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Abstract: The superconducting order parameter (SOP) of a triplet superconductor UTe2 was con-
structed using the topological space group approach, in which, in contrast to phenomenological
and topological approaches, the single pair function and phase winding in condensate are different
quantities. The connection between them is investigated for the D2h point group and the m′m′m
magnetic group. It is shown how a non-unitary pair function of UTe2 can be constructed using
one-dimensional real irreducible representations and Ginzburg–Landau phase winding. It is also
shown that the total phase winding is non-zero in magnetic symmetry only. Experimental data on the
superconducting order parameter of topological superconductors UPt3, Sr2RuO4, LaPt3P, and UTe2

are considered and peculiarities of their nodal structures are connected with the theoretical results of
the topological space group approach.

Keywords: topological superconductors; chiral superconductors; Cooper pair symmetry; magnetic
groups
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1. Introduction

Superconductivity provides an ‘energy superhighway’ that greatly improves efficiency
and capacity. The economic and energy impacts of superconductors are predicted to be
huge. Many challenges are being addressed in order for superconductivity to play this
important role in the electric power system. The main advantages of devices made from
superconductors are low power dissipation, high-speed operation, and high sensitivity.
Topological superconductors have also attracted great interest due to potential applications
in topological quantum computing [1]. Consideration of time-reversal symmetry, parity
symmetry, crystallographic symmetries, and topological phases in recent years has induced
a breakthrough in our understanding of unconventional superconductors, whose properties
are defined by d- and f - elements [2–4]. The concept of topological order is now firmly
established as a key characteristic of condensed matter systems, such as topological metals
and unconventional superconductors. Although the concept of topology is fundamentally
different from the concept of symmetry or group theory, there is much interest in whether
a nontrivial relationship between the two exists. A superconducting gap is one of the key
parameters in the research of superconductivity. In conventional superconductors de-
scribed by Bardeen–Cooper–Schrieffer (BCS) theory [5], the superconducting gap has a fully
gapped s- wave structure. Ginzburg and Landau [6] introduced an additional degree of free-
dom for a totally symmetric pairing state, i.e., a phase exp(imφ) with (m = 0, 1, 2 . . .), which
follows from the gauge invariance of SOP (superconducting order parameter), which was
identified with the wavefunction of a Cooper pair (or pairs). Thus, the concept of topology
was incorporated into the fundamental work on superconductivity. However, in classical
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or s- type superconductors, the phase does not result in any additional observable structure
of SOP. Nevertheless, subsequent studies of unconventional or nodal superconductors have
revealed their unusual properties, which require the use of topological and group theory
approaches to understand them. In topological superconductors, a nontrivial structure
arises from the phase winding of SOP in a momentum space. This can be regarded as a
natural extension of a vortex of the superconducting order to momentum space [7].

The first experiments on heavy fermion superconductor UPt3 revealed a non-singlet
pairing [8] with the nodal line of SOP on the FS (Fermi surface) [9]. The odd parity of
SOP and the triplet pairing of topological superconductors and in particular UPt3 manifest
themselves by no change in Knight shift across the superconducting transition temperature,
Tc; thus, it was demonstrated that UPt3 is an odd-parity triplet superconductor [10]. Lon-
gitudinal and ultrasonic velocity measurements of UPt3 indicated the presence of several
transitions; namely, one corresponding to high-temperature A-phase (Tc = 0.550 K), a
second to a low temperature B phase (Tc = 0.480 K), and a third C- phase at high magnetic
field (B > ˜1.3 T) [11]. The anisotropy and temperature dependence of the magnetic field
penetration in the B- phase of UPt3 measured by µSR (muon spin relaxation) was accounted
for by a superconducting gap function with a line of nodes in the basal plane and axial
point nodes [12]. Neutron scattering experiments showed that the superconducting gap has
a lower rotational symmetry than crystal symmetry [13]. The results of Kerr effect [14] and
that of Josephson interferometry [15,16] manifest a transition between real and complex
SOP, corresponding to A and B phases, respectively, which are consistent with the spatial
symmetries of the E2u order parameter written as:

f (k) = ẑ
[
η1kz

(
k2

x − k2
y

)
± 2iη2kzkxky

]
. (1)

In this formula vanishing of η2 and η1 phases correspond to A and B phases, respec-
tively, and ẑ stands for the MS = 0 projection of triplet spin OSP (opposite spin pairing
state). However, it is not clear how this formula represents non-unitary SOP. Indeed, at zero
η1 we get f (k) = ẑ

[
±2iη2kzkxky

]
. However, in quantum mechanics, any single wavefunc-

tion can be multiplied by an arbitrary phase factor, say exp(iπ/2), and such a complex
SOP can be converted into a real one. Field orientation-dependent thermal conductivity
measurements of UPt3 identified two point nodes at the poles, two line nodes below and
above the equator in both B and C phases, and a striking two-fold oscillation within the
basal plane in C phase [17]. The structure SOP was proposed as [18]:

f (k) = ẑ
(
kx + iky

)
(5k2

z − 1). (2)

The complex phase diagram may be understood from the competing effects of the super-
conducting order parameter, the symmetry breaking field, and the Fermi surface anisotropy [19].

The first experiments on Sr2RuO4 showed no changes in the Knight shift in the 17O
NMR (nuclear magnetic resonance) spectrum on passing through Tc, indicating an oddness
of the SOP [20]. The results of µSR experiments on superconductor Sr2RuO4 indicated
the presence of spontaneous internal magnetic fields, i.e., TRSB (time-reversal symmetry
breaking) [21], and the structure, corresponding to the IR (irreducible representation) Eu of
the D4h group was proposed as [22]:

Eu : d(k) = ẑ
(
kx ± iky

)
. (3)

This non-unitary structure corresponds to angular momentum projections m = ±1.
The square modulus of this function is constant and nodeless in any plane normal to
kz- direction and does not represent experimentally observed lines of nodes [23], which
were identified as gap minima or zeros along (100) and (110) directions [24] and also in
horizontal plane [25]. Observed Kerr rotation below Tc implies TRSB [26] and is consistent
with a non-unitary SOP of the form (3). However, a reduction in the 17O Knight shift
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observed for all strain values and temperatures at T < Tc [27–29] suggests even SOP and
singlet pairs, which were described by an even chiral function:

Eg : d(k) = dzx ± idzy. (4)

On the other hand, for the unstrained samples, the reduction in Knight shift of approx-
imately 50% is not inconsistent with the helical states of A1u,2u or B1u,2u symmetry, which
are written as [27]:

A1u(B1u) : d(k) = x̂kx ± ŷky, (5)

B2u(A2u) : d(k) = x̂ky ± ŷkx, (6)

where x̂ and ŷ stand for the components of triplet spin in the case of ESP (equal spin pairing).
Nevertheless, there is no doubt about other unusual properties of this superconduc-

tor. Recent µSR experiments established a splitting between Tc and the temperature of
TRSB, which rules out any mechanism based on interaction of magnetic fluctuations and
conventional superconductivity [30].

Making use of resonant ultrasound spectroscopy, the symmetry-resolved elastic tensor
of Sr2RuO4 was measured and a two-component order parameter in the two following
forms was proposed [31]: {

dzxdzy
}

, (7){
dx2−y2,gxy(x2−y2)

}
. (8)

Formula (8) represents an exotic state which includes simultaneously two angular
moments, Lz = 2 and Lz = 4, and it can also be plotted in a complex form [32]:{

d + igxy(x2−y2)

}
. (9)

On the basis of theoretical calculations, it was argued that Hund’s coupling, which
already dominates response functions in the normal state, remains key also for the super-
conducting pairing in Sr2RuO4 [33]. Therefore, the order parameter symmetry for Sr2RuO4
remains an open question. Using µSR measurements and symmetry analysis it was shown
that LaPt3P is a singlet chiral d- wave superconductor with a gap function (4) [34].

Recently discovered triplet superconductor UTe2 has a strongly anisotropic upper
critical field, Hc2 = 35 T, which exceeds the Pauli limit for a singlet pair [35], and the Knight
shift is constant through the superconducting transition [36,37], which corresponds to
triplet pairing. The phase diagram under high magnetic fields depicts a regime in which
superconductivity can be field stabilized [35]. The combination of thermal expansion and
heat capacity under pressure shows clear evidence for two competing superconducting
transitions in UTe2 [38]. However, recent experiments report a single superconducting
transition [39] and bring into question whether UTe2 is a multicomponent superconductor
at ambient pressure. A polar Kerr effect confirmed the TRSB in UTe2 and non-unitary
complex SOP [40]. However, all IRs of symmetry group D2h are real and one-dimensional
and the SOP is usually represented by a complex combination of two IRs of D2h [41].

B3u + iB2u, (10)

which represents the orbital momentum projection of a pair m = 1. The results of specific
heat measurements are most likely described by a vector order parameter with point node
in the a- direction [42].

d(k) = (ŷ + iẑ)(ky + ikz). (11)

This order parameter represents coupling of spin and orbital moments into orbital
momentum projection m = 2.

Models of superconductivity in UTe2 are connected with on-site or interatomic Coulomb
(exchange) interactions. For example, a Hund’s–Kondo pairing mechanism has the ability
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to harness the coherence of Kondo hybridization to couple pre-formed Hund’s triplets into
a superconducting condensate [43].

Triplet basis functions for the D2h point group written in terms of direct products of k-
vector components and real triplet spin vectors are presented in Table 1.

Table 1. Triplet basis function of Cooper pairs for the D2h point group [44].

IR Basis Functions

Au kx x̂, ky ŷ, kz ẑ

B1u ky x̂, kx ŷ, kxkykz ẑ

B2u kx ẑ, kz x̂, kxkykz ŷ

B3u kz ŷ, ky ẑ, kxkykz x̂

In the presence of a magnetic field along one of the axes, the SOP is expressed as a
complex linear combination of basis functions of different IRs (see Table 2).

Table 2. Triplet basis functions with angular momentum for UTe2 in a magnetic field [44].

H IRs

Hx Au + iB3u, B1u + iB2u

Hy Au + iB2u, B1u + iB3u

Hz Au + iB1u, B2u + iB3u

Thus, experimental results represented in terms of model functions show various topo-
logical structures, which are the topic for investigation by phenomenological, topological,
and group theory methods which will be considered in this paper.

According to Anderson [45], the wavefunction of a Cooper pair is constructed taking
into account the Pauli exclusion principle. Thus, for k, a general point in a BZ (Brillouin
zone), the wavefunctions of singlet and triplet pairs may be written by the two following
formulas, respectively:

ψs
k = (ϕk(r1)ϕ−k(r2) + ϕk(r2)ϕ−k(r1))S0. (12)

ψt
k = (ϕk(r1)ϕ−k(r2)− ϕk(r2)ϕ−k(r1)S1

ms , ms = −1, 0, 1. (13)

Formula (12) corresponds to a single pair in k- space. In a spherically symmetric
case, to represent the SOP, which includes all pairs, one can replace the Ginzburg–Landau
two-dimensional phase factor exp(imφ) by a spherical function, Yl

m(θ, φ). In point group
symmetry, linear combinations which transform according to IRs of point groups are
used to represent the nodal structure and angular momentum of pairs in heavy fermion
materials [46,47], UPt3 [48], and Sr2RuO4 [22]. In a singlet case, symmetry of the SOP
is described by spherical functions with even l- values, and in a triplet case, spherical
functions with odd l- values are used.

It should be noted that in a general case, for each IR D(l), of a rotation group SO(3),
there are even D(l+) and odd D(l−) extensions in the rotation group extended by the
space inversion SO(3) + I × SO(3) [49]. Hence, the direct relation between the parity of
angular momentum value and the spatial parity of pair function is a consequence of the
basis function choice, but not of the symmetry requirements. Furthermore, transformation
of triplet spin S1 function into real components is possible if time-reversal symmetry is
not violated [50].

Some representations of the SOP in D4h symmetry are presented in Table 3. Real
combinations are similar to basis functions in crystal field theory. Functions of type
x̂kx + ŷky represent coupling of spin and orbital pair moments and are called helical.
Complex function ẑ(kx ± iky) = ẑ|k| exp(±iφ) represents chiral states with phase winding
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with m = ±1 in the plane normal to the kz direction. Furthermore, one can write the
triplet SOP as kz(x̂,±iŷ), the momentum of which is defined by the spin of the pair.
Phenomenological nodal structures of a unitary SOP for the symmetry group D4h are
unique for one-dimensional IRs, and for two-dimensional IRs only one vertical nodal plane,
(100) (or (010)), was obtained [51]. It should be noted that for two-dimensional IRs, the
number of functions may be larger and the structure of the SOP may be classified on the
basis of additional quantum numbers [52,53]. Since in the triplet case the spatial part of a
pair is multiplied by the three-dimensional spin vector (12), the total number of possible IRs
increases, and it was shown that a complete ban on triplet pairs of any certain symmetry is
absent in planes of symmetry [54] (Blount theorem).

In the case of the D2h group (symmetry group of UTe2), all IRs are one-dimensional
and real (see Table 1). Since the symmetry of the non-unitary SOP cannot be reproduced
by basis functions of one IR, complex linear combinations of two IRs (see Formula (10)
and Table 2) are used to represent experimental data. It was shown that in this case, the
symmetry corresponds to magnetic group m′m′m and a non-unitary SOP can be represented
by a basis function of a single ICR (irreducible corepresentation) [55].

Table 3. Phenomenological pair functions for D4h symmetry [22,46].

Singlet Pair Triplet Pair

IR Basis function IR Basis function

A1g k2
x + k2

y A1u x̂kx + ŷky

A1g k2
z A1u ẑkz

A2g kxky

(
k2

x − k2
y

)
A2u x̂ky − ŷkx

B1g k2
x − k2

y B1u x̂kx − ŷky

B2g kxky B2u x̂ky + ŷkx

Eg kz
(
kx, ky

)
, Eu ẑ

(
kx, ky

)
, kz(x̂, ŷ), ẑ(kx ± iky)

Topological approaches to the SOP are based on BdG (Bogoliubov–de Gennes) Hamil-
tonians for superconductors, and may be classified into ten symmetry classes (eight real
classes and two complex classes) based on the presence and the absence of the fundamental
discrete symmetries (particle-hole symmetry (PHS), time-reversal symmetry (TRS), and chi-
ral symmetry (CS)), which are called the Altland–Zirnbauer (AZ) symmetry classes [56,57].

The symmetry classification of BdG systems in terms of the presence or absence of
SU(2) spin-rotation symmetry and TRS is presented in Table 4.

Table 4. Symmetry classification of BdG systems. The symbols (+) and (−) denote the presence
and the absence, respectively, of SU(2) spin-rotation symmetry and TRS. In classes A and AIII,
Hamiltonians are invariant under rotations about the z or any fixed axis in spin space, but not under
full SU(2) rotations, as denoted by R [58].

AZ Class TRS SU(2) Examples in 2d

D − − Spinless chiral (p± ip) wave

DIII + − Superposition of (p + ip) and (p− ip) waves

A − R Spinfull chiral (p± ip) wave

AIII + R Spinfull px or py wave

C − + (d± id) wave

CI + + dx2−y2 or dxy wave
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The interplay between the symmetry group approach and topology is an active and
perspective field of research which reveals the nature of order parameter and nodes in
topological superconductors [59–63].

Weyl nodes are calculated through a topological Weyl charge [64,65]:

qi =
1

2π

∮
S

dk
−→
F (k),

where Berry flux is defined as:

Fi(k) = −iεijk ∑
En(k)<0

∂kj
〈un(k)|∂kk

un(k)〉.

Integration is provided on a closed surface surrounding an isolated point node.
Weyl nodes are described via defining the kz-dependent Chern number on a plane

kx − ky:

ν(kz) =
1

2π

∫
dk||Fz(k).

Weyl charges for symmetry-related point nodes are defined by the following expression [66]:

ν(kz + 0)− ν(kz − 0) = ∑
i

qi. (14)

The Chern number indicates the number of chiral surface modes. The number of chiral
modes coincides with the kz-dependent Chern number. The sign reversal of chirality is in
accordance with the sign change of the Chern number [65].

A chiral superconductor is a superconductor in which the phase of the complex
superconducting gap function, ∆(

−→
k ), winds in a clockwise or counter-clockwise sense as

−→
k moves about some axis on the FS [67] . They indicate novel transport properties that

depend on the topology of the order parameter, the topology of the FS, and the spectrum of
the bulk [68].

Chiral superconductors are characterized by a Chern number equal to the winding
number, ν, of the phase of the Cooper pairs. Three-dimensional candidates for chiral
superconductors are Sr2RuO4 and UPt3 [68].

Some experiments have suggested that UTe2 may be a chiral superconductor [35,37,69,70].
As a result of the orthorhombic structure of UTe2, there is no underlying symmetry ar-
gument for the existence of a two-component order parameter. Using a tight-binding
model in [41], the authors showed that Weyl nodes generically exist for a two-component
parameter order (10) with the charges ±1.

For superconductors with chiral symmetry, it is possible to define the topological
winding number as [7]:

w1D =
i

4π

∮
C

dkµtr
[
ΓH−1∂kµH

]
, (15)

where Γ = iIC is the unitary operator and I and C are the time reversal symmetry and
particle-hole symmetry, respectively.

Chiral pairing states in UPt3 are usually connected with E1u and E2u. For the first order
point nodes of the E1u and E2u states it was shown that ν1 = Lz = ±1 and ν2 = Lz = ±2,
respectively [71]. These Lz- values were equal to those obtained by group theory for
UPt3 [53]. The Chern number on the plane kx − ky for a fixed kz is equal to 2(4) for the
states E1u(E2u) [7]. Non-zero Chern numbers lead to a Weyl arc along the surface projection
of a path connecting the (anti) monopole node points.

In superconductor Sr2RuO4, the Chern number of chiral order parameter is equal to
one (ν = 1) for a gap function of Eu symmetry [72].
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2. Preliminaries

As it follows from the introduction, most of the authors agree that superconductivity
in UTe2, UPt3, Sr2RuO4, and LaPt3P is not associated with phonons, as it is postulated in
BCS theory, but is eventually determined by the Coulomb interaction of d- or f - electrons
at one center and/or the exchange interaction with neighbors or some spin fluctuations.
These superconductors have many common features, i.e., their SOPs are chiral and nodal,
but their types of spin coupling are different; namely, UTe2 is an ESP triplet, UPt3 is an
OSP triplet, and Sr2RuO4 and LaPt3P are singlets.

Since the nature of the interactions responsible for superconductivity is still not known
for certain, significant progress in understanding the nature of this phenomenon is pro-
vided by a symmetry analysis of experimental data. Phenomenological and topological
approaches make it possible to describe the structure of the entire set of Cooper pairs (con-
densate) and do not include a quantum mechanical description of individual electron pairs.

The space group approach to the wavefunction of a Cooper pair [73,74] is based on the
Anderson approach (12) [45], which describes a pair as a state of two equivalent electrons,
constructed with allowance for the Pauli principle. In recent years, a general approach has
been developed that takes into account the Pauli principle, the crystal structure, and the
topological winding of the phase, and has been applied to UPt3 [53] and Sr2RuO4 [50].

The present paper has two goals.
The first goal is to apply and further develop this method, which we will call the

topological space group approach, to UTe2, and to obtain all possible structures of its
triplet SOP.

The second goal is to reveal general trends of the influence of pair momentum and
spin on the nodal structure by comparing the results for a number of superconductors
based on d- and f - elements.

Paper Construction

In Section 3, the main formulas of the space group approach to the wavefunction of a
Cooper pair are introduced.

In Section 4, the features of coupling of electrons with non-zero angular momentum
are considered.

In Section 5, the topological space group approach is used to construct Cooper
pairs’ wavefunctions for four odd IRs of group D2h and for four odd ICRs of magnetic
group m′m′m.

In Section 6, general features of pair functions belonging to two-dimensional IRs,
taking as examples the D4h and D6h groups, are considered.

In Section 7, the applications of theoretical results on experimental data of UPt3,
Sr2RuO4, LaPt3P, and UTe2 are discussed.

3. Space Group Approach to the Wavefunction of a Cooper Pair

The space group approach to the wavefunction of a Cooper pair [73,74] is the general-
ization of the Anderson approach (12) for a Cooper pair on space group symmetries. This
approach makes it possible to take into account point group symmetry, magnetic group
symmetry, and non-symmorphic structures of the space groups. In recent years, some
significant results have been obtained using the space group approach [75–79].

One-electron states in a crystal with symmetry group G are labeled by the wavevector
k, its symmetry group H (little group), and the index κ of small IR Dκk of H . In what
follows, we will assume that one index κ includes also k and therefore we will omit the
index k . Consider a left coset decomposition of a space group with respect to H:

G = ∑
σ

sσ H. (16)
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The action of the left coset representatives sσ on k results in all prongs kσ of the
wavevector star {k}:

kσ = sσk + bσ, (17)

where bσ is a reciprocal lattice vector. Thus, in crystal solids, one-electron states are
defined by a wavevector star instead of two vectors k and −k in the case of a spherically
symmetric Fermi liquid. The IR of the space group is an induced representation Dκ ↑ G,
defined as [80]:

Dκ ↑ G(g)σi,τ j = Dκ
i,j(s
−1
σ gsτ)δ

(
s−1

σ gsτ , H
)

, (18)

where σ and τ correspond to a left coset decomposition (16) of the space group with respect
H and i and j correspond to the rows and columns of the matrix Dκ . In a general point
of a BZ, the dimension of IR Dκ ↑ G is equal to the number n of point group elements
of Ḡ (central extension of G). Two-electron space is a Kronecker square of this space and
its dimension in a general k− point is equal to n2. This space can be easily decomposed
into physically different parts by using the double coset decomposition of G with respect
to H [80]:

G = ∑
δ

Hdδ H. (19)

The double coset representatives dδ denote different terms in a Kronecker square
Dκ ↑ G ×Dκ ↑ G decomposition. The notation × for a direct (Kronecker) product is used
throughout. For each double coset δ, a representation Pκ

δ is considered, which can be
written as:

χ(Pκ
δ (m)) = χ

(
Dκ(d−1

δ mdδ)× Dκ(m)
)

, (20)

where m ⊂ Mδ = H ∩ d−1
δ Hdδ. For self-inverse double cosets, i.e., if Hdα H = Hd−1

α H,
there are two extensions of Pκ

α on group M̃α = Mα + aMα:

χ
(

Pκ+
α (am)

)
= +χ(Dκ(amam)), (21)

χ
(

Pκ−
α (am)

)
= −χ(Dκ(amam)), (22)

where the coset representative a is chosen from the relation

ah = h̄a, h, h̄ ⊂ H.

According to the Mackey–Bradley theorem [80], symmetrized (square brackets) and
antisymmetrized (curly brackets) parts of the Kronecker square can be written as

[Dκ ↑ G× Dκ ↑ G] = [Dκ × Dκ ] ↑ G + ∑
α

Pκ+
α ↑ G + ∑

β

Pκ
β ↑ G, (23)

{Dκ ↑ G× Dκ ↑ G} = {Dκ × Dκ} ↑ G + ∑
α

Pκ−
α ↑ G + ∑

β

Pκ
β ↑ G. (24)

The symmetrization (antisymmetrization) of the first item is performed by a standard
point group technique on subgroup H, the sum in the second item runs over self-inverse
double cosets, and the sum in the third item runs over non-self-inverse double cosets, i.e., if
Hdβ H 6= Hd−1

β H.
The total momentum of the resulting electron pair depends on a double coset repre-

sentative and is written as:
Kα = k + dαk + bα, (25)

where bα is a reciprocal lattice vector. In the case of Cooper pairs, the double coset repre-
sentative dα is a space inversion, I, and in some symmetrical points on the surface of a BZ
(Brillouin zone), dα is an identity element E. In this case, zero total momentum of a pair is
achieved by translation periodicity (25).
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According to the Pauli exclusion principle, a symmetrized square [Dκ ↑ G× Dκ ↑ G]
of the spatial part of the wavefunction corresponds to a singlet pair and antisymmetrized
square {Dκ ↑ G× Dκ ↑ G} corresponding to a triplet pair. In the case of strong spin–orbit
coupling, the total pair wavefunction belongs to an antisymmetrized square of a double
valued IR. For K = 0, the induced representation Pκ±

α ↑ G is a reducible representation of a
point group Ḡ. The frequency, f q

κα±, of appearance of any IR, Γq, of Ḡ in the decomposition
of induced representation Pκ±

α ↑ Ĝ is given by Frobenius’ reciprocity theorem [80], i.e., by
the formula:

f q
κα± =

1∣∣M̃α

∣∣ ∑
m∈M̃α

χ∗(Γq(m))χ
(

Pκ±
α (m)

)
. (26)

For k at a general point in the BZ, the group Mα consists only of the identity element
and the group M̃α = {E, I}. The characters of the representations Pκ+

α and Pκ−
α for a spatial

inversion I are equal to +1 and −1, respectively, and for the identity element E, both
characters are +1. Using the reciprocity theorem, we find that at a general point of the BZ
(one-electron) for singlet pairs, all even IRs are possible, and the spatial parts of triplet pairs
are odd. Moreover, each IR of the point group enters the expansion as many times as its
dimension. Thus, it follows from the Mackey–Bradley theorem that at a general point in the
BZ, the dimensions of the spaces of singlet pairs and spatial part triplet pairs coincide and
are equal to Ḡ/2. In an L− S coupling scheme, the spatial part of a triplet pair is multiplied
by the three components of triplet spin, x̂, ŷ, and ẑ, and total dimension of the space of the
total triplet pairs’ wavefunctions for k, a general point in a BZ, is 3Ḡ/2.

In a strong spin–orbit coupling case, the spin is included in the one-electron wave-
function and the pair wavefunction is calculated as the antisymmetrized square of the
double-valued IRs of the space groups [80,81]. However, in k- points of low symmetry, an
additional degeneracy due to time-reversal symmetry should be taken into account [74].

Inside the BZ, in the majority of cases (but not in all), the spatial part of a singlet pair
is even and the spatial part of a triplet pair is odd. If IR Dκ is two-dimensional (it takes
place on the 3-fold, 4-fold, and 6-fold axes), one obtains from (20)–(22) that χ

(
Pκ±

I (E)
)
= 4,

χ
(

Pκ+
I (I)

)
= 2, and χ

(
Pκ−

I (I)
)
= −2. Hence, it follows that in this case, even and odd IRs

are mixed in the decomposition of symmetrized and antisymmetrized squares.

4. Coupling with Larger Total Angular Momentum

In the superconductors based on d- and f - elements, the on-site crystal field and term
splitting is essential and should be taken into account in the theories of superconductivity.
It has been pointed out that an unconventional gap structure can be realized with purely
local (on-site) interactions and the Hund’s coupling. The electron–phonon interactions
can enhance such anisotropic pairing states and a nontrivial momentum dependence of a
superconducting gap function with Γ9 × Γ9 in the D6 symmetry group was obtained [82].

In a strong spin–orbit coupling, electrons with angular moments j = l + 1/2 and
j = l − 1/2 have different energies and are non-equivalent. For example, in YPtBi and
in LuPtBi, the chemical potentials lie close to the four-fold degeneracy point of the Γ8
band, and the microscopic theory of the superconductivity must therefore describe the
pairing between j3/2 fermions [83]. When two electrons with the same j are coupled
into total angular momentum J, the parity of the state with respect to the permutation
of wavefunctions ψjm1 and ψjm2 in the product equals the parity of the number j + j + J.
Thus, one can assemble Table 5 [84], where the parity and symmetry in rotational and cubic
groups are presented.

In this approach, instead of a spin multiplicity of S = 0 or S = 1, the pair acquires
quantum number J. According to the Pauli exclusion principle, a total pair’s function
should be antisymmetric with respect to the permutation of electron coordinates. The
values J = 0, 2 correspond to the odd parity and the values J = 1, 3 correspond to the even
parity and should be excluded.
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Table 5. Symmetry of two-electron states (j3/2)
2.

J IR of Oh

0 Odd A1g

2 Odd Eg + T2g

1 Even T1g

3 Even A2g + T1g + T2g

This approach can be generalized taking into account the dependence on the wavevec-
tor k position in a BZ.

Suppose that two equivalent electrons or holes j = 3/2 on one center are coupled
in total momentum J, forming a state with lower energy. Since the total wavefunction is
antisymmetric with respect to the permutation of electrons, we conclude that only states
J = 0, 2 are possible. The wavefunctions are presented in Table 6.

Table 6. Two-electron wavefunctions constructed from function j3/2. Normalization factors are
omitted. Functions for M = −1 and M = −2 may be obtained from functions M = 1 and M = 2 by
changing the signs of magnetic quantum numbers. Note that functions J = 1, 3 are forbidden by the
Pauli exclusion principle.

J M Function

0 0

{(
1
2 ,− 1

2

)
−
(
− 1

2 , 1
2

)}
+
{(

3
2 ,− 3

2

)
−
(
− 3

2 , 3
2

)}
2 2

{(
3
2 , 1

2

)
−
(

1
2 , 3

2

)}
2 1

{(
3
2 , −1

2

)
−
(
−1
2 , 3

2

)}
2 0

{(
1
2 ,− 1

2

)
−
(
− 1

2 , 1
2

)}
−
{(

3
2 ,− 3

2

)
+
(
− 3

2 , 3
2

)}

However, these states correspond to an isolated atom. In solid state atomic one-
electron states form electron bands, the Wannier functions can be constructed as follows [85].
Starting from one localized function, let mj = 3/2, and acting by the element of little group
H of wavevector k, one obtains the basis set for this vector. Then, acting by the elements
of left coset representatives in the decomposition of G with respect to H, one obtains the
basis sets for the prongs of the star {k}. For k, a general point of a BZ, and for any mj value,
the Wannier basis consists of one element only and other mj appear at the other prongs
of the star {k}. Following this technique, we obtain at −k the same value of mj as in k
and one more value −mj due to time reversal symmetry. Thus, for k, a general point of
a BZ, the coupling of the states with j = 3/2 does not result in any symmetry difference
from the case of s = 1/2. On the other hand, in high symmetry directions in a BZ, some
symmetry difference appear. Consider the kz direction in a space group with point group
D6h. The representation D(1/2) corresponds to IR E′1 of the wavevector group C6v, and
D(3/2) decomposes into E′1 + E′3. Total one-electron functions are induced representations
E′1 ↑ D6h for j = 1/2 and E′1 ↑ D6h+ E′3 ↑ D6h for j = 3/2. In the j− j coupling scheme, the
total wavefunction belongs to an antisymmetrized square [74,78]:{

E′1(2) ↑ D6h × E′1(2) ↑ D6h

}
= A1g + A1u + E1u,

{
E′3 ↑ D6h × E′3 ↑ D6h

}
= A1g + A1u + B1u + B2u.
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In a weak spin–orbit coupling, one also obtains in the kz- directions the dependence of
possible Cooper pair symmetry on the small IR of the wavevector group. In D6h symmetry,
all four one-dimensional spatial symmetries of a Cooper pair are A2u and for all two
two-dimensional small IRs one obtains the possible symmetries of triplet pairs as:

{E ↑ D6h × E ↑ D6h} = A1u + E2u + A1g. (27)

In the case of UPt3, an OSP pairing is usually assumed. When multiplying IRs of the
spatial part by A2g, corresponding to the OSP case, we obtain possible symmetries A1u and
A2u + E2u + A2g for one-dimensional and two-dimensional small IRs, respectively.

5. Phase Winding and Group Theory

Superconductivity is a manifestation of broken symmetry in nature. Spontaneously
broken gauge symmetry U(1) means that below the Tc the wavefunction of the system spon-
taneously develops a definite phase, which can be treated as a thermodynamic variable [86].
Furthermore, time-reversal symmetry is broken in many topological supercoductors [87,88].
The quantum mechanical phase of one wavefunction itself is not a physically observable
quantity; however, the phase difference between two or more wavefunctions results in inter-
ference effects, which are observable. Phenomenological approaches to chiral non-unitary
superconductors usually use spherical functions (see Table 3) or complex combinations
of basis functions of different IRs (see Table 2). However, complex spherical functions
of m = ±1 (see Formula (3)) are nodeless in the vertical plane, but experimental results
show vertical nodal planes [24]. Linear combinations of basis functions of different IRs
may represent experimental data (see Table 2 and Formula (9)), but simultaneous use
of two IRs for one physical quantity is not clear from the point of view of group theory.
In recent works, group theory and phase winding are unified and magnetic symmetry
groups have been used to uncover underlying symmetries and to construct a new class of
superconducting order parameters [50,53,55].

According the to the space group theory, the wavevector runs over the basis domain
of a BZ, the volume of which is

∣∣Ḡ∣∣ times less then the volume of the whole BZ [80].
The wavevectors and wavefunctions of other domains are obtained by the actions of point
group elements Ḡ on k and ϕk in the basis domain. Since the space inversion is included in
the definition of a Cooper pair, the dimension of the basis is reduced to

∣∣Ḡ∣∣/2. Each basis
domain for the pair includes two basis domains for representation connected by inversion.
To obtain possible winding numbers for representations of the Dnh group, it is sufficient
to consider the Cnh subgroup. In the case of the one-dimensional IRs of the Cnh subgroup,
angular momentum can be easily determined from the values of the matrix elements for
rotations [53]. With further induction, the correspondence between the angular momentum
and the representation is preserved. Table 7 shows the odd representations of the C2h group,
as well as the corepresentations of the magnetic group m′m′m that come from them. It can
be seen from Table 7 that Au(C2z) = 1, B1u(C2z) = 1, B2u(C2z) = −1, and B3u(C2z) = −1.
Hence, it follows that Au and B1u correspond to m̄ = ±2, and B2u and B3u correspond to
m̄ = ±1 for discrete rotations.

Table 7. Odd IRs of point group D2h and magnetic group m′m′m. Non-unitary element is A = θσy.

E C2z I σz θσy θσx θC2y θC2x

A±u 1 1 −1 −1 ±1 ±1 ∓1 ∓1

B±u 1 −1 −1 1 ±1 ∓1 ∓1 ±1

Au 1 1 −1 −1 −1 −1 1 1

B1u 1 1 −1 −1 1 1 −1 −1

B2u 1 −1 −1 1 −1 1 1 −1

B3u 1 −1 −1 1 1 −1 −1 1
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In the case of the D2h group, there is only one magnetic group, m′m′m, compatible
with a net angular momentum, corresponding to the ferromagnetic state (see [53] and
Table 7.7 in [80]). Figure 1 shows the intersection of a BZ of the space group Immm (D25

2h) of
UTe2 with the plane (001). Note that all k vectors of electrons have nonzero kz components
and the sectors connected by inversion are included in the definition of a pair, with the
pairs momentum equal to zero. The initial vector k1 is close to the ky direction and its phase
is close to zero; thus, the value of the pair function ψ1 is positive. The other k- vectors are
obtained by the action of group elements as follows:

k2 = σxk1, k3 = C2zk1, k4 = σyk1.

The pair basis functions are transformed according to the IRs of group D2h, for example:

ψ3 = ψ1 for Au and B1u

ψ3 = −ψ1 for B2u and B3u

When the initial k1 vector runs over the first sector, we obtain all pairs in condensate.
The wavefunction of a Cooper pair can have a phase winding in the sector 1 and we
suppose that it corresponds to m = 1 for B2u and B3u, and to m = 2 for Au and B1u. Thus,
in the sector 1, the phases of B2u and B3u change from 0 to π/2 and the phases of Au and
B1u change from 0 to π. Consider IR B3u (see Figure 1d). When acting on function ψ1 by
the group element C2z and multiplying it by B3u(C2z) = −1, we obtain phase π at the
beginning of the sector 3 and phase 3π/2 at its end. The function k2 in the sector 2 is
obtained by the reflection σx. Since B3u(σx) = −1, the sign of the pair function changes,
which corresponds to the phase π. It can be easily shown that the reflections change
the phase winding direction [53], and we obtain phase 3π/2 in the sector 2 near the ky
axis. Thus, we obtain the phase winding structure shown in Figure 1d. It can be seen in
Figure 1d that the phases in sectors 1 and 2 (and in sectors 3 and 4) differ by π, which
results in the nodes denoted by the bold red line. In the phase structure of B2u, shown in
Figure 1c, the pair functions meet at the kx axis with opposite phases, which results in their
destructive interference and line nodes shown by the red lines. Both structures B3u and B2u
are non-unitary, but the functions of the individual pairs are transformed by real IRs. The
total phase winding is equal to zero. It can be shown similarly that the IR Au, shown in
Figure 1a, has nodes in both vertical planes and IR B1u in Figure 1b) is nodeless in both
vertical planes. The nodes in the basal plane are defined by the sign of character for the
element σz, and therefore B2u and B3u are nodeless and Au and B1u are nodal in the basal
plane. The nodes in the basal plane are denoted by red circles.

Making use of the Herring criterion [80], we find that the corepresentations of magnetic
group m′m′m belong to type (a), i.e., for a unitary subgroup they are just its IRs and for a
non-unitary left coset they are extended with signs + or −, which are denoted in Table 7
by superscripts. It can be directly verified that reflection with time reversal (complex
conjugation) does not change the phase winding direction [53], and one similarly obtains
phase structures for ICRs A±u and B±u , shown in Figure 2, where the notations for the nodes
are the same as in Figure 1. The SOPs of A±u symmetry correspond to magnetic quantum
number m = 2 and the total phase winding is equal to 4π, and SOPs of B±u symmetry
correspond to magnetic quantum number m = 1 and the total phase winding is equal to
2π. In the structures of A+

u and B+
u symmetry in Figure 2a,c, the phase is continuous when

passing through the axes (vertical planes in the three-dimensional picture) and there are
no nodes in these planes. In the structures A−u and B−u in Figure 2b,d, the phase changes
by π when passing through the axes, resulting in nodes, which are denoted by two bold
red lines.
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Figure 1. Nodal structure and phase winding of a SOP in D2h symmetry for odd IRs (a) Au, (b) B1u,
(c) B2u, and (d) B3u. Bold red lines denote vertical nodal planes and red circles denote nodal basal planes.

Figure 2. Nodal structure and phase winding of SOP in m′m′m symmetry for odd ICRs (a) A+
u ,

(b) A−u , (c) B+
u , and (d) B−u . Bold red lines denote vertical nodal planes and red circles denote nodal

basal planes.
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6. Order Parameters of Sr2RuO4 and UPt3

We now turn our attention to the group D4h, which has two-dimensional IRs. In a
space-group approach, the basis sets for singlet and triplet pairs consist of eight basis
functions, obtained by the action of elements of group C4v on the basis function k1 in
the basis domain, i.e., if k runs in the interval 0 < θ < π/4 in the (kx, ky) plane and
0 < kz < kz0 [52]. The structures of the one-dimensional SOP are unique and coincide
in all approaches [51,52]. However, since two-dimensional IRs can be transformed by
unitary matrices, their nodal structures are not unique. There are two possibilities for
the phase winding in the basis domain for two-dimensional IRs Eu and Eg; namely, zero
phase winding and real IRs or phase winding with m = 1 and complex form IRs [81].
When the wavefunctions of pairs are constructed from the functions of the basis domain
group theoretically, they can have different phases on opposite sides of the symmetry
planes and the interference of real and imaginary parts takes place. This interference
is represented numerically as follows. The wavefunctions of pairs in a finite number
of points in the interval 0 < θ < 2π are represented by a normalized sum of real and
imaginary Gaussians, whose relative values and signs correspond to the theoretical phase.
After that, the contributions from all pairs are summed at each point. Inside the sectors,
the phase difference between adjacent pairs is small and constructive interference takes
place. At the boundaries of the sectors, both constructive and destructive interference of
the wavefunctions is possible, where the interference of the real and imaginary parts is
taken into account independently. When squaring modulus of the complex function at
every point, we obtain the structure of the SOP in the plane normal to the kz- axis. Figure 3a
shows the structures of real Eu and Eg with one vertical nodal plane. The structures of
Eg and Eu at vertical planes are the same; however, these structures differ by nodes in
the basal plane, which are defined by characters of Eg and Eu for the element σh, which is
invariant under unitary transformations. Consider a pair function ψk1, expressed as a linear
combination of basis function and a function, σhψk1. When the vector k1 approaches the
basal plane, two functions may merge if σhψk1 = ψk1 or cancel if σhψk1 = −ψk1, with the
latter case corresponding to a nodal plane. The case that is realized is determined by the
character of the IR. Since χ

(
Eg(σh

)
) = −2 and χ(Eu(σh)) = 2, we conclude that Eg is nodal

and Eu is nodeless in the basal plane. Multiplication of Eg and Eu by A2g does not change
their characters, but changes the signs of the function connected by reflection in vertical
planes and therefore changes the nodal structure. Figure 3b shows the nodal structures of
real IRs Eg × A2g and Eu × A2g with three vertical nodal planes.

Figure 3. Nodal structures of real SOP (a) Eg(u) and (b) Eg(u) × A2g in D4h symmetry. In both cases,
Eg is nodal and Eu in nodeless in the basal plane.

Furthermore, complex forms of Eu and Eg are possible in which diagonal matrix
elements of the IR correspond to the angular momentum projection m = ±1 [50,81].
Possible structures calculated with phase winding m = 1 in the basis domain are presented
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in Figure 4a,b. The first structure corresponds to complex matrices [81] and in the second,
the matrices were multiplied by A2g. These structures have nodes in vertical coordinate
planes (010) or (100), respectively, and deeps in diagonal planes (110) and (−110). Nodes
correspond to a phase difference of π on two sides of a plane, and deeps correspond to
a phase difference of π/2. Phase winding directions in sectors 1, 3, 5, and 7 correspond
to m = 1 and in sectors 2, 4, 6, and 8, they correspond to m = −1 and the pair function is
non-unitary. Horizontal nodal planes are the same as in the case of real IRs. Thus, we see
that in axial symmetry groups, e.g., D4h, horizontal nodal planes of two-dimensional IRs
are topologically stable, but vertical nodal planes of two-dimensional IRs are topologically
unstable, as according to Kobayashi et al. [89], they can be added (removed) by unitary
transformation (multiplication by A2g), which can be considered as a small perturbation.

Figure 4. Nodal structures of complex SOPs (a) Eg(u) and (b) Eg(u) × A2g in D4h symmetry. In both
cases, Eg is nodal and Eu in nodeless in the basal plane.

Figure 5a,b shows possible structures of complex SOPs E1u and E2u of the D6h symme-
try group of UPt3 [53]. In both cases, pair function is non-unitary, E1u has m = ±1 in the
nodal plane is (010), and E2u has m = ±2 in nodal planes (100) and (010). In addition, both
structures have deeps in the other vertical planes. When multiplying by A2g, one obtains
E1u with nodal plane (100) and E2u without nodes in the vertical planes (not shown in
the figure). The phase winding in all sectors obtained by rotations of the C6z subgroup
correspond to the positive m- value and in other sectors m is negative, resulting in zero
phase winding.

Figure 5. Nodal structures of complex IRs of the D6h group. Winding direction changes when passing
via vertical symmetry planes. (a) E1u and (b) E2u.

Figure 6a shows the differences in two complex conjugate chiral IRs 1/2(E2u − E∗2u)
with nodes in vertical coordinate planes. The values of the pair function are imaginary at all
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angles. This structure can be converted into a real structure by multiplication by a constant
phase factor i. Furthermore, one can consider the sum of two complex conjugate functions
1/2(E2u + E∗2u) in which nodal planes are rotated by π/4 (not shown in the figure).

Figure 6b shows the SOP for magnetic group 6/m′m′m, in which reflections in the
vertical planes are accompanied by time reversal. In this case, the structure is nodeless,
which corresponds to phase B of UP3 [16]. The structure in Figure 6b corresponds to
ICRs induced by one-dimensional IRs E′1u and E′2u of the C6h subgroup. In the case of the
Shubnikov group 6/m′m′m, the winding direction is the same at all angles and the total
phase winding is 2π and 4π for these ICRs, respectively.

Figure 6. Nodal structures of SOP for the D6h group. (a) Unitary structure, i.e., the difference of
two chiral pair functions 1/2(E2u − E∗2u) and (b) non-unitary structure, corresponding to magnetic
group 6m′m′m. Winding direction is the same in all sectors.

7. Discussion

In the present paper, a topological space group approach that combines Anderson
treatment of a Cooper pair, space group theory, and Ginzburg–Landau phase winding is
applied for the investigation of SOP structures of unconventional superconductors of D2h,
D4h, and D6h symmetry. In this approach, the phase winding magnetic quantum number
m in the basis domain of a BZ equals the group theoretical phase factor m̄ for discrete
rotations. Non-unitary order parameters are constructed by this method for all odd IRs of
the D2h group and for all odd ICRs of the magnetic group m′m′m. It is shown that for axial
symmetry groups D2h, D4h, and D6h, the total phase winding is equal to zero. A total phase
winding of 2πm corresponds to ferromagnetic groups obtained from these point groups
(see Table 7.7 in [80]); namely, mm′m′, 4/mm′m′, and 6/mm′m′.

In UTe2, the ESP spin triplet state (10) [41] with a total phase winding of 2π corre-
sponds to ICR B+

u . If the same spin state is coupled with a spatial chiral part, the angular
momentum projection m is equal to 2. Such a state corresponds to ICR A+

u and experimental
structure (11) [42]. In addition, A+

u is nodal but B+
u is nodeless in the basal plane.

In D4h symmetry, the possible vertical nodal planes of Eu and Eg are similar, but these
IRs differ by nodes in the basal plane; namely, Eu is nodeless but Eg is nodal. The latter
assertion has been confirmed experimentally for Sr2RuO4 [25] and LaPt3P [34].

The structure of the C phase of UPt3 is (5k2
z − 1) in the kz direction and with in-plane

twofold oscillation in [17], it may be represented by projecting of the L = 3 basis function
ẑ(kx + iky)(5k2

z − 1) on complex IR E1u (see Figure 5a) with one vertical nodal plane. The
unitary structure (k2

x − k2
y)kz in Figure 6a corresponds to the SOP in the A phase of UPt3

and the non-unitary structure in Figure 6b corresponds to the B phase [16]. It should be
noted that the nodes in the structures of the SOP of UPt3 k2

x − k2
y and (5k2

z − 1) in phases
A and C, respectively, appear beyond symmetry planes and they are purely topological,
i.e., they are not derived from point group symmetry.

Point nodes in the kz- direction for chiral states with m = 1 and m = 2 are often
called Weil nodes. Similar constraints may be obtained in a space group approach as
follows. Consider two electrons in the kz- direction forming a triplet Cooper pair. If one-
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electron states belong to a one-dimensional small IR, using the Formulas (20)–(22), one
easily obtains possible symmetries of triplet pairs B1u, A2u, and A2u for groups D2h, D4h,
and D6h, respectively. Hence, it follows that pairs of B2u and B3u symmetry are forbidden in
D2h symmetry and all two-dimensional IRs are forbidden in D4h and D6h symmetry in the
kz- direction. Note that B2u, B3u, Eu, and E1u correspond to m = 1, and that E2u corresponds
to m = 2. For two-dimensional small IRs in the kz- direction, spatial parts of the triplet
pair belong to A2u + B1u + B2u + A2g in D4h symmetry [50] and to A1u + E2u + A1g in D6h
symmetry (27). Hence, it follows that in D6h symmetry for coupling of one-electron states
with non-zero angular momentum, states with m = 2 are possible in the kz- direction.

8. Conclusions

The SOPs of triplet superconductor UTe2 were constructed using the topological space
group approach. In this approach, the phase winding in the basis domain of a BZ zone
is equated to the phase shift at discrete rotations determined by the IR. In this approach,
in contrast to the phenomenological and topological approaches, the single pair function
and phase winding in condensate are different quantities, and the single pair functions in a
non-unitary case may belong to unitary IRs of the point group. The total phase winding is
equal to zero for IRs of the point group D2h and equal to 2π for ICR B±u and 4π for ICR A±u
of magnetic group m′m′m . States denoted as B+

u and A+
u correspond to phenomenological

expressions B2u + iB3u and (ŷ + iẑ)(ky + ikz), respectively.
In the case of two-dimensional IRs of D4h and D6h groups, nodes in vertical planes are

topologically unstable, i.e., for one IR different nodal structures are possible. Nodes in the
basal plane are topologically stable, i.e., they are defined by the IR. Thus, nodes in the basal
plane of chiral singlet superconductors LaPt3P and of Sr2RuO4 correspond to a singlet SOP.

The structure of the C phase in UPt3 may be represented by projecting of L = 3 basis
function ẑ(kx + iky)(5k2

z − 1) on complex IR E1u with one vertical nodal plane, but nodal
plane kz = 1/

√
5 is is purely topological, i.e., is not connected with symmetry planes.

Superconductivity is a macroscopic quantum phenomenon and therefore provides
a unique opportunity to directly compare the results of group theory with experiment.
In other areas of physics, such as the theory of the electronic structure of molecules and of
condensed matter, group theory provides a method for constructing correct wavefunctions
of the initial approximation for calculations from the first principles. Therefore, another
application of the space group approach to the Cooper wavefunction can be the construction
of the correct wavefunctions of a pair, necessary for an accurate quantum mechanical
calculation of the superconductivity phenomenon.
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