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Abstract: Reversible data hiding in encrypted images (RDHEI) is commonly used for privacy protec-
tion in images stored on cloud storage. Currently, block permutation and co-modulation (BPCM)
encryption is commonly utilized in most existing RDHEI schemes to generate encrypted images. In
this paper, we analyze the vulnerabilities of RDHEI based on BPCM encryption and then propose a
cryptanalysis method based on the vector quantization (VQ) attack. Unlike the existing cryptanalysis
method, our method does not require the help of a plaintext image instead of adopting the sym-
metric property between the original cover image and the encrypted cover image. To obtain the
pixel-changing pattern of a block before and after co-modulation, the concept of a pixel difference
block (PDB) is first defined. Then, the VQ technique is used to estimate the content of the ciphertext
block. Finally, we propose a sequence recovery method to help obtain the final recovered image based
on the premise that the generator is compromised. The experimental results demonstrate that when
the block size is 4 × 4, our proposed cryptanalysis method can decrypt the contents of the ciphertext
image well. The average similarity can exceed 75% when comparing the edge information of the
estimated image and the original image. It is concluded from our study that the BPCM encryption
algorithm is not robust enough.

Keywords: reversible data hiding; co-modulation; vector quantization; block permutation and
co-modulation; cryptanalysis

1. Introduction

With the rapid development of big data technology and cloud computing, cloud
servers have become the most suitable option for storing data online [1,2]. The biggest
advantage of cloud services is that users can access data from anywhere in the world. This
not only increases productivity but also makes it easier for users to back up their data
remotely. However, the leakage of private data has led to security concerns about the
separation of private ownership and data management in cloud storage technologies [3].
To solve this problem, scholars began to investigate how cryptography and reversible data
hiding in encrypted images (RDHEI) can be combined and applied in cloud environments.
Since then, RDHEI has become a hot topic of research for scholars.

In general, RDHEI can be classified into two main categories: vacating room before
encryption (VRBE) [4–7] and vacating room after encryption (VRAE) [8–20]. Yi et al. [21]
pointed out that although a large amount of redundant space can be reserved from the orig-
inal image using the VRBE-based approach, it is not feasible in practical applications. Thus,
many scholars have focused on the study and development of VRAE-based schemes. Since
the performance of VRAE-based RDHEI is directly affected by the encryption algorithm
of the image, traditional encryption methods, e.g., the Data Encryption Standard (DES)
algorithm [22] and permutation encryption [23], are difficult to use directly for RDHEI.
Because the correlation between adjacent pixels is destroyed in such encrypted images, it is
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difficult to reserve the redundant space to carry the secret data. In order to hide data in the
encrypted image and then generate the embedded encrypted image without destroying
the decrypted image, special encryption algorithms need to be designed for VRAE-based
RDHEI. The stream cipher technique [8,10] and block permutation operation [24–26] are
two commonly used encryption methods in VRAE-based RDHEI.

As an example, the stream cipher technique consists of two steps: (1) generate a
random sequence of the key stream and (2) encrypt each pixel using a bitwise exclusive-
or operation with a key. The stream cipher technique provides high security but breaks
the correlation between adjacent pixel values. With this method, data hiders can embed
secret data only by changing the positions or modifying the values of the encrypted pixels.
Therefore, the embedding rate of RDHEI based on the stream cipher technique is very low.
For block permutation encryption, the plaintext image is divided into non-overlapping
blocks. Then, these blocks are permutated using the encryption key. This type of encryption
preserves the correlation within the plaintext blocks in the encrypted image. Compared
with the stream cipher technique, block permutation can greatly increase the embedding
rate of RDHEI.

In fact, it is a great challenge to obtain the best tradeoff between the payload, the
quality of the reconstructed image and the security of the image content. In recent years,
most existing VRAE-based RDHEI algorithms have been evaluated based on two con-
flicting measures, i.e., the embedding capability of the algorithm and the visual quality
of the decrypted image. However, the security of encrypted images is also an important
issue of the RDHEI algorithm that cannot be ignored because it is related to whether the
privacy of the image owner can be guaranteed [27]. It is well known that known-plaintext
attack (KPA) is commonly used to analyze the security of the image encryption algorithm.
Li et al. pointed out in [28] that the permutation-only encryption algorithm has been shown
to be unable to resist the KPA. In other words, the block permutation encryption adopted
in RDHEI [24–26] is insecure.

To enhance the embedding capacity without compromising the security of the en-
crypted image, scholars have tried to design a new encryption algorithm by combining
the stream cipher technique and a block permutation operation for RDHEI [29,30]. Taking
the encrypted algorithm used in [29] for example, the original image with a size of H ×W
is divided into non-overlapping blocks with a size of 4× 4 pixels, and all the blocks are
shuffled using the encryption key, where H is the height and W is the width of the original
image. Then, a pseudo-random matrix with a size of bH/4c × bW/4c pixels is generated
using the same encryption key, and each block is encrypted with a random number in the
same position of the pseudo-random matrix by a pixel-wise modulo operation. Scholars
have named this type of encryption algorithm the block permutation and co-modulation
(BPCM) algorithm, which can effectively retain the correlation among the pixels inside a
block. This algorithm can effectively enhance the embedding rate of RDHEI. In addition,
the BPCM algorithm can effectively resist exciting KPAs [31,32]. The reasons are (1) the
image block’s positions are disrupted after image encryption, which breaks the correlation
between neighboring blocks; and (2) the pixel values are changed after co-modulation,
which violates the premise of existing KPAs.

Recently, there have been some research reports on the security analysis of RDHEI
under the assumption that the data hider may not be trusted and may be aware of one
plaintext image for a given set of encrypted images [31–34]. Among them, [33] is the most
representative report. In [33], the authors also assumed that the content owner used the
same key to encrypt plaintext images. Based on the above assumptions, the data hider can
estimate the secret key and recover all the encrypted images by comparing the plaintext
image with its corresponding encrypted image. However, with the issue of information
security awareness, fewer and fewer content owners continue to encrypt their images with
the same secret key. In other words, the cryptanalysis proposed by [33] may not work in
various situations. To analyze the security performance of BPCM, a cryptanalysis method
to crack BPCM called a vector quantization attack (VQA), is proposed in this paper. Our
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proposed cryptanalysis algorithm can roughly recover the plaintext content of encrypted
images without secret key awareness. The main contributions of this paper are summarized
as follows:

1. VQA: The vector quantization technique is used for the first time to estimate the
plaintext of each encrypted image block.

2. Direct cracking: Unlike the existing KPA algorithm [33], the cryptanalysis algorithm
proposed in this paper does not require the assistance of the plaintext image when
cracking the plaintext content of encrypted images.

The rest of this paper is organized as follows. Section 2 introduces the preliminary
works. In Section 3, we describe in detail the cryptoanalysis based on the vector quantiza-
tion attack (called VQA for short) proposed in this paper. In Section 4, the experimental
results of the proposed cryptanalysis algorithm are provided. The limitations and conclu-
sions are presented in Sections 5 and 6, respectively.

2. Preliminary Work

In this section, we briefly analyze the characteristics and security of BPCM encryption.
Then, the vector quantization technique is introduced in detail, which is the key point of
our cryptanalysis method.

2.1. Analysis of BPCM Encryption

Assume the original grayscale image O with a size of H ∗W pixels is divided into
K mutually exclusive blocks O = {Bi|i = 1, 2, . . . , K}, where the i-th plaintext block
Bi = {bi,j|j = 1, 2, . . . , Kb}, and Kb = (H ∗W)/K is the number of pixels in Bi. The detailed
steps of BPCM encryption are listed as follows:

Step 1: Block permutation: A permutation sequence Ω, Ω = {Ωi|i = 1, 2, . . . , K},
is generated by a random permutation generator with a key seed Key1. Then, the po-
sition of each block Bi is shuffled by Ωi, and the first stage of the encryption image
X = {B′i |i = 1, 2, . . . , Kb and B′Ωi

= Bi} is obtained.
Step 2: Block co-modulation: A stream cipher S = {si|si ∈ [0, 255] and i = 1, 2, . . . , Kb}

is produced using a random number generator with a secret key Key2. For each block
B′i = {b′i,j|j = 1, 2, . . . , Kb} in X, all the pixels are encrypted according to Equation (1) to
obtain a final encrypted block Ei = {ei,j|j = 1, 2, . . . , Kb}, and the final encryption image Y,
Y = {Ei|i = 1, 2, . . . , K} is obtained.

ei,j = (b′i,j + si) mod 256. (1)

In general, the BPCM algorithm has the following characteristics:

1. Large encryption space. In theory, two keys of the BPCM encryption can bring
K!× 256K different encryption results. Taking a greyscale image (512× 512) as an
example, when the size of the block is 4× 4 pixels, there are 16384!× 25616384 encryp-
tion results, which is much greater than 2100. Thus, with the current level of computer
hardware, it is difficult to break BPCM encryption using exhaustive brute-force attacks.

2. Resisting the existing KPAs. Since the BPCM algorithm changes the pixels within
each block, even if the plaintext image is obtained, the existing KPA methods [31,32]
cannot estimate the permutation sequence Ω and crack the content of the image by
comparing the encrypted block with the original block.

3. Increasing the embedding capacity. Although the BPCM algorithm changes the pixel
values in each block, it does not destroy the correlation among the pixels inside the
block. Thus, BPCM-based RDHEI schemes [29,30] can take the advantage of this
characteristic to create redundant space and embed secret data. In BPCM-based
schemes, the block size is usually set to 4× 4 in order to maintain a balance between
the embedding capacity and the security. The embedding rate of such schemes can
usually reach more than 2.5 bpp.
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However, BPCM also has serious security problems, mainly due to the following reasons:

1. The permutation sequence Ω of BPCM is generated by a random permutation genera-
tor and a secret key Key1. The receiver must use the same generator as the content
owner when decrypting the image; therefore, the generator must be transmitted
from the content owner to the receiver, which gives the attacker the possibility of
stealing the generator. Once the attacker has obtained the generator, he can obtain the
permutation sequence by exhaustively trying the secret key.

2. The correlation of the pixels within most blocks remains unchanged, and the attacker
can use these correlations to estimate the plaintext content of the block.

In Section 3, we will use the features of the BPCM algorithm discussed above to design
a cracking algorithm called the vector quantization attack (VQA) algorithm.

2.2. Vector Quantization

The vector quantization algorithm is a compression technique that encodes a digital
image into an index table. As shown in Figure 1, the original image is divided into exclusive
non-overlapping blocks. Then, for each block, the Euclidean distance between the block
and each codeword is calculated, and the index with the smallest value is recorded on the
index table. With the above steps, the original image is compressed into an index table.
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Figure 1. An illustration of the VQ technique.

In the decoding stage, the index table is processed sequentially. According to each
index value, a codeword can be arranged to reconstruct a decompressed image. The visual
quality of the decompressed image depends mainly on the codewords in the codebook. The
more the pixel variation characteristics of the codewords contained in the codebook match
the natural image blocks and the more diversity there is, the better the approximation that
is achieved.

As mentioned above, the codebook determines the quality of the compressed image.
A typical strategy is to obtain a good codebook through training. The training process is
as follows:

Step 1: Select four to six greyscale images as training samples.
Step 2: Divided all the images into exclusive non-overlapping blocks and derive a set

of block candidates.
Step 3: Select n blocks randomly from the set of block candidates generated in Step 2

as the initial centroids, where n represents the number of centroids.
Step 4: Calculate the Euclidean distances between the remaining blocks and the

centroids and group them according to the minimum value.
Step 5: Recalculate the new n centroids.
Step 6: Repeat the above five steps until the recalculated n centroids are stable.
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3. Proposed Cryptanalysis Based on the VQA

The main purpose of the attack on RDHEI is to obtain the plaintext content of the
ciphertext image. However, the existing cryptanalysis methods are designed based on
the premise that one of the plaintext images is known. How to crack the content of the
ciphertext image when the plaintext image is unknown is a problem worth investigating.
To achieve our goal, we define a pixel difference block (PDB) in Section 3.1 to present the
pixel-changing pattern in each image block. Later, PDB is applied and our proposed VQ
attack is presented. Finally, a novel cryptanalysis method for block permutation sequence
estimation is proposed. The flowchart of the proposed method is shown in Figure 2.

Figure 2. Flowchart of the proposed cryptanalysis method.

3.1. Pixel Difference Block

In this subsection, we define a pixel difference block (PDB) as the structure that reflects
the pixel-changing pattern in each image block. For an encrypted image block Ei = {ei,j|j =
1, 2, . . . , Kb} containing Kb pixels and j = 1, 2, . . . , Kb, its PDB DE

i = {dE
i, j|j = 1, 2, . . . , Kb− 1}

of Ei is calculated as follows:

dE
i,j = ei,j+1 − ei,j, j = 1, 2, . . . , Kb − 1, (2)

where DE
i represents the PDB of the encrypted image block Ei.

According to Equation (2), the ciphertext difference image DE is obtained by
Equation (3).

DE = {DE
i |j = 1, 2, . . . , K}, (3)

where K is the number of blocks.
Depending on the co-modulation key si, the plaintext image block B′i and its corre-

sponding Ei can be divided into two cases:

Case 1 :
{
(min(B′i) + si)− 256 > 0
(max(B′i) + si)− 256 < 0

, (4)

Case 2 : Others, (5)

where min(B′i) and max(B′i) are the minimum and maximum pixel values in B′i , respectively.
That is, when Ei satisfies Case 1, the PDBs of Ei and its corresponding plaintext block B′i
are the same. When Ei satisfies Case 2, part of the values in Ei will overflow, which causes
the PDBs of Ei and B′i to be different.

To illustrate Cases 1 and 2, Figure 3 shows an example (taking 4× 4 blocks of “Lena” for
example). For plaintext block B′i , when the block co-modulation key is si = 30 and si = 100,
respectively, two groups of corresponding ciphertext image blocks Ei are generated. As
shown in Figure 3, part of the values in Ei of Case 2 are overflowed and marked in RED
after co-modulation, which leads to a change in some values in its corresponding PDB.
However, the values in the PDB of Case 1 do not change after co-modulation. Thus, when
the ciphertext image block Ei belongs to Case 1, the PDB of Ei can fully reflect the changing
pattern of the current plaintext block, and it can be used to estimate its corresponding
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plaintext content. When the ciphertext image block Ei belongs to Case 2, the encrypted
pixel has an overflow problem after co-modulation. Thus, the PDB of Ei only reflects the
partial changing pattern of the current plaintext block. Therefore, an advanced algorithm is
designed and described in Section 3.2 to estimate its corresponding plaintext content.

1 

 

 

Figure 3. PDBs of the plaintext image block and the corresponding ciphertext image block.

3.2. Plaintext Block Estimation Based on the VQ Attack

Figure 3 demonstrates that even if a plaintext image block is encrypted, its correspond-
ing ciphertext image block may retain either all or some of the pixel-changing patterns
according to the block’s type. As mentioned above, a well-trained VQ codebook can provide
codewords that approximate real image blocks, and it can be used to estimate the contents
of the ciphertext image blocks. If a ciphertext block belongs to Case 1, the codebook can be
used directly to find the most suitable plaintext block for the current ciphertext block. If a
ciphertext block belongs to Case 2, then the search range of the codebook shall be expanded
to simulate the overflow problem caused by co-modulation on the image block and find
the suitable plaintext block. In this section, the method of plaintext block estimation based
on the VQ attack is proposed.

Assume that the length of the codeword wi = {wi,j|j = 1, 2, . . . , Kb} in codebook U
has the same length as the number of pixels in the ciphertext image block. The PDBs
DU = {DU

i |j = 1, 2, . . . , l} of wi can be calculated by Equation (2), where l is the number of
codewords. The detailed steps of the plaintext block estimation are as follows:

Step 1: For a ciphertext block Ei, calculate the complex C of Ei according to
Equation (6).

C = max(Ei)−min(Ei). (6)

If the value of C does not exceed the threshold th, then treat Ei as a normal block;
otherwise, treat Ei as an abnormal block.

Step 2: Calculate the PDBs DE
i and DU of Ei and U, respectively.
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Step 3.1: If Ei is a normal block, compare DE
i and DU according to Equation (7) until

the DU
c that is closest to DE

i is found. Then, mark the wc according to c.

DU
c = argmin(

c

Kb−1

∑
j=1

(DE
ij − DU

cj )
2
, where c = 1, 2, . . . , l). (7)

Step 3.2: If Ei is an abnormal block, expand each codeword wi to wq
i (q = 0, 1, . . . 255),

as shown in Equation (8), and calculate the PDBs DŨ of the new codebook Ũ.

wq
i =

{
wq

ij

∣∣∣(wij + q) mod 256, where j = 1, 2, . . . , Kb && q = 0, 1, . . . , 255
}

. (8)

Step 3.3: Compare DE
i and DŨ to find the DŨ

c̃ that is closest to DE
i as Step 4.1. Then,

mark the wc from the original codebook U according to Equation (10).

DŨ
c̃ = argmin(

c̃

Kb−1

∑
j=1

(DE
ij − DŨ

c̃j )
2
, where c̃ = 1, 2, . . . , 256 ∗ l), (9)

c = c̃ mod 256. (10)

Step 4: Replace Ei with wc.

3.3. Block Permutation Sequence Ω Estimation

By estimating the block content of the ciphertext block, each ciphertext block Ei is
replaced by a VQ codeword that reflects the pixel-changing pattern of Ei and its corre-
sponding plaintext block B′i . Next, we can roughly recover the content of the image by
obtaining the block permutation sequence Ω.

In our hypothesis, the attacker can obtain the random permutation generator G.
Therefore, the attacker can obtain all the permutation sequences generated from G by
exhausting all the secret keys. It is worth mentioning that the current encryption software
is limited to the length of the secret key, so it takes less time to exhaustively try all the secret
keys than to try all the permutations. For example, in MATLAB, the length of the secret key
cannot exceed 232 = 4, 294, 967, 296, and the type must be an integer. After obtaining G, we
only need to try all the secret keys to generate 232 sequences and find the most suitable one
instead of finding one among the original 16384! sequences. However, it is an extremely
difficult task to find the most suitable sequence among 232 results by manual inspection.
Therefore, a screen idea is proposed below to reduce the search scope.

In a normal image, the pixel values between adjacent blocks are highly close to each
other. Abrupt changes only appear at the edge positions, which are relatively rare according
to the statistics. We propose a complexity detection method based on this characteristic
of the adjacent blocks. As illustrated in Figure 4a, the green pixel sequence in the top-left
block is P = {pi|i = 1, 2, . . . , 7} and the adjacent pixel sequence is Q = {qi|i = 1, 2, . . . , 7}.
Note that, q4 is the mean value of the two pixels that are adjacent to p4. The complexity γ

of the region where the current block is located is defined as:

γ = ∑
i
|pi − qi|, where i = 1, 2, . . . , 7. (11)
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Next, as shown in Figure 4b, add the γ of all the blocks to represent the complexity Γ
of the whole image. Finally, the complexity Γ of the recovered image is calculated for each
sequence key, and the minimum 5% of the images with the smallest complexity are selected
for manual screening.

4. Experimental Results

In this section, some experiments are conducted to evaluate the situation of information
leakage under the VQA. As shown in Figure 5, five 512 × 512 sized grayscale standard
test images are used: Airplane, Lena, Peppers, Baboon and Elaine. All the programs are
implemented with MATLAB R2017a.
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4.1. Analysis of the PDBs of Ciphertext Image

In this section, the characteristics of the PDB are analyzed. The experimental results
of “Lena” are shown in Figure 6, where the histograms together with the 3D views of the
pixel values of the plaintext image and its corresponding ciphertext image, generated by
the BPCM encryption under a 4 × 4 block size, are given. We first observe the histograms
of the test images. As shown in the figure, the histogram of the ciphertext image is uniform
and like the distribution of white noise.
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The distribution of the histogram shows that the BPCM encryption is effective. How-
ever, when we analyze the PDB of the image blocks of the ciphertext image, we find that
the PDB of most of the image blocks does not change after encryption. Figure 7 is given
to illustrate the distribution of the blocks belonging to Case 2. As shown in the figure, the
white and black blocks represent that the current block belongs to the above-mentioned
Cases 1 and 2 after encryption, respectively. Figure 7a illustrates that the image blocks
belonging to Case 2 are mostly distributed in the regions where the textures are complex.
Thus, in an encrypted image, we can obtain the changing pattern in most of the encrypted
blocks, which helps to crack the plaintext content of the whole ciphertext image.
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4.2. Analysis of the Estimation of the Plaintext Block

With our proposed VQA, when the attacker obtains a ciphertext image encrypted by
BPCM, the attacker first divides the image into blocks and uses the PDB of each block to
find the most suitable VQ codeword instead of this block. The experimental results of the
test images “Lena” and “Airplane” are shown in Figure 8, where the histograms of the
pixel values of the ciphertext image and the estimated image are given. As shown in the
figure, the histograms of the estimated image become irregular, which means that each
encrypted block is replaced by a suitable plaintext block.
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4.3. Analysis of the Estimation of Permutation Sequence Ω

Once the estimated image is obtained, the attacker uses the block permutation se-
quence estimation method described in Section 3.3 to find the most suitable sequence Ω
from the sequence generator. After obtaining the sequence Ω, the attacker can recover
the estimated image as a fuzzy plaintext image to successfully crack the plaintext image
content. Figure 9 shows the recovery result of “Lena” (the size of the codebook = 100). As
shown in Figure 9c, we can obtain the content of the original image from the recovered
fuzzy plaintext image. In addition, we mark the edge of the recovered fuzzy plaintext
image by the pixel difference (PD) within each block:

PDi = ∑
j
|pi,j+1 − pi,j|, (12)

where pi,j represents the j-th pixel in the i-th block. After calculating the PD of each block,
we mark the block as white when the PD of the block is greater than the APD (average
pixel difference), and vice versa.

APD = mean

(
∑

i
PDi

)
. (13)
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To test the effect of the generated codebook on the recovery results, we conduct three
sets of experiments, where the codebook is trained by the plaintext images related to the
encrypted images; the codebook is trained by the plaintext images that are completely
unrelated to the encrypted images; and the codebook is trained with larger size blocks. We
use the edge similarity to evaluate the accuracy of the recovered fuzzy plaintext image,
which is defined as:

Similarity = (1− Ham(edge (O), edge (R)) )× 100%, (14)

where Ham(edge (O), edge (R)) represents the Hamming distance between the edge of
the original plaintext image and the recovered fuzzy plaintext image. By comparing the
similarity, we can see that they are close (similarity = 83%).

As shown in Figures 10 and 11, when we use a small-sized codebook (with a block
size = 4 × 4), the diversity of the recovered image blocks is decreased; however, better
recovery results are achieved for smooth images (e.g., Airplane). When we increase the
block size to 8 × 8 pixels and train the codebook, as shown in Figure 12, there is an obvious
block effect in the recovery results, so the visual quality of the decrypted image decreased.
In other words, we can conclude that a better recovered image can be obtained when the
block size is 4 × 4 compared with a block size of 8 × 8. Moreover, the smaller codebook
provides relatively better image quality for the recovered image than the larger codebook,
no matter what kind of source of codebook training.
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Figure 10. Experimental results using different sizes of codebooks that are trained by “Lena” and
“Airplane”. (Block size = 4× 4). (a1–a5) are the edges of the original images; (b1–b5) are the estimated
images when the size of codebook is 100; (c1–c5) are the edges of (b1–b5); (d1–d5) are the estimated
images when the size of codebook is 64; (e1–e5) are the edges of (d1–d5); (f1–f5) are the estimated
images when the size of codebook is 32; (g1–g5) are the edges of (f1–f5).
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= 4 × 4). (a1–a5) are the edges of the original images; (b1–b5) are the estimated images when the size
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Figure 12. Experimental results using different sizes of codebooks that are trained by (h). (Block size
= 8 × 8). (a1–a5) are the edges of the original images; (b1–b5) are the estimated images when the size
of codebook is 100; (c1–c5) are the edges of (b1–b5); (d1–d5) are the estimated images when the size
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codebook is 32; (g1–g5) are the edges of (f1–f5). (h) training sample of VQ codebook.
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We also list the comparative results under different categories in Table 1. When we
set the size of the codebook to 100, 64 and 32, respectively, we find that the best recovery
results are achieved with the 64-sized codebook when the block size is set to 4 × 4. When
we set the block size to 8 × 8, the size of the codebook has relatively little effect on the
recovery results.

Table 1. Comparative results under different categories.

Edge similarity (codebook is trained by “Lena” and “Airplane”, block size is 4× 4)

Size of codebook Airplane Lena Peppers Baboon Elaine Average
100 78% 83% 66% 60% 56% 68.6%
64 89% 74% 82% 70% 69% 76.8%
32 86% 80% 75% 70% 66% 75.4%

Edge similarity (codebook is trained by Figure 10f, block size is 4× 4)

100 78% 83% 66% 60% 56% 68.6%
64 81% 70% 78% 75% 65% 73.8%
32 80% 79% 77% 70% 64% 74.0%

Edge similarity (codebook is trained by Figure 10f, block size is 8× 8)

100 80% 79% 77% 67% 64% 73.4%
64 81% 78% 79% 66% 66% 74.0%
32 80% 79% 81% 64% 66% 74.0%

4.4. Characteristics Analysis

The proposed cryptanalysis scheme aims to estimate the plaintext content of the
ciphertext image. In this subsection, we compare the performance with several cryptanal-
ysis schemes [31–34]. Table 2 shows the characteristics of the proposed scheme and the
compared schemes. The cryptanalysis schemes proposed in [31,32] are only suitable for
permutation-only encryption and, therefore, they cannot crack the plaintext content of
the ciphertext image encrypted by BPCM. For the BPCM encryption algorithm, the image
quality of the estimated plaintext content of Qu et al.’s scheme [33] is better than ours.
However, Qu et al.’s scheme [33] can only be utilized with the help of a plaintext image,
and all the encrypted images must be encrypted with the same encryption key. In other
words, once either the plaintext image cannot be accessed or the encryption key is not the
right one, the analysis results cannot be derived. Compared to Qu et al.’s scheme [33], we
can estimate the plaintext content of encrypted ciphertext images generated by any key
without the help of the plaintext image, which is more applicable than [33]. Moreover,
our evaluation results are more stable than those offered by Qu et al.’s scheme [33]. As
for Xiang et al.’s scheme [34], they also analyzed the insecurity of the BPCM encryption
algorithm, which also proved the feasibility of our scheme. Although they did not conduct
the cryptanalysis as our scheme does, and they evaluated BPCM from the BPCM algorithm
itself and pointed out the insecurity of the BPCM encryption algorithm, we still included it
in Table 2.

Table 2. Comparison of scheme characteristics.

Schemes Analysis Target
Quality of
Estimated

Image

Assistance with a
Plaintext Image

Same
Encryption

Key

Type of
Analyzed

Image

Analyzed Encryption
Methods

Ours Embedded encrypted image Low 8 8 Ciphertext BPCM
[31] Embedded encrypted image High 4 4 Ciphertext Permutation-only
[32] Embedded encrypted image High 4 4 Ciphertext Permutation-only
[33] Embedded encrypted image High 4 4 Ciphertext BPCM
[34] Encryption algorithm - - - Ciphertext BPCM

Note: The embedded encrypted image is derived after a data hider, such as a cloud provider, embeds secret data
into the encrypted image.
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5. Limitations

Although the proposed cryptanalysis algorithm can roughly capture the contents
of the ciphertext image, the visual quality of the estimated plaintext image is low. In
addition, estimating the permutation sequence Ω is time-consuming and requires powerful
hardware support.

6. Conclusions

BPCM is an encryption algorithm that has been commonly used in RDHEI. In this
paper, we analyzed the security of BPCM and proposed a new cryptanalysis algorithm
based on the VQ attack. Unlike other cryptanalysis methods, our proposed VQA method
does not require the plaintext image to obtain the contents of the ciphertext image. The
experimental results demonstrate that under a block size of 4×4 pixels, our VQA method
can capture the contents of the ciphertext image well. The average similarity can exceed
75% when comparing the edge information of the estimated image and the original image.
The conclusion drawn from the research in this paper is that the security offered by the
BPCM encryption algorithm leaves a leakage risk. This allows researchers to consider its
security aspects in the future to develop more robust techniques.

In the future, our work will focus on designing a better cryptanalysis algorithm to
improve the visual quality of the estimated plaintext image.
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