zagreb entropy**

 Assume \(\mu(a_i,a_j) = \frac{d_{ai} d_{aj}}{d_{ai} + d_{aj}} \). Then, the 2nd redefined index (4) is thus provided by

 \[\text{ReZG}_2 = \sum_{a_i,a_j \in E_G} \left\{ \frac{d_{ai} d_{aj}}{d_{ai} + d_{aj}} \right\} = \sum_{a_i,a_j \in E_G} \mu(a_i,a_j).\]

 By putting these parameters into Equation (6), the 2nd redefined Zagreb entropy is

 \[\text{ENT}_{\text{ReZG}_2} = \log(\text{ReZG}_2) - \frac{1}{\text{ReZG}_2} \log \left\{ \prod_{a_i,a_j \in E_G} \left[\frac{d_{ai} d_{aj}}{d_{ai} + d_{aj}} \right] \right\}.\] (12)

- **The third redefined Zagreb entropy**

 Assume \(\mu(a_i,a_j) = \left\{ (d_{ai} d_{aj})(d_{ai} + d_{aj}) \right\} \). Then, the 3rd redefined Zagreb index (5) is thus provided by

 \[\text{ReZG}_3 = \sum_{a_i,a_j \in E_G} \left\{ (d_{ai} d_{aj})(d_{ai} + d_{aj}) \right\} = \sum_{a_i,a_j \in E_G} \mu(a_i,a_j).\]

 By putting these parameters into Equation (6), the 3rd redefined Zagreb entropy is

 \[\text{ENT}_{\text{ReZG}_3} = \log(\text{ReZG}_3) - \frac{1}{\text{ReZG}_3} \log \left\{ \prod_{a_i,a_j \in E_G} \left[(d_{ai} d_{aj})(d_{ai} + d_{aj}) \right] \right\}.\] (13)

2. The Boron Network

We discuss the topological characteristics of boron \(B_{12} \) in this article. The icosahedral network of boron \(B_{12} \) has two dimensions. The existence of icosahedral structures containing \(B_{12} \) was confirmed by a recent investigation of high-pressure solid boron [36]. However, prior theoretical and practical investigations of multiple boron clusters have demonstrated that the \(B_{12} \) structure is unstable in the gas phase [37–39]. Figure 1 displays the molecular graph of boron \(B_{12} \). The dotted line in Figure 1 represents the line of symmetry; using this line, we can easily obtain the edge-partition of \(B_{12} \).
2.1. Results and Discussion

Now, \((s, t)\) are the units of \(B_{12}\), where \(s\) and \(t\) show the number of \(B_{12}\) in horizontal rows and vertical columns. In the boron network, the edge set \(E(G)\) is divided into seven groups based on the degree of each edge’s end vertices. The set that is disjoint is shown by the symbols \(\xi(d(a_i), d(a_j))\). The 1\(^{st}\) set that is disjoint is \(\xi(2,4)\), the 2\(^{nd}\) set that is disjoint is \(\xi(2,5)\), the 3\(^{rd}\) set that is disjoint is \(\xi(3,4)\), the 4\(^{th}\) set that is disjoint is \(\xi(3,5)\), the 5\(^{th}\) set that is disjoint is \(\xi(4,4)\), the 6\(^{th}\) set that is disjoint is \(\xi(4,5)\), and the 7\(^{th}\) set that is disjoint is \(\xi(5,5)\).

From the symmetrical chemical structure of boron, \(B_{12}\), we find the edge-partition of \(B_{12}\) easily:

\[
\begin{align*}
\xi(2,4) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 2, d_{a_j} = 4 \right\} = 2(s + t), \\
\xi(2,5) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 2, d_{a_j} = 5 \right\} = 2(s + t), \\
\xi(3,4) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 3, d_{a_j} = 4 \right\} = 3st + s + 5, \\
\xi(3,5) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 3, d_{a_j} = 5 \right\} = 3st + 2s + 3t + 4, \\
\xi(4,4) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 4, d_{a_j} = 4 \right\} = s + 2t + 1, \\
\xi(4,5) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 4, d_{a_j} = 5 \right\} = 9st + 7s + 6t + 5, \\
\xi(5,5) &= \left\{ e = a_i \sim a_j, \forall a_i, a_j \in E(B_{12}) \mid d_{a_i} = 5, d_{a_j} = 5 \right\} = 9st + 7s + 7t + 3.
\end{align*}
\]
This partition provides

- **The 1st K-Banhatti entropy of \textit{B}_{12}**

 Assume that \textit{B}_{12} is an icosahedral network of boron. Then, by using Equation (1) and the edge-partition of \textit{B}_{12}, the 1st K-Banhatti index is

 \[B_1(B_{12}) = 190s + 190t + 216st + 147 \]

 By using the edge-partition of \textit{B}_{12} and Equation (7) as described below,

 \[\text{ENT}_{B_1}(B_{12}) = \log(B_1) - \frac{1}{B_1} \log \left\{ \prod_{E(2,4)} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \times \prod_{E(2,5)} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \right\} \]

 \[\times \prod_{E(3,4)} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \times \prod_{E(3,5)} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \times \prod_{E(4,5)} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \]

 \[= \log(190s + 190t + 216st + 147) - \frac{1}{190s + 190t + 216st + 147} \log \left\{ 2(s + t) \right\}^{6} \]

 \[\times (9st + 7s + 6t + 5)(9)^{9} \times (9st + 7s + 6t + 5)(9)^{10} \].

 After simplifying the preceding expression, the following equation yields the precise value of the 1st K-Banhatti entropy:

 \[\text{ENT}_{B_1}(B_{12}) = \log(190s + 190t + 216st + 147) - \frac{1}{190s + 190t + 216st + 147} \log \left\{ 2(s + t) \right\}^{6} \]

 \[\times (3st + 3s + 2t + 5)(7)^{7} \times (3st + 3s + 5t + 5)(8)^{8} \times (9st + 7s + 6t + 5)(9)^{9} \]

 \[\times (9st + 7s + 6t + 3)(10)^{10} \].

- **The second K-Banhatti entropy of \textit{B}_{12}**

 Assume that \textit{B}_{12} is an icosahedral network of boron. Then, by using Equation (1) and the edge-partition of \textit{B}_{12}, the 2nd K-Banhatti entropy index is

 \[B_2(B_{12}) = 409s + 408t + 486st + 311 \]

 By using the edge-partition of \textit{B}_{12} and Equation (8) as described below,

 \[\text{ENT}_{B_2}(B_{12}) = \log(B_2) - \frac{1}{B_2} \log \left\{ \prod_{E(2,4)} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \times \prod_{E(2,5)} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \right\} \]

 \[\times \prod_{E(3,4)} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \times \prod_{E(3,5)} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \times \prod_{E(4,5)} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \]

 \[= \log(409s + 408t + 486st + 311) - \frac{1}{409s + 408t + 486st + 311} \log \left\{ 2(s + t) \right\}^{8} \]

 \[\times (9s + 2t + 1)_{16}^{16} \times (3st + 5t + 5)_{12}^{12} \times (3st + 2t + 3)_1^{15} \times (9st + 7s + 6t + 3)_2^{25} \].

- **The 1st hyper K-Banhatti entropy of \textit{B}_{12}**
Assume that B_{12} is an icosahedral network of boron. Then, by using the Equation (2) and the edge-partition of B_{12}, the 1^{st} K hyper Banhatti index is

$$HB_1(B_{12}) = 1678s + 1676t + 1968st + 1270$$

By using the edge-partition of B_{12} and Equation (9) as described below;

$$
\begin{align*}
\text{ENT}_{HB_1}(B_{12}) &= \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E(1,4)} \frac{(d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})}}{} \times \prod_{E(2,5)} \frac{(d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})}}{} \times \prod_{E(3,5)} \frac{(d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})}}{} \times \prod_{E(4,4)} \frac{(d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})}}{} \times \prod_{E(4,5)} \frac{(d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})}}{} \times \prod_{E(5,5)} \frac{(d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})}}{} \right) \\
&= \log (1678s + 1676t + 1968st + 1270) - \frac{1}{1678s + 1676t + 1968st + 1270} \\
&\times \log \left\{ 2(s + t)6^{72} \times 2(s + t)7^{128} \times (3st + s + 5)7^{98} \times (3st + 2s + 3t + 4)8^{128} \times (s + 2t + 1)10^{200} \right\}.
\end{align*}
$$

After simplification, we obtain

$$
\begin{align*}
\text{ENT}_{HB_1}(B_{12}) &= \log (1678s + 1676t + 1968st + 1270) - \frac{1}{1678s + 1676t + 1968st + 1270} \\
&\times \log \left\{ 2(s + t)6^{72} \times (3st + 2s + 3t + 5)7^{98} \times (3st + 7s + 6t + 5)9^{162} \times (9st + 7s + 7t + 3)10^{200} \right\}.
\end{align*}
$$

(16)

- **The 2nd hyper K-Banhatti entropy of B_{12}**

Assume that B_{12} is an icosahedral network of boron. Then, by using Equation (2) and the edge-partition of B_{12}, the 2nd K hyper Banhatti index is

$$HB_2(B_{12}) = 8233s + 8290t + 9972st + 5151$$

By using the edge-partition of B_{12} and Equation (10) as described below,

$$
\begin{align*}
\text{ENT}_{HB_2}(B_{12}) &= \log (HB_2) - \frac{1}{HB_2} \log \left(\prod_{E(1,4)} \frac{(d_{a_i} \times d_{a_j})^{2(d_{a_i} \times d_{a_j})}}{} \times \prod_{E(2,5)} \frac{(d_{a_i} \times d_{a_j})^{2(d_{a_i} \times d_{a_j})}}{} \times \prod_{E(3,5)} \frac{(d_{a_i} \times d_{a_j})^{2(d_{a_i} \times d_{a_j})}}{} \times \prod_{E(4,4)} \frac{(d_{a_i} \times d_{a_j})^{2(d_{a_i} \times d_{a_j})}}{} \times \prod_{E(4,5)} \frac{(d_{a_i} \times d_{a_j})^{2(d_{a_i} \times d_{a_j})}}{} \times \prod_{E(5,5)} \frac{(d_{a_i} \times d_{a_j})^{2(d_{a_i} \times d_{a_j})}}{} \right) \\
&= \log (8233s + 8290t + 9972st + 5151) - \frac{1}{8233s + 8290t + 9972st + 5151} \\
&\times \log \left\{ 2(s + t)8^{128} \times 2(s + t)10^{200} \times (3st + s + 5)12^{288} \times (3st + 2s + 3t + 4)15^{450} \times (s + 2t + 1)16^{512} \times (9st + 7s + 6t + 5)20^{900} \times (9st + 7s + 7t + 3)25^{1250} \right\}.
\end{align*}
$$

(17)

- **The 1st redefined Zagreb entropy of B_{12}**
Assume that B_{12} is an icosahedral network of boron. Then, by using Equation (4) and the edge-partition of B_{12}, the 1st redefined Zagreb index is

$$ReZG_1(B_{12}) = 11s + 11t + 9$$

By using the edge-partition of B_{12} and Equation (11) as described below,

$$ENT_{ReZG_1}(B_{12}) = \log \left(\frac{1}{ReZG_1(B_{12})} \right) \times \prod_{E_{(2,5)}} \left(\frac{d_{a_i} + d_{a_j}}{d_{a_i}d_{a_j}} \right)^{\frac{d_{a_i} + d_{a_j}}{d_{a_i}d_{a_j}}} \times \prod_{E_{(3,4)}} \left(\frac{d_{a_i} + d_{a_j}}{d_{a_i}d_{a_j}} \right)^{\frac{d_{a_i} + d_{a_j}}{d_{a_i}d_{a_j}}} \times \prod_{E_{(3,5)}} \left(\frac{d_{a_i} + d_{a_j}}{d_{a_i}d_{a_j}} \right)^{\frac{d_{a_i} + d_{a_j}}{d_{a_i}d_{a_j}}}
$$

$$= \log \left(\frac{1}{11s + 11t + 9} \right) \times \frac{1}{11s + 11t + 9} \times \log \left(2(s + t) \left(\frac{4}{3} \right)^{\frac{3}{2}} \times (s + t + 1) \left(\frac{1}{2} \right)^{\frac{1}{2}} \times (9s + 7s + 6t + 5) \left(\frac{9}{20} \right)^{\frac{3}{2}} \times (9s + 7s + 7t + 3) \left(\frac{2}{5} \right)^{\frac{3}{2}} \right). \quad (18)$$

The 2nd redefined Zagreb entropy of B_{12}

Assume that B_{12} is an icosahedral network of boron. Then, by using Equation (4) and the edge-partition of B_{12}, the 2nd redefined Zagreb index is

$$ReZG_2(B_{12}) = \frac{1}{504} (26847st + 23210s + 23175t + 18488)$$

By using the edge-partition of B_{12} and Equation (12) as described below,
\[
\text{ENT}_{\text{ReZG}_2}(B_{12}) = \log(\text{ReZG}_2) - \frac{1}{\text{ReZG}_2} \log \left\{ \prod_{E(2,4)} \left[\frac{d_{a_i} \times d_{a_j}}{d_{a_i} + d_{a_j}} \right]^{d_{a_i} \times d_{a_j}} \times \prod_{E(2,5)} \left[\frac{d_{a_i} \times d_{a_j}}{d_{a_i} + d_{a_j}} \right]^{d_{a_i} \times d_{a_j}} \times \prod_{E(3,4)} \left[\frac{d_{a_i} \times d_{a_j}}{d_{a_i} + d_{a_j}} \right]^{d_{a_i} \times d_{a_j}} \times \prod_{E(3,5)} \left[\frac{d_{a_i} \times d_{a_j}}{d_{a_i} + d_{a_j}} \right]^{d_{a_i} \times d_{a_j}} \right\}
\]

\[
= \log \frac{1}{504} \left(\frac{26847s + 23210s + 23175t + 18488}{26847s + 23210s + 23175t + 18488} \right) \times \log \left\{ \left(\frac{4}{3} \right)^{\frac{3}{2}} \times \left(\frac{7}{10} \right)^{\frac{9}{2}} \times \left(\frac{12}{7} \right)^{\frac{12}{7}} \times \left(\frac{15}{8} \right)^{\frac{15}{8}} \times 4(s + 2t + 1) \times (9st + 7s + 6t + 5) \left(\frac{20}{9} \right)^{\frac{20}{9}} \times (9st + 7s + 7t + 3) \left(\frac{5}{2} \right)^{\frac{5}{2}} \right\}. \quad (19)
\]

- The 3rd redefined Zagreb entropy of \(B_{12}\)

Assume that \(B_{12}\) is a hexagonal grid of benzenoid. Then, by using Equation (5) and the edge-partition of \(B_{12}\), the 3rd redefined Zagreb index is

\[
\text{ReZG}_3(B_{12}) = 4482st + 3698s + 3682t + 2678
\]

Now, we compute the 3rd redefined Zagreb entropy by using the edge-partition of \(B_{12}\) and Equation (13) as described below,

\[
\text{ENT}_{\text{ReZG}_3}(B_{12}) = \log(\text{ReZG}_3) - \frac{1}{\text{ReZG}_3} \log \left\{ \prod_{E(2,4)} \left[(d_{a_i} \times d_{a_j}) (d_{a_i} + d_{a_j}) \right]^{d_{a_i} \times d_{a_j}} \times \prod_{E(2,5)} \left[(d_{a_i} \times d_{a_j}) (d_{a_i} + d_{a_j}) \right]^{d_{a_i} \times d_{a_j}} \times \prod_{E(3,4)} \left[(d_{a_i} \times d_{a_j}) (d_{a_i} + d_{a_j}) \right]^{d_{a_i} \times d_{a_j}} \times \prod_{E(3,5)} \left[(d_{a_i} \times d_{a_j}) (d_{a_i} + d_{a_j}) \right]^{d_{a_i} \times d_{a_j}} \right\}
\]

\[
= \log \frac{1}{4482st + 3698s + 3682t + 2678} \times \log \left\{ 2(s + t) \left(\frac{48}{4} \right)^{\frac{48}{4}} \times (s + t) \left(\frac{70}{90} \right)^{\frac{70}{90}} \times (3st + s + 5) \left(\frac{84}{84} \right)^{\frac{84}{84}} \times (3st + 2s + 3t + 4) \left(\frac{120}{120} \right)^{\frac{120}{120}} \times (s + 2t + 1) \left(\frac{2890}{2890} \right)^{\frac{2890}{2890}} \times (9st + 7s + 6t + 5) \left(\frac{180}{180} \right)^{\frac{180}{180}} \times (9st + 7s + 7t + 3) \left(\frac{250}{250} \right)^{\frac{250}{250}} \right\}. \quad (20)
\]

2.2. Comparison of K-Banhatti and Redefined Zagreb Indices of \(B_{12}\)

Here, we present numerical and graphical comparison of K-Banhatti indices and redefined Zagreb indices of boron \(B_{12}\) for \(s = 2, 4, 6, \ldots, 16\) and \(t = 3, 5, 7, \ldots, 17\), in Table 1 and Figure 2 respectively.
Table 1. Comparison of K-Banhatti and redefined Zagreb indices of B_{12}.

<table>
<thead>
<tr>
<th>(s, t)</th>
<th>B_1</th>
<th>B_2</th>
<th>HB_1</th>
<th>HB_2</th>
<th>$ReZG_1$</th>
<th>$ReZG_2$</th>
<th>$ReZG_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2, 3)</td>
<td>2393</td>
<td>5269</td>
<td>21,462</td>
<td>106,319</td>
<td>130</td>
<td>586.35</td>
<td>48,012</td>
</tr>
<tr>
<td>(4, 5)</td>
<td>6177</td>
<td>13,707</td>
<td>55,722</td>
<td>278,973</td>
<td>328</td>
<td>1516.20</td>
<td>125,520</td>
</tr>
<tr>
<td>(6, 7)</td>
<td>11,689</td>
<td>26,033</td>
<td>105,726</td>
<td>531,403</td>
<td>614</td>
<td>2872.20</td>
<td>238,884</td>
</tr>
<tr>
<td>(8, 9)</td>
<td>18,929</td>
<td>42,247</td>
<td>171,474</td>
<td>863,609</td>
<td>988</td>
<td>4654.36</td>
<td>388,104</td>
</tr>
<tr>
<td>(10, 11)</td>
<td>27,897</td>
<td>62,349</td>
<td>252,966</td>
<td>1,275,591</td>
<td>1450</td>
<td>6862.68</td>
<td>573,180</td>
</tr>
<tr>
<td>(12, 13)</td>
<td>38,593</td>
<td>86,339</td>
<td>350,202</td>
<td>1,767,349</td>
<td>2000</td>
<td>9497.16</td>
<td>794,112</td>
</tr>
<tr>
<td>(14, 15)</td>
<td>51,017</td>
<td>114,217</td>
<td>463,182</td>
<td>2,338,883</td>
<td>2638</td>
<td>12,557.80</td>
<td>1,050,900</td>
</tr>
<tr>
<td>(16, 17)</td>
<td>65,169</td>
<td>145,983</td>
<td>591,906</td>
<td>2,990,193</td>
<td>3364</td>
<td>16,044.60</td>
<td>1,343,544</td>
</tr>
</tbody>
</table>

Figure 2. Graphical representation indices of B_{12}.

3. The Polyphenylenes Network

Polyphenylenes include benzenoid aromatic nuclei that are linked together by a carbon-carbon bond [40]. Polyphenylenes have been the subject of research for many years. Up until 1979, there was a lot of interest in polyphenylenes because of its thermal and thermo-oxidative stability. The quest for a single group of polymers that can be converted to another, such as an electrical insulator that can be transformed into an electrical conductor by utilizing doping with an electron acceptor or donor, is a key ongoing subject in polyphenylene [41].

Figure 3 for polyphenylenes $P_{[s,t]}$ has been shown.
In 2011, Zhen Zhou [42] indicated that two-dimensional polyphenylene is a conventional semiconductor with a large band gap and that the porous structure gives it a remarkable selectivity for H_2 permeability compared to CO_2, CO, and CH_4. This porous graphene, which has been tested, is likely to find use in a hydrogen-powered civilization.

In Figure 3, the dot lines represent the line of symmetry, with $6s(t+1)$ atoms on the left side and the same on the right. Here, in the $P_{[s,t]}$, there are two sorts of atoms v_i and a_j such that $d_{v_i} = 2$ and $d_{a_j} = 3$, where d_{v_i} and d_{a_j} mean the valency of atoms $v_i, v_j \in P_{[s,t]}$. The order and size of $P_{[s,t]}$, is

$$|P_{[s,t]}| = 12s(t+1) \quad S(P_{[s,t]}) = (30t + 13)s - t$$

From the symmetrical chemical structure of polyphenylene, $P_{[s,t]}$, we find the edge-partition of $P_{[s,t]}$ easily. The edge partition of polyphenylenes $P_{[s,t]}$ is shown in Table 2.

Table 2. Edge-partition of polyphenylenes $P_{[s,t]}$:

<table>
<thead>
<tr>
<th>Edge-Partition</th>
<th>$E_{(2\sim2)}$</th>
<th>$E_{(2\sim3)}$</th>
<th>$E_{(3\sim3)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of bonds</td>
<td>$4(2s + t)$</td>
<td>$4(6st + s - t)$</td>
<td>$(6st + s - t)$</td>
</tr>
</tbody>
</table>

- **Entropy related to the 1st K-Banhatti index of $P_{[s,t]}$**

Assume that $P_{[s,t]}$ is a network of benzenoid aromatic nuclei in polyphenylenes. Equation (1) and Table 2 are then used to calculate the 1st K Banhatti index:

$$B_1(P_{[s,t]}) = 26s + 42t + 188st$$
By using Table 2 and Equation (7) as follows:

\[ENT_{B_1}(P_{[s,t]}) = \log (B_1) - \frac{1}{B_1} \log \left\{ \prod_{E_{\{2,3\}}} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \times \prod_{E_{\{3,3\}}} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \right\} \]

\[\times \prod_{E_{\{3,3\}}} (d_{a_i} + d_{a_j})^{(d_{a_i} + d_{a_j})} \]

\[= \log (26s + 42t + 188st) - \frac{1}{26s + 42t + 188st} \log \left\{ 4(2st + t)4^4 \right\} \times 4(6st + s - t)6^5 \times (6st + s - t)6^6 \]

After simplification, we obtain

\[ENT_{B_1}(P_{[s,t]}) = \log (26s + 42t + 188st) - \frac{1}{26s + 42t + 188st} \log \left\{ 356984st + 59156s - 58132t \right\}. \tag{21} \]

- **Entropy related to 2nd K-Banhatti index of P_{[s,t]}**

Assume that P_{[s,t]} is a network of benzenoid aromatic nuclei in polyphenylenes. Then, by using Equation (1) and Table 2, the 2nd K-Banhatti index is

\[B_2(P_{[s,t]}) = 33s + 49t + 230st \]

By using Table 2 and Equation (8) as described below:

\[ENT_{B_2}(P_{[s,t]}) = \log (B_2) - \frac{1}{B_2} \log \left\{ \prod_{E_{\{2,2\}}} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \times \prod_{E_{\{2,3\}}} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \right\} \]

\[\times \prod_{E_{\{3,3\}}} (d_{a_i} \times d_{a_j})^{(d_{a_i} \times d_{a_j})} \]

\[= \log (33s + 49t + 230st) - \frac{1}{33s + 49t + 230st} \log \left\{ 4(2st + t)4^4 \right\} \times 4(6st + s - t)6^6 \times (6st + s - t)9^9 \]. \tag{22} \]

- **Entropy related to the 1st K hyper Banhatti index of P_{[s,t]}**

Assume that P_{[s,t]} is a network of benzenoid aromatic nuclei in polyphenylenes. The 1st hyper Banhatti index is then determined using Equation (2) and Table 2

\[HB_1(P_{[s,t]}) = 8(118st + 17s + 25t) \]

By using Table 2 and Equation (10) as described below:

\[ENT_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left\{ \prod_{E_{\{2,2\}}} (d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})} \times \prod_{E_{\{2,3\}}} (d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})} \right\} \]

\[\times \prod_{E_{\{3,3\}}} (d_{a_i} + d_{a_j})^{2(d_{a_i} + d_{a_j})^2} \]

\[= \log (8(118st + 17s + 25t)) - \frac{1}{8(118st + 17s + 25t)} \log \left\{ 4(2st + t)4^{32} \right\} \times 4(6st + s - t)5^{30} \times (6st + s - t)6^{72} \]. \tag{23} \]

- **Entropy related to the 2nd K hyper Banhatti index of P_{[s,t]}**
Assume that $P_{[s,t]}$ is a network of benzenoid aromatic nuclei in polyphenylenes. The 2nd K hyper Banhatti index is then calculated using the Equation (2) and Table 2:

$$HB_2(P_{[s,t]}) = 225s + 289t + 1478st$$

By using Table 2 and Equation (10) as described below,

$$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$$

By using Table 2 and Equation (10) as described below,

$$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$

$\text{ENT}_{HB_1}(P_{[s,t]}) = \log (HB_1) - \frac{1}{HB_1} \log \left(\prod_{E_{(2,2)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2 \right) \times \prod_{E_{(3,3)}} (d_{a_i} + d_{a_j})^2 (d_{a_i} + d_{a_j})^2$
\[
\text{ENT}_{\text{ReZG}}(\mathbf{P}_{[s,t]}) = \log (\text{ReZG}_2) - \frac{1}{\text{ReZG}_2} \log \left\{ \prod_{E(2,2)} \left[\frac{d_u d_v}{d_u + d_v} \right]^{\frac{d_u d_v}{d_u + d_v}} \times \prod_{E(2,3)} \left[\frac{d_u d_v}{d_u + d_v} \right]^{\frac{d_u d_v}{d_u + d_v}} \right\} \\
\times \prod_{E(3,3)} \left[\frac{d_u d_v}{d_u + d_v} \right]^{\frac{d_u d_v}{d_u + d_v}} = \log (158st + 13s + 27t) \\
- \frac{1}{158st + 13s + 27t} \log \left\{ 4(2st + t) \times 4(6st + s - t)(\frac{6}{5})^s \right\} \\
\times (6st + s - t)(\frac{3}{2})^t \right\}.
\]

• Entropy related to the 3rd redefined Zagreb index of \mathbf{P}_{[s,t]}

Assume that \(\mathbf{P}_{[s,t]} \) is a network of benzenoid aromatic nuclei in polyphenylenes. The 3rd redefined Zagreb index is then obtained using Equation (5) and Table 2

\[
\text{ReZG}_3(\mathbf{P}_{[s,t]}) = 1172st + 174s - 110t
\]

By using Table 2 and Equation (13) as described below,

\[
\text{ENT}_{\text{ReZG}}(\mathbf{P}_{[s,t]}) = \log (\text{ReZG}_3) - \frac{1}{\text{ReZG}_3} \log \left\{ \prod_{E(2,2)} [(d_u d_v)(d_u + d_v)]^{\frac{(d_u d_v)(d_u + d_v)}{(d_u d_v)(d_u + d_v)}} \times \prod_{E(2,3)} [(d_u d_v)(d_u + d_v)]^{\frac{(d_u d_v)(d_u + d_v)}{(d_u d_v)(d_u + d_v)}} \times \prod_{E(3,3)} [(d_u d_v)(d_u + d_v)]^{\frac{(d_u d_v)(d_u + d_v)}{(d_u d_v)(d_u + d_v)}} \right\} \\
\times \frac{1}{1172st + 174s - 110t} \log \left\{ 4(2st + t)^{54} \times 4(6st + s - t)(54)^{54} \right\}.
\]

Comparison of K-Banhatti and Redefined Zagreb Indices of \mathbf{P}_{[s,t]}

In this section, we present numerical and graphical comparison of \(B_1, B_2, 3, HB_1, HB_2, \text{ReZG}_1, \text{ReZG}_2 \) and \(\text{ReZG}_3 \) of polypheklenes \(\mathbf{P}_{[s,t]} \) for \(s, t = 1, 2, 3, \ldots, 11 \), in Table 3 and Figure 4 respectively.

Table 3. K-Banhatti and redefined Zagreb indices of \mathbf{P}_{[s,t]}

<table>
<thead>
<tr>
<th>((s,t))</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(HB_1)</th>
<th>(HB_2)</th>
<th>(\text{ReZG}_1)</th>
<th>(\text{ReZG}_2)</th>
<th>(\text{ReZG}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>256</td>
<td>312</td>
<td>1280</td>
<td>1992</td>
<td>120</td>
<td>198</td>
<td>1236</td>
</tr>
<tr>
<td>(2,2)</td>
<td>888</td>
<td>1084</td>
<td>4448</td>
<td>6940</td>
<td>432</td>
<td>712</td>
<td>4816</td>
</tr>
<tr>
<td>(3,3)</td>
<td>1896</td>
<td>2316</td>
<td>9504</td>
<td>14844</td>
<td>936</td>
<td>1542</td>
<td>10740</td>
</tr>
<tr>
<td>(4,4)</td>
<td>3280</td>
<td>4008</td>
<td>16448</td>
<td>25704</td>
<td>1632</td>
<td>2688</td>
<td>19008</td>
</tr>
<tr>
<td>(5,5)</td>
<td>5040</td>
<td>6160</td>
<td>25280</td>
<td>39520</td>
<td>2520</td>
<td>4150</td>
<td>29620</td>
</tr>
<tr>
<td>(6,6)</td>
<td>7176</td>
<td>8772</td>
<td>36000</td>
<td>56292</td>
<td>3600</td>
<td>5928</td>
<td>42576</td>
</tr>
<tr>
<td>(7,7)</td>
<td>9688</td>
<td>11844</td>
<td>48608</td>
<td>76020</td>
<td>4872</td>
<td>8022</td>
<td>57876</td>
</tr>
<tr>
<td>(8,8)</td>
<td>12576</td>
<td>15376</td>
<td>63104</td>
<td>98704</td>
<td>6336</td>
<td>10432</td>
<td>75520</td>
</tr>
<tr>
<td>(9,9)</td>
<td>15840</td>
<td>19368</td>
<td>79488</td>
<td>124344</td>
<td>7992</td>
<td>13158</td>
<td>95508</td>
</tr>
<tr>
<td>(10,10)</td>
<td>19480</td>
<td>23820</td>
<td>97760</td>
<td>152940</td>
<td>9840</td>
<td>16200</td>
<td>117840</td>
</tr>
<tr>
<td>(11,11)</td>
<td>23496</td>
<td>28732</td>
<td>117920</td>
<td>184492</td>
<td>11880</td>
<td>19558</td>
<td>142516</td>
</tr>
</tbody>
</table>
4. Conclusions

We investigated a variety of imperative molecules, namely boron B_{12} and polyphenylenes $P_{[s,t]}$ and estimated their valency-based K Banhatti indices using four K Banhatti polynomials by a set partition using an atom-bonds approach. The acquired results are valuable in anticipating numerous molecular features of chemical substances, such as boiling point, electron energy, pi, pharmaceutical configuration, and many more concepts. Using Shannon’s entropy and Chen et al.’s entropy’s definitions, we looked into the graph entropies connected to a novel information function and assessed the link between degree-based topological indices and degree-based entropies in this work. Industrial chemistry has a strong foundation in the concept of distance-based entropy. It is employed to determine the electronic structure, signal processing, physicochemical reactions, and complexity of molecules and molecular ensembles. Together with chemical structure, thermodynamic entropy, energy, and computer sciences, the K-Banhatti entropy can be crucial in linking different fields and serving as the basis for future interdisciplinary research. We intend to extend this idea to different chemical structures in the future, opening up new directions for study in this area. Furthermore, we can compute more results by using the valency-based technique for these symmetrical chemical structures.

Author Contributions: Conceptualization, M.U.G. and F.J.H.C.; methodology, M.U.G.; software, F.J.H.C.; validation, S.D. and S.A.; formal analysis, S.A.; investigation, M.U.G.; resources, A.M.G.; data curation, F.J.H.C.; writing—review and editing, S.D.; visualization, M.C.; supervision, F.J.H.C. and S.A.; project administration, F.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

Data Availability Statement: No data were used to support this study.
Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tag El Din, E.S.M.; Sultan, F.; Ghani, M.U.; Liu, J.-B.; Dehraj, S.; Cancan, M.; Alharbi, F.M.; Alhushaybari, A. Some Novel Results Involving Prototypical Computation of Zagreb Polynomials and Indices for SiO 4 Embedded in a Chain of Silicates. *Molecules* 2022, 28, 201. [CrossRef]
28. Chen, Z.; Dehmer, M.; Shi, Y. A Note on Distance-based Graph Entropies. *Entropy 2014*, 16, 5416–5427. [CrossRef]
33. Misagh, F.; Yari, G. Interval Entropy and Informative Distance. *Entropy* 2012, 14, 480–490. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.