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Abstract: Infinite nuclear matter is a suitable laboratory to learn about nuclear forces in many-body
systems. In particular, modern theoretical predictions of neutron-rich matter are timely because of
recent and planned experiments aimed at constraining the equation of state of isospin-asymmetric
matter. For these reasons, we have taken a broad look at the equation of state of neutron-rich matter
and the closely related symmetry energy, which is the focal point of this article. Its density dependence
is of paramount importance for a number of nuclear and astrophysical systems, ranging from neutron
skins to the structure of neutron stars. We review and discuss ab initio predictions in relation to
recent empirical constraints. We emphasize and demonstrate that free-space nucleon–nucleon data
pose stringent constraints on the density dependence of the neutron matter equation of state, which
essentially determines the slope of the symmetry energy at saturation.
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1. Introduction

Although infinite nuclear matter is an idealized system, its equation of state (EoS) is
a powerful tool for exploring nuclear interactions in the medium. Asymmetric nuclear
matter is characterized by the degree of neutron excess, all the way to pure neutron matter.
Because neutrons do not form a bound state, the presence of excess neutrons in a nucleus
reduces the binding energy; that is, it is a necessary but destabilizing effect that gives
rise to the symmetry energy. As a consequence, neutron-rich structures have common
features that explain the formation of a neutron skin (in isospin-asymmetric nuclei) or
how neutron stars are supported against gravitational collapse by the outward pressure
existing in dense systems with high neutron concentrations. Studies of nuclear interactions
in systems with high or extreme neutron-to-proton ratios are crucial for understanding
the neutron driplines, the location of which is not well known. The new Facility for Rare
Isotope Beams (FRIB), operational since May 2022, is expected to increase the number of
known rare isotopes from 3000 to about 6000 [1].

For many years, several groups have sought constraints on the density dependence of
the symmetry energy. Intense experimental effort has been and continues to be devoted
to this question using various measurements, which are typically analyzed with the help
of correlations obtained through different parametrizations of phenomenological models.
Popular examples are the Skyrme forces (refs. [2–4] are only a few of the many review
articles on the Skyrme model), and relativistic mean-field models (RMF) [5–7]. Papers
such as [8,9] are representative examples for applications of Skyrme forces or RMF models,
respectively, to the issues confronted in this article. A cross-section of studies where phe-
nomenological and theoretical models or laboratory data were used to extract constraints
on the density dependence of the symmetry energy can be found in refs. [10–30]. Generally,
the extracted constraints vary considerably depending on the methods employed.

During the past two decades, there has been remarkable progress in understand-
ing nuclear forces at a fundamental level, through the concept of effective field theories
(EFT) [31,32]. Meson theoretic or entirely phenomenological models of the nucleon–nucleon
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(NN) interaction, augmented with phenomenological few-nucleon forces, were the typical
framework used in the past. At the forefront are state-of-the-art ab initio predictions,
which generally agree on a relatively soft symmetry energy, in contrast to recent constraints
extracted from electroweak scattering experiments [33], as we will discuss later in the paper.

The density dependence of the symmetry energy is also a major component in the
physics of neutron stars, in particular, the radius of a medium-mass neutron star. Of course,
a very large range of densities can be found in a neutron star, from the density of iron in
the outer crust up to several times normal nuclear density in the core, and thus no theory
of hadrons can be applicable over the entire region. With that in mind, state-of-the-art
ab initio theories of nuclear and neutron matter can be taken as the foundation for any
extension method, which will unavoidably involve some degree of phenomenology. Note,
though, that the radius of a 1.4 M� neutron star is sensitive to the pressure in neutron
matter around saturation, and thus it is useful to constrain microscopic theories of the EoS
at those densities where the theories are reliable [34]. In fact, the radius of light to medium
neutron stars has been found to correlate with the density slope of the symmetry energy at
saturation, with correlation coefficient of 0.87 for M = 1.0 M� and 0.75 for M = 1.4 M� [35].

In this article, we will start with a broad introduction to the symmetry energy and its
relevance. To that end, we will briefly review the link between finite nuclei and infinite
nuclear matter as it emerges from the liquid drop model. In the process, one defines
the energy per nucleon in infinite (isospin-symmetric or asymmetric) matter and the all-
important symmetry energy. In Section 3, we describe our theoretical tools, which include
high-quality microscopic nuclear forces derived within the framework of chiral EFT. We
also take the opportunity to review the foundations and main aspects of chiral EFT. In
Section 4, after a brief discussion of symmetric nuclear matter (SNM) in Section 4.1, we
focus on the neutron matter (NM) EoS and the symmetry energy (Section 4.2). A focal
point of this section is a comparison of ab initio predictions with phenomenological and
empirical findings. We include a discussion of the neutron skin (see Section 4.3), and its
sensitivity to the density slope of the symmetry energy at saturation. Section 5 reports test
calculations designed to underline the sensitivity of the discussed predictions to free-space
NN scattering phases. In Section 6, we reiterate the scope of this article and summarize our
conclusions. Also, we wish to reflect on the best way forward to strengthen what should be
our most powerful tool—the link between experiment and ab initio theory.

2. Symmetry Energy: General Aspects

We begin with a pedagogical introduction to establish the main concepts and definitions.
The simplest picture of the nucleus goes back to the semi-empirical mass formula

(SEMF), also known as the liquid–droplet model. Its ability to capture basic bulk features
of nuclei is remarkable in view of its simplicity. The binding energy per nucleon is written
in terms of a handful of terms inspired by the dependence of nuclear radii on the cubic root
of the mass number A:

B(Z, A)

A
= aV − asym

(A− 2Z)2

A2 − as

A1/3 −
aCZ(Z− 1)

A4/3 − ∆
A

, (1)

where the last term stands for additional, typically smaller, contributions. Note that the
second term on the RHS depends on the relative neutron-proton asymmetry, or isospin
asymmetry, N−Z

A , and represents the loss of binding energy experienced by a nucleus due
to the destabilizing presence of asymmetry in neutron/proton concentrations. Of course,
Equation (1) is the simplest picture of a nucleus but can be improved by replacing the
number of nucleons A and the number of protons Z with the respective density profiles.
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To that end, we introduce the energy per nucleon, e(ρ, α), in an infinite system of
nucleons at density ρ and isospin asymmetry α =

ρn−ρp
ρ —namely, the EoS of neutron-rich

matter—and expand this quantity with respect to the isospin asymmetry parameter:

e(ρ, α) = e(ρ, α = 0) +
1
2

(∂2e(ρ, α)

∂α2

)
(α=0)

α2 +O(α4) . (2)

Neglecting terms of order O(α4), Equation (2) takes the well-known parabolic form:

e(ρ, α) ≈ e0(ρ) + esym(ρ) α2 , (3)

where esym = 1
2

(
∂2e(ρ,α)

∂α2

)
α=0

and e0(ρ) = e(ρ, α = 0), the EoS of isospin-symmetric nu-

clear matter.
With the SEMF as a guideline, one can write the main contributions to the total

energy of a given nucleus (Z, A) with proton and neutron density profiles ρp(r) and ρn(r),
respectively, as:

E(Z, A) =
∫

d3r ρ(r) e(ρ, α) + f0

∫
d3r|∇ρ|2 + e2

4πεo
(4π)2

∫ ∞

0
dr′
[
r′ρp(r′)

∫ r′

0
dr r2ρp(r)

]
, (4)

where f0 is a constant typically fitted to β-stable nuclei. Note that the second term on the
RHS, dependent on the gradient of the density function, is a finite-size contribution: the
surface term proportional to the coefficient as in Equation (1). The last term on the RHS
stands for the Coulomb interaction among protons. The link to Equation (1) is apparent. In
particular, the first integral on the RHS of Equation (4) comprises the first two terms on the
RHS of Equation (1).

Within the parabolic approximation (Equation (3)), the symmetry energy becomes the
difference between the energy per neutron in NM and the energy per nucleon in SNM:

esym(ρ) = en(ρ)− e0(ρ) , (5)

where en(ρ) = e(ρ, α = 1), the energy per neutron in pure neutron matter.
The minimum of e0(ρ) at a density approximately equal to the average central density

of nuclei, ρ0, is a reflection of the saturating nature of the nuclear force. Next, we expand
the symmetry energy about the saturation point:

esym(ρ) ≈ esym(ρ0) + L
ρ− ρ0

3ρ0
+

Ksym

2
(ρ− ρ0)

2

(3ρ0)2 , (6)

which helps identify several useful parameters. L is known as the slope parameter, as it is a
measure of the slope of the symmetry energy at saturation:

L = 3ρ0

(∂esym(ρ)

∂ρ

)
ρ0

. (7)

Furthermore, it is clear from Equations (5) and (7), recalling that the SNM EoS has
vanishing derivative at that point, that L measures the degree of “stiffness” of the NM EoS
at saturation density.

The parameter Ksym characterizes the curvature of the symmetry energy at satura-
tion density:

Ksym = 9 ρ2
0

(∂2esym(ρ)

∂ρ2

)
ρ0

. (8)
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Note that a similar expansion of the energy per particle in SNM identifies the quantity

K0 = 9 ρ2
0(

∂2e0(ρ)

∂ρ2 )ρ0 (9)

as a measure of the curvature of the EoS in SNM.
Using the standard thermodynamic relation,

P(ρ) = ρ2 ∂e
∂ρ

, (10)

where P is the pressure and e is the energy per particle, we define the symmetry pressure as

Psym(ρ) = ρ2 ∂(en − e0)

∂ρ
= PNM(ρ)− PSNM(ρ) . (11)

If the derivative is evaluated at or very near ρ0, the symmetry pressure is essentially
the pressure in NM because the pressure in SNM vanishes at saturation. Then:

PNM(ρ0) =
(

ρ2 ∂en(ρ)

∂ρ

)
ρ0

. (12)

From Equations (7) and (12), it is clear that the slope parameter L is a measure of the
pressure in NM around saturation density:

PNM(ρ0) = ρ0
L
3

, (13)

showing that the pressure in NM is proportional to the slope of the symmetry energy at
normal density. The value of L is then a measure of the pressure gradient acting on excess
neutrons and pushing them outward from the neutron-enriched core of the nucleus to the
outer region, thus determining the formation and size of the neutron skin.

3. Theoretical Tools
3.1. Energy per Nucleon in Infinite Matter

To calculate the energy per nucleon in nuclear or neutron matter, we use the nonper-
turbative particle–particle ladder approximation, which generates the leading-order terms
in the hole–line expansion of the energy per particle. Next in the expansion are the three
hole–line contributions, which include the third-order particle–hole (ph) diagram studied
in ref. [36]. Those were found to bring in an uncertainty of about 1 MeV on the potential
energy per particle at normal density. The third-order hole–hole (hh) diagram has a very
small effect on the energy per particle at normal density (see Tables II and III of ref. [36]).

We compute the single-particle spectrum self-consistently. The Bethe–Goldstone (or
Brueckner) equation for two particles having center-of-mass momentum ~P, initial relative
momentum ~q0, and starting energy ε0 in nuclear matter with Fermi momentum kF is

GP,e0,kF (q, q0) = V(q, q0, kF) +
∫ ∞

0
dkk2 V(q, k, kF)Q(k, P, kF)G(k, q0, kF)

ε0 − (ε(~P +~k) + ε(~P−~k)) + iδ
, (14)

where the Pauli operator, Q, has been angle-averaged, and V is the NN potential augmented
with effective three-nucleon forces (3NFs) as density dependent potentials, to be discussed
in Section 3.4. When calculating the single-particle potential, U, one must recall that, in
order to avoid double-counting, a factor of 1/2 must be applied to the density-dependent
part of V at the Hartree–Fock level [37]:

V = VNN + (1/2)VDD , (15)
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where, again, the first term on the right-hand side is the actual NN potential and the second
one is a density-dependent effective 3NF.

Using partial wave decomposition, Equation (14) can be solved for each partial wave
using standard matrix inversion techniques. Note that the single-particle energy, ε, contains
the single-particle potential, U, yet to be determined. Because the G-matrix depends on U
and U depends on G, an iteration scheme is applied to obtain a self-consistent solution for
U and G, which are related as

U(k1, kF) =
∫
〈~qo|GP,e0,kF |~qo〉d3k2(~qo, ~P) , (16)

where k1,2 are single-particle momenta. Starting from some initial values and a suitable
parametrization of the single-particle potential, a first solution is obtained for the G-matrix,
which is then used in Equation (16). The procedure continues until convergence to the
desired accuracy. A diagrammatic representation of the G-matrix equation in the ladder
approximation is shown in Figure 1.

Figure 1. Diagrammatic representation of the Brueckner integral equation. Intermediate nucleon
lines with the double slash represent in-medium particle states.

The energy per nucleon is then evaluated as

E
N

= 〈T(k1)〉(kF)
+ 〈U(k1, kF)〉(kF)

, (17)

where the averages of the single-nucleon kinetic (T(k1)) and potential (U(k1, kF)) energies
are taken over the Fermi sea.

Next, we give a short review of the main principles and advantages of chiral effective
field theory (EFT) and describe the input two-nucleon forces (2NFs) and 3NFs which
we employ.

3.2. Chiral Effective Field Theory

Chiral EFT [31,32] allows for the development of nuclear interactions as an expansion
where theoretical uncertainties can be assessed at each order. The organizational scheme
that controls the expansion is known as “power counting”.

Chiral EFT is linked to the underlying fundamental theory of strong interactions,
quantum chromodynamics (QCD), via the symmetries and symmetry-breaking mecha-
nisms of the low-energy QCD Lagrangian. The development of an EFT starts with the
identification of a “soft scale” and a “hard scale”. For this purpose, guidance can be found
in the hadron spectrum, observing the large separation between the mass of the pion and
the mass of the vector meson ρ. It is therefore natural to identify the pion mass and the ρ
mass (approximately 1 GeV) with the soft and the hard scale, respectively. Moreover, since
quarks and gluons are ineffective degrees of freedom in the low-energy regime, pions and
nucleons can be taken as the appropriate degrees of freedom of the EFT.
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The link between QCD and the EFT is established through the symmetries of low-
energy QCD. Following the prescriptions of the theory as thoroughly reviewed in ref. [38],
we begin with the QCD Lagrangian:

L = q̄(iγµDµ −M)q− 1
4
Gµν,aGµν

a , (18)

where q is the quark field, Dµ the gauge covariant derivative,M the quark mass matrix,
and Gµν

a the gluon strength field tensor, with a the color index. Note that quark indices (for
spin, color, and flavor) have been suppressed.

Chiral symmetry is conservation of “handedness,” an exact symmetry for massless
particles. Thus, the presence of the quark mass matrix term in the above Lagrangian breaks
chiral symmetry; this is the mechanism of explicit symmetry breaking. The quark mass
matrix in flavor space,

M =

(
mu 0
0 md

)
, (19)

can be written in terms of the identity matrix and the Pauli spin matrix σ3:

M =
(mu + md)

2

(
1 0
0 1

)
+

mu −md
2

(
1 0
0 −1

)
, (20)

showing that the first term respects isospin symmetry, while the second term vanishes if the
masses of the “up” (u) and “down” (d) quarks are equal. We recall that, for massless quarks,
the right- and left-handed components do not mix: the SU(2)R × SU(2)L symmetry or
chiral symmetry. As noted above, the expression in Equation (20) breaks chiral symmetry
explicitly as a result of the non-zero quark masses. Thus, the small difference in the quark
masses breaks isospin symmetry. However, since the masses of the u and d quarks are very
small compared to typical hadronic masses, explicit breaking of chiral symmetry is a small
effect. We will remain in the lightest quark sector, u and d, as appropriate in a theory of
pions and nucleons. QCD with three flavors of light quarks, u, d, s, displays SU(3)× SU(3)
global flavor symmetry in the limit of massless quarks. The masses of the heavier quarks
are much larger than the QCD spontaneus chiral symmetry breaking scale and thus cannot
be treated as a small perturbation around the symmetry limit.

Next, we need to address the spontaneous breaking of chiral symmetry, for which there
is clear evidence in the hadron spectrum. The spontaneous breaking of a global symmetry
is accompanied by the appearance of a massless boson, referred to as a “Goldstone Boson”.
The particle that fulfills these requirements is the pion, an isospin triplet pseudoscalar
boson. The pion is light relative to the other mesons in the hadron spectrum but not
massless, which is due to the explicit chiral symmetry breaking from the non-vanishing
quark masses.

A quick review of the spontaneous symmetry breaking (SSB) mechanism may be
useful to the reader. The main point is that the state of a system (say, the ground state) does
not necessarily have the symmetries of the theory from which the state is derived. In the
QCD case, a conserved quantity with negative parity (the axial charge, QA

i ) would lead to
the expectation that a hadron of positive parity exists for every hadron of negative parity.
Inspection of the hadron spectrum reveals that such symmetry—the existance of degenerate
doublets of opposite parity—is indeed violated. The vector meson with negative parity,
ρ(770), cannot be the “chiral partner” of the 1+ a1 meson, which has a mass of 1230 MeV.
We recall, however, that the ρ meson exists in three charge (isospin) states, with masses
differing by only a few MeV. Therefore, isospin symmetry (SU(2)V) is observed in the
hadron spectrum, whereas axial symmetry, SU(2)R × SU(2)L, is broken. The spontaneous
breaking of a global symmetry generates massless Goldstone bosons, which must have
the quantum numbers of the broken symmetry generators, the pseudoscalar QA

i , and are
therefore identified with the isospin triplet of the pseudoscalar pions.
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Having identified pions and nucleons as the effective degrees of freedom of the EFT,
one can proceed to construct the Lagrangian of the effective theory:

Le f f = Lππ + LπN + LNN + . . . , (21)

which is then expanded in terms of a natural parameter, the ratio of the “soft scale” over
the “hard scale”, p

Λχ
, where p is of the order of the soft scale, whereas Λχ is the energy scale

of chiral symmetry breaking, approximately 1 GeV. See, however, Section 3.2.1 below for
additional comments on the meaning of the chiral symmetry breaking scale, the breakdown
scale, and the ultraviolet cutoff applied in calculations with nucleons. The contributions
to the effective Lagrangian are arranged according to the power counting scheme, with
increasing order resulting in smaller terms. While the expansion itself is, of course, infinite,
at each order we are assured that the number of terms is finite and the contributions
well defined.

Each order of the chiral expansion is identified with the maximum power of the
expansion parameter, Q = p

Λχ
, denoted by ν. Note that p in the chiral perturbation

expansion stands for the typical value of the momentum in the system under consideration.
The first order is dubbed the Leading Order, or “LO,” being equivalent to the power ν = 0.
Terms with ν = 1 vanish, as they would violate conservation of parity. The next power in
the expansion (ν = 2) generates the Next-to-Leading-Order (NLO) terms; ν = 3 gives the
Next-to-Next-to-Leading-Order (N2LO), and so on. At the first two orders of the chiral
expansion, only 2NFs are generated, while 3NFs appear for the first time at N2LO.

To summarize, symmetries relevant to low-energy QCD, in particular chiral symmetry,
are incorporated in the EFT, which is therefore a low-energy realization of the strong
interaction having the global symmetries of QCD. Thus, there is a solid connection with the
fundamental theory of strong interactions, even though the degrees of freedom are pions
and nucleons instead of quarks and gluons. Following a power counting scheme in which
the progression of 2NFs and 3NFs is constructed in a systematic and internally consistent
manner, the inconsistencies inherent to meson-theoretic or phenomenological forces are
eliminated. Next, we discuss how chiral EFT allows for control of truncation error on an
order-by-order basis.

3.2.1. Quantifying Errors in Chiral EFT

A reliable determination of the truncation error is a crucial aspect of chiral EFT. If
observable X has been calculated at order ν and at order ν + 1, a simple estimate of the
truncation error at order ν is

∆Xν = |Xν+1 − Xν| , (22)

which is a measure for what is neglected at order ν. A suitable prescription is needed to
estimate the uncertainty at the highest (included) order. For that purpose, we follow the
prescription of ref. [39]. If p is of the order of the typical momentum involved in the system,
the dimensionless parameter Q is defined as the largest between p

Λb
and mπ

Λb
, where Λb is

the breakdown scale, taken to be about 600 MeV [39]. Before proceeding, some comments
are in place to avoid confusion. In the pion–nucleon sector, it is natural to set the scale to
the chiral symmetry breaking scale, Λχ, about 4πFπ ≈ 1 GeV, where Fπ is the pion decay
constant, equal to 92 MeV (see ref. [21] of ref. [39]). However, in the nucleon sector, it is
common practice to apply a so-called breakdown scale, Λb, chosen around 600 MeV. This
scale is smaller than Λχ because the non-perturbative resummation, necessary for nucleons,
fails for momenta larger than approximately 600 MeV.

The uncertainty in the value of observable X at N3LO as derived in ref. [39] can be
understood with the following arguments. If N3LO (ν = 4) is the highest included order,
the expression

∆X4 = |X4 − X3|Q = (∆X3)Q (23)



Symmetry 2023, 15, 450 8 of 20

is a reasonable estimate for ∆X4 in absence of the value X5, because Q to the power of 1 takes
the error up by one order, the desired fourth order. To avoid accidental underestimations, a
more robust prescription is to proceed in the same way for all the lower orders (ν = 0, 2, 3)
and define, at N3LO,

∆X = max{Q5|XLO|, Q3|XLO − XNLO|, Q2|XNLO − XN2LO|,

Q|XN2LO − XN3LO|} . (24)

In infinite matter, p can be identified with the Fermi momentum at the density be-
ing considered.

Cutoff variations have sometimes been used to estimate contributions beyond trun-
cation. However, they do not allow for estimation of the impact of neglected long-range
contributions. Also, due to the intrinsic limitations of the EFT, a meaningful cutoff range is
hard to estimate precisely, and often very limited. The method of Equation (24) allows us
to determine truncation errors from predictions at all lower orders, without the need to use
cutoff variations.

3.3. The Two-Nucleon Force

The 2NFs we employ are part of a set of potentials from leading order (LO) to fifth
order (N4LO) [40]. The long-range contributions are fixed by the πN low-energy constants
(LECs) determined very accurately in the analysis of ref. [41,42]. Those carry very small
uncertainties, as seen from Table II of ref. [40], rendering variations in the πN LECs
unnecessary when estimating the overall uncertainty in applications of the potential. At
the fifth order, the NN data below pion production threshold are reproduced with high
precision (χ2/datum = 1.15).

Our G-matrix calculation requires iteration of the potential in the non-perturbative
Lippmann–Schwinger equation, and thus high-momentum components must be sup-
pressed. To that end, we apply a regulator function for which we take the non-local form

f (p′, p) = exp[−(p′/Λ)2n − (p/Λ)2n] , (25)

where p′ ≡ |~p ′| and p ≡ |~p | are the final and initial nucleon relative momenta, respectively.
The integer n is the exponent of the regulator and is given in Table 1. We use Λ = 450 MeV
throughout this work, which is reasonable, since it is smaller than the breakdown scale,
Λb ≈ 600 MeV. The potentials we use are relatively soft, which was confirmed by a Weinberg
eigenvalue analysis [43] and perturbative calculations of infinite matter [44]. In NM, we
use the neutron–neutron versions of these potentials.

Table 1. The LECs used in our calculations. n is the exponent of the regulator, Equation (25). The
LECs c1,3,4 are given in units of GeV−1, and CS and CT are in units of GeV−2.

Order n c1 c3 c4 CS CT

N2LO 2 −0.74 −3.61 2.44
N3LO 2 −1.07 −5.32 3.56 −118.13 −0.25

3.4. The Three-Nucleon Force

Three-nucleon forces appear at the third order (N2LO) of the ∆-less EFT. The leading
3NF includes [45]: the long-range two-pion-exchange (2PE), the medium-range one-pion-
exchange (1PE), and a short-range contact interaction. In infinite matter, the 3NF can be
approximately expressed as density-dependent effective NN potentials [46,47] which can
be incorporated in the usual NN partial wave formalism.

The effective 3NF at N2LO consist of six one-loop topologies. Of those, three originate
from the 2PE part of the chiral 3NF and depend on the LECs c1,3,4, already present in the
2PE part of the NN potential. Two one-loop topologies originate from the 1PE diagram of
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the chiral 3NF and depend on cD. The one-loop contribution arising from the 3NF contact
diagram depends on the LEC cE. Figure 2 shows the diagrams of the leading 3NF. The
contributions depending on the LECs cD and cE are absent in neutron matter [48].

(a) (b) (c)

Figure 2. Diagrams of the leading 3NF: (a) the long-range 2PE, depending on the c1,3,4; (b) the
medium-range 1PE, involving cD; and (c) the short-range contact, proportional to cE.

The 3NF at N3LO was derived in refs. [49,50]. The long-range part includes: the 2PE
topology (Figure 3a), the two-pion–one-pion exchange (2P1PE) topology (Figure 3b), and
the ring topology (Figure 3c), representing a pion absorbed and re-emitted from each of
the three nucleons. The 2PE component is the longest-range part of the subleading 3NF.
The in-medium NN potentials representing the long-range subleading 3NFs were derived
in Ref. [51] for SNM and in ref. [52] for NM. The short-range subleading 3NF includes the
following topologies: the one-pion–exchange-contact (1P-contact), Figure 3d, which gives
a vanishing net contribution, the two-pion–exchange-contact (2P-contact), Figure 3e, and
relativistic corrections, proportional to 1/M, where M is the nucleon mass. The relativistic
corrections depend on the CS and the CT LECs present in the 2NF. We include those
contributions and find them to be very small: a fraction of 1 MeV in the energy per nucleon.
The in-medium NN potentials representing the short-range subleading 3NFs can be found
in ref. [53] for SNM and in ref. [54] for NM.

(a) (b) (c) (d) (e)

Figure 3. Selected diagrams of the subleading 3NF, each representative of a specific topology: (a) 2PE;
(b) 2P1PE; (c) ring; (d) 1P-contact; (e) 2P-contact.

The LECs we use, which appear already in the 2NF, are displayed in Table 1. We recall
the CS and CT are determined through the fit of the contact terms in the potential [40]. The
cD and cE LECs vanish in NM. Their values for SNM are taken from ref. [55].

Note that when the subleading 3NFs are included, the c1 and c3 LECs are shifted to
−1.20 GeV−1 and −4.43 GeV−1, respectively. The reason is that most of the subleading
2PE 3NF can be taken into account by shifting the LECs in the leading 3NF to −0.13 GeV−1

and 0.89 GeV−1, for c1 and c3, respectively [49], plus additional terms resulting from
Equation (1) of ref. [52].

4. Ab Initio Predictions in Infinite Matter

We perform order-by-order calculations, including all subleading 3NFs up to N3LO
and with uncertainty quantification as from Equation (24). Our calculations being complete
at each order, we can draw reliable conclusions regarding the convergence pattern of the
chiral perturbation series up to N3LO.
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4.1. Symmetric Nuclear Matter

Although this article is mostly about isospin-asymmetric systems, for completeness,
we include a short section about SNM, an important laboratory for testing many-body
theories. Recently, challenges with simultaneous description of masses and radii of medium-
mass nuclei has brought SNM saturation properties to the forefront of contemporary ab
initio nuclear structure [56].

To evaluate the truncation error for the saturation parameters using Equation (24),
one could take the standard value, say ρ0 = 0.16 fm−3, for all orders. Because the EoS at
LO and NLO do not exhibit a saturating behavior, it may be more appropriate to use the
actual saturation densities for the EoS that include 3NFs, namely, those that do saturate.
It would not be very meaningful to evaluate, for instance, the incompressibility, which
measures the curvature of the EoS at the minimum, if such minimum is absent. Estimating,
pessimistically, the truncation error at N3LO as |XN3LO − XN2LO|, we obtain the values
displayed in Table 2 [57]. Adopting, instead, the prescription |XN3LO − XN2LO|

p
Λ , where

p is the Fermi momentum at saturation density, the errors would be reduced by about
44%. In Figure 4, we show the predictions at N3LO with the uncertainty band calculated
from Equation (24). The LECs cD and cE are equal to 0.50 and −1.25, respectively, and are
taken from ref. [44]. For comparison, we display saturation properties for the final posterior
predictive distribution (PPD) from ref. [58] (see Table 2).

Table 2. Predictions for the saturation properties of SNM from the final PPD of ref. [58]. Shown are
the medians, 68% credible regions (CR), and 90% CR. The last column contains our predictions [57].
The energy per nucleon, E/A, and the incompressibility, K, are in units of MeV. The saturation density,
ρ0, is in units of fm−3.

Observable Median 68% CR 90% CR Our Predictions

E/A −15.2 [−16.3, −13.9] [17.1, −13.4] −14.98 ± 0.85
ρ0 0.163 [0.147, 0.176] [0.140, 0.186] 0.161 ± 0.015
K0 264 [219, 300] [202, 336] 216 ± 33
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e 0
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Figure 4. Energy per nucleon in SNM vs. density at the fourth order of chiral perturbation theory.
The band signifies the uncertainty calculated from Equation (24). The grey box marks the empirical
saturation point, consistent with refs. [22,48] in ref. [44].

4.2. Neutron Matter and the Symmetry Energy

As mentioned earlier, the formation of the neutron skin in neutron-rich nuclei is a
fascinating phenomenon. It is the result of excess neutrons forced outward by the neutron-
rich core of the nucleus, which effectively amounts to a pressure gradient that moves some
of the excess neutrons to the outskirts of the nucleus. Although it is a small contribution
relative to the size of the nuclear radius, the neutron skin contains important information
about nucleon interactions in a strongly isospin-asymmetric environment.

The EoS of neutron-rich matter plays a major role in nuclear astrophysics. Neutron
stars are natural laboratories for constraining theories of the EoS in neutron-rich matter,
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to which the star mass–radius relationship is sensitive. Interest in these compact stars has
grown with the onset of the “multi-messenger era” for astrophysical observations. We will
start with discussing predictions based on chiral EFT [59].

In Figure 5, we show our predictions for the energy per neutron in NM over four
chiral orders. The large variations between NLO and N2LO are in large part due to the first
appearance of 3NFs at N2LO. The predictions at N3LO show a slight increase in attraction
with respect to those at N2LO, in agreement with other calculations [60]. Our NM EoS is on
the soft side of the large spectrum of EoS found in the literature, with a correspondingly
soft density dependence of the symmetry energy, as can be seen from Figure 6. This feature
is generally true for predictions based on chiral EFT.
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Figure 5. (Color online) Energy per neutron in NM vs. density, from leading (black dashes) to fourth
order (solid red).
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Figure 6. (Color online) The symmmetry energy vs. density, from leading (black dashes) to fourth
order (solid red).

For the purpose of the present discussion, we replace the EoS of SNM with an empirical
parametrization [61] that produces values for the energy per nucleon (−16.0 MeV) and
the saturation density (ρ0 = 0.155 fm−3) consistent with the traditionally cited empirical
saturation point. We emphasize that our motivation is to spotlight the energy and pressure
in neutron matter and their impact on the symmetry energy while the isoscalar properties do
not change. Semi-empirical constraints for the symmetry energy are typically obtained by
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constructing sets of parametrized model EoS which differ, sometimes quite broadly, in their
values of L while remaining otherwise equivalent. Under these circumstances, the linear
relation between L and the neutron skin thickness is observed. Therefore, the comparisons
we explore in this section are more meaningful if we remove additional uncertainties
arising, for instance, from the sensitivity of the theoretical SNM EoS to the cD, cE LECs.
Varying simultaneously isoscalar properties would mask what we wish to highlight.

A large spectrum of phenomenological analyses suggest that typical values for L fall
within 70 ± 15 MeV [20,62–66]. This is not in agreement with the findings from the recent
PREX-II experiment [33]: esym = (38.29 ± 4.66) MeV and L = (109.56 ± 36.41) MeV, for the
symmetry energy and its slope at saturation, respectively, also at variance with a large
number of results based on experimental measurements.

In Table 3 we show some of our predictions at N3LO with their truncation errors: the
energy per neutron and the symmetry energy at saturation, the slope parameter as defined
in Equation (7), and the pressure in NM. As already observed, the softer nature is common
to most chiral predictions. A comparison with phenomenological interactions of the past,
such as Argonne V18 augmented the UIX 3NF [67], can be found in ref. [68]. A more recent
analysis [69] reports values for esym(ρ0) and L of (31.7 ± 1.1) MeV and (59.8 ± 4.1) MeV,
respectively.

Table 3. The energy per neutron, the symmetry energy, the L parameter, and the pressure at N3LO at
selected densities, ρ, in units of ρ0 = 0.155 fm−3. L is defined in Equation (7) and calculated at the
specified density. The values in parentheses are from ref. [66]. The constraint for L in the third row
(ρ = 0.67ρ0) applies to ρ = 0.1 fm−3. The constraint at ρ = 0.31ρ0 is from ref. [70].

ρ (ρ0) E
N (ρ) (MeV) esym(ρ) (MeV) L(ρ) (MeV) PN M(ρ) (MeV/fm3)

1 15.56 ± 1.10 31.57 ± 1.53 (33.3 ± 1.3) 49.58 ± 8.47 (59.6 ± 22.1) 2.562 ± 0.438 (3.2 ± 1.2)
0.72 (0.72 ± 0.01) 11.52 ± 0.43 26.46 ± 0.82 (25.4 ± 1.1) 44.91 ± 3.40 1.05 ± 0.13
0.67 (0.66 ± 0.04) 10.81 ± 0.41 25.25 ± 0.72 (25.5 ± 1.1) 44.65 ± 3.23 (53.1 ± 6.1) 0.859 ± 0.120
0.63 (0.63 ± 0.03) 10.39 ± 0.41 24.47 ± 0.66 (24.7 ± 0.8) 43.81 ± 3.11 0.748 ± 0.116
0.31 (0.31 ± 0.03) 6.715 ± 0.086 15.43 ± 0.12 (15.9 ± 1.0) 32.35 ± 0.55 0.174 ± 0.008
0.21 (0.22 ± 0.07) 5.472 ± 0.039 11.73 ± 0.05 (10.1 ± 1.0) 27.57 ± 0.11 0.106 ± 0.002

We observe that the values in the first row of Table 3—approximately L = (50± 10) MeV,
and pressure at ρ0 in the order of 2–3 MeV/fm3—differ considerably from those resulting
from the PREX-II experiment. The PREX-II value of the pressure at ρ0 is approximately
between 3.66 MeV/fm3 and 7.30 MeV/fm3. Such a stiff symmetry energy would allow
rapid cooling of the star through direct Urca processes to proceed at atypically low values
of the neutron star mass and central density [33], which seems unlikely [71]. On the other
hand, the proton fraction we obtain is close to 6% at ρ ≈ 0.2 fm−3, still considerably smaller
than the direct Urca threshold, about 1/9 [72].

Before we take a short detour towards neutron stars, we wish to emphasize that no
theory of hadrons can describe neutron star matter from outer crust to inner core. However,
the normal density region is relevant for the physics of neutron stars, given the sensitivity
of the radius to the slope parameter L for star masses around 1.4 solar masses.

We recall that the direct Urca process is the fastest cooling mechanism for neutron
stars. It is due to thermally excited neutrons undergoing β-decay,

n→ p + e− + ν̄e , (26)

while thermally excited protons undergo inverse β-decay,

p→ n + e+ + νe . (27)

The neutrinos carry away energy as they escape, and the star cools very rapidly to
temperatures below 109 K, at which point a minimum proton fraction (the Urca threshold
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mentioned above) must be present in order to preserve conservation of momentum. The
proton fraction in a cold neutron star (temperature below 109 K) is determined by the
symmetry energy, which is a measure of the energy change associated with variations in
relative proton and neutron concentrations. The proton fractions we obtain in β-stable
stellar matter are shown in Figure 7 as a function of density. The similarity of pattern with
Figure 6 is noticeable. At typical nuclear densities, our predicted proton fraction at N3LO
is about 1/25. 

 

 

 

 

 

 

Figure 7. (Color online) The proton fraction in β-stable matter vs. density, from leading (black dashes)
to fourth order (solid red).

Within the mean-field philosophy, on the other hand, one proceeds in the opposite
direction. We take note, for instance, of ref. [73], where the authors construct equations of
state using covariant density functional theory and explore the coupling parameter space of
the isovector meson to generate a variety of models. Not surprisingly, when the constraint
on L from PREX-II is included, all models allow direct Urca cooling at densities as low as
1.5ρ0 and within neutron stars with mass as low as one solar mass.

Returning to our discussion of Table 3, we also report predictions at some selected
densities less than ρ0, which were found to be sensitive to specific observations in ref. [66].
This was determined from the slope of the correlation in the plane of esym(ρ0) vs. L, noticing
that a particular slope identifies the density at which that observable is most sensitive to
the symmetry energy. Our ab initio predictions agree within uncertainties with the values
from ref. [66]. We recall that, at ρ = (2/3)ρ0 ≈ 0.1 fm−3 (an approximate average between
central and peripheral densities in a nucleus), reliable constraints to the symmetry energy
can be obtained through the binding energy of heavy, neutron-rich nuclei [33]. Therefore,
this density region is important when exploring correlations between L and the neutron
skin of 208Pb.

In summary, a range for L between 45 and 65 MeV can be taken as typical for state-of-
the-art nuclear theory predictions.

We close this section with a few comments on the symmetry energy at higher densities.
Heavy-ion collisions are typical experiments used to probe higher densities. For instance,
the reaction 197Au + 197Au at an incident energy of 400 MeV/nucleon was used in the
ASY–EOS experiment at the GSI laboratory [29] to measure directed and elliptic flows of
neutrons and charged particles. The densities probed by the experiment reach beyond
twice the saturation density. For both low and high density, one must be cautious with
the interpretation of constraints extracted from the measured observables, which may be
model dependent.
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Moving to even higher densities, the composition of a neutron star core will remain
largely unknown unless reliable constraints on the symmetry energy at high densities
become available. The minimum mass for direct Urca cooling may be a suitable constraint
for the density dependence of the symmetry energy [74] above approximately 3ρ0, which is
found to be strongly correlated with the neutron star mass at which the onset of direct Urca
neutrino cooling takes place in the core. The analysis from ref. [75] finds that the values of
tidal deformability and radius for a 1.4 M� neutron star are correlated with the pressure in
β-equilibrated matter at about 2ρ0.

From a theoretical standpoint, densities around twice the saturation density or higher
are outside the reach of current ab initio calculations. Nevertheless, the normal density
regime is of far-reaching importance for higher density features.

4.3. Impact on the Neutron Skin

Relating the spatial extension of a nucleus directly to the microscopic EoS can be done
by employing the droplet model. Recently, we calculated the neutron skin [76],

S =< r2 >1/2
n − < r2 >1/2

p , (28)

of 208Pb using expressions that contain explicitly the symmetry energy and its density slope
at saturation [76] (see Table 4). We emphasize that the simple droplet model is being used
because we can directly input the values of J and L; the table entries relative to one another
should be the focal point.

Table 4. The neutron skin of 208Pb, S, calculated as described in ref. [76] using the given symmetry
energy, J, and its slope at ρ0, L.

J (MeV) L (MeV) S (fm) Source for J, L

31.3 ± 0.8 52.6 ± 4.0 [0.13, 0.17] [34]
(31.1, 32.5) [44.8, 56.2] [0.12, 0.17] [44]

(28, 35) [20, 72] [0.078, 0.20] [77]
(27, 43) [7.17, 135] [0.055, 0.28] [78]

38.29 ± 4.66 109.56 ± 36.41 [0.17, 0.31] [33]

The first three entries in Table 4 are obtained from EoS based on chiral EFT and
including two- and three-nucleon interactions at N3LO. We note that they are relatively
soft, cover a narrow range, and are consistent with one another. As to be expected from
earlier discussions, the corresponding neutron skins are relatively small. Recently, ab initio
predictions for the neutron skin of 208Pb have been found [58] to lie between 0.14 and
0.20 fm, in disagreement with the values extracted from electroweak (EW) scattering. The
values on the fourth line are taken from an analysis of current constraints from nuclear
theory and experiment [78], where the authors utilized 48 phenomenological models,
relativistic mean field, and Skyrme Hartree–Fock. Finally (last line), the values of J and L
from the recent PREX II experiment are shown. The reported value for the skin of 208Pb in
ref. [33] is (0.283 ± 0.071) fm, corresponding to a range between 0.21 and 0.35 fm.

Clearly, phenomenological interactions can generate a much larger range for the
neutron skins, including values consistent with the findings of PREX II. Of course, this is
a reflection of the larger range for L that can be generated through parametrizations of
mean-field models. On the other hand, the realistic nature of few-nucleon forces should
be preserved in heavier systems, which is the essence of the ab initio philosophy. For
these reasons, while an important tool to explore sensitivities and correlations, mean-
field models lack the predictive power needed to answer the open questions in ab initio
nuclear structure.

We conclude this section pointing to the interesting discussion in ref. [79], where the
authors extended their previous analysis of the PREX experiment to recent measurements
of parity-violating asymmetry in 48Ca (CREX experiment). The study included the static
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electric dipole polarizability, an observable that is expected to correlate with the neutron
skin. We fully agree that a critical search is needed for the limitations of interactions
currently used in ab initio calculations and other sources of experimental error. Figure 8,
generated from information extracted from the figure in ref. [80], shows the discrepancy
between CREX and PREX measurements and current theoretical predictions. The lines mark
the mean values of the measured asymmetry in lead and calcium, respectively, and the
bands represent the errors. Theoretical predictions should be, but are not, at the intersection
of CREX and PREX results, marked by the red dot.
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Figure 8. (Color online) Discrepancy between the CREX and PREX measurements and theoretical
predictions. See text and ref. [80] for more details.

5. Impact of the Isovector Part of the Free-Space NN Force

In the impressive analysis in ref. [58], 109 nuclear force parametrizations consistent
with chiral EFT are examined. Employing state-of-the-art statistical methods and computa-
tional technology, the authors are able to make quantitative predictions for bulk properties
and skin thickness of 208Pb. In the process, they find a strong correlation between L and
the 1S0 phase shift at laboratory energies around 50 MeV.

Here, we perform a single-shot calculation which serves as a simple and transparent
test of the impact of the isovector part of the free-space NN force in neutron matter. We
consider 2NFs only.

For the purpose of this test, we made a version of the N3LO(450) potential where
the fit of isospin-1 partial waves is deteriorated as compared to the original potential (see
Figure 9). This is accomplished by adjusting two LECs in 1S0 channel and one LEC for
each of the P-waves (all changes are on average between 2 and 10%), while keeping the
scattering length at its correct value. Although not dramatic, the impact on the phase shifts
is considerable, especially above 100 MeV.
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Figure 9. (Color online) Phase shifts for selected isospin-1 partial waves as a function of the laboratory
energy. Solid black: original potential; Red dashes: modified potential.

We then calculate the EoS of NM with the modified potential, shown in Figure 10
along with the original N3LO predictions (2NF only). As we do not include 3NFs, these
values are not realistic, but we are interested in highlighting differences due to the 2NF.
Around saturation, the energy moves up by about 25%, while the (very sensitive) slope
and closely related pressure increase by a factor of 1.75. This comparison is shown in
Table 5. In other words, the “modified” phase shifts are not disastrous, but the slope of
the NM EoS changes dramatically. Notice that our modified interaction is only very little
different from the original interaction below 100, confirming extreme sensitivity of the
neutron matter slope (and thus the slope of the symmetry energy) to the description of the
isovector component of the NN interaction. Of course, a more “quantitative” test would
require the inclusion of 3NFs, readjusted for consistency with the 2NF modifications. On
the other hand, this simple exercise suffices to demonstrate that relaxing or abandoning
the constraint of free-space NN data can produce dramatic changes in L (and thus the
neutron skin).

 

 

 

 

 

 

 

 

 

Figure 10. (Color online) Energy per neutron as a function of NM density. Solid black: original
potential; Red dashes: modified potential.
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Table 5. The energy per neutron, its slope, and the pressure at a density of 0.155 fm−3 with the originl
and the modified potentials. Only the 2NF is included.

Calculated Quantity N3LO(450) Modified Potential

en(ρ0) (MeV) 11.11 13.88(
∂en(ρ)

∂ρ

)
ρ0

(MeV/fm−3) 39.79 70.03

P(ρ0) (MeV/fm3) 0.956 1.68

The freedom to modify a model in such a way that isovector properties (such as the
slope of the NM EoS) vary while retaining good fits to nuclei and nuclear matter is the
mechanism that generates the popular correlations from mean-field models. However,
free-space NN data do not enter into this picture, contrary to the basic principle of ab initio
predictions. Also, variations within the model parameter space are generally applied to
predefined analytical expressions, such as power laws of the density.

6. Conclusions and Future Perspective: Where Do We Go from Here?

We performed an analysis of existing literature addressing the nuclear symmetry
energy, with the objective of identifying and discussing current gaps or problems and
providing recommendations for future research.

There has been enormous progress in nuclear theory since the days of one-boson-
exchange or phenomenological NN potentials and phenomenological 3NFs, selected with
no clear scheme or guidance. One is now able to construct nuclear forces in a systematic
manner, as they naturally emerge order by order. This allows us to perform calculations
that are complete at each order.

To advance our understanding of intriguing systems such as neutron skins and neutron
stars, it is important to build on that progress. Predictions from state-of-the-art nuclear
theory favor a softer density dependence of the symmetry energy on the low-to-medium
end of the spectrum found in the literature and, naturally, smaller neutron skins and radii
of canonical mass neutron stars.

On the other hand, mean-field models, while a very useful tool to provide insight into
the phenomenology of the system, cannot, by their very nature, provide answers to the open
questions in ab initio nuclear structure.

On the experimental side, it is important to keep in mind that the symmetry energy
parameters that control the neutron skin (and more) are extracted from measurements
of suitable observables rather than being measured directly. While EW methods avoid
the uncertainty and model dependence that come with the use of hadronic probes, the
weakness of the signal seems to generate large errors: the measured observable is the very
small left–right asymmetry in weak electron scattering off nuclei. This may hinder the
ability of the experiment to provide a benchmark.

It can be demonstrated, and should be expected on fundamental grounds, that accurate
reproduction of low-energy NN data is an important requirement for realistic predictions
of many-body systems. Ignoring or weakening that constraint takes us back to mean-field
approaches and thus is not progress.

Whether one chooses to call it “tension” [58] or “irreconcilable differences” [76], large
pressure in neutron matter at saturation and large neutron skins are inconsistent with
essentially all state-of-the-art predictions. We suggest that the way forward is for the
low-energy experimental and theory communities to work together closely. Theorists
should continue to identify and confront systematic problems in nuclear structure, critically
examining the interactions used in up-to-date ab initio calculations. Claims that most recent
results from EW scattering represent a benchmark are premature.
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