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Abstract: The offset as the average value of a variable plays an important role in signal processing and
system design. Offset boosting can be realized by a non-bifurcation parameter or an initial condition.
In this work, symmetric coexisting attractors with opposite polarity and a 2D hyperchaotic map with
multiple modes of offset boosting are proposed, where the offset can be controlled both by the initial
condition and system parameter, and as a result, multiple alternatives of offset boosting and offset
competition show up. Consequently, the final offset is determined eventually by the balance of two
factors. The theoretical findings are verified through the hardware experiment based on the STM32.
Finally, a pseudo-random number generator (PRNG) is constructed based on the newly proposed
hyperchaotic map, demonstrating its high performance in engineering applications.

Keywords: hyperchaotic map; symmetric coexisting attractors; offset boosting; offset boosting regime

1. Introduction

Chaos control, including amplitude control [1–3] and offset boosting [4–7], is a hot
topic in the nonlinear community, which becomes more important for a multistable system
since it hosts many coexisting attractors [8–12]. Offset boosting of a chaotic attractor brings
great convenience for chaotic signal conditioning and thus brings increasing interest. The
introduction of a periodic function drives attractor self-reproduction, where any of the
coexisting attractors locates at a definite position in phase space and can be extracted out
by an initial condition [13]. A periodically forced megastable chaotic system may give birth
to countless embedded coexisting attractors [14]. In Chua’s memristive multi-double-scroll
system, the internal parameter of the memristor can be employed to construct the desired
number of multi-double-scroll chaotic attractors [15]. All the phenomena resort to the
technology of offset boosting. However, the associated research on offset control in the
field of the discrete map is relatively poor, which leaves a significant margin [16–18]. It
has been proved that offset boosting plays an important role in the discrete map for the
desired multistability [19,20]. Zhou et al. proposed homogenous multistability in a 3D map,
in which the chaotic attractor structure and the distance between any two petals can be
controlled by initial conditions [21]. Offset boosting can be applied to construct a discrete
multi-cavity [22]. A self-reproduction hyperchaotic map may exhibit compound lattice
dynamics associated with offset boosting [23]. Offset boosting shows its specific function
in discrete systems for attractor control.

Offset boosting can be realized by a non-bifurcation parameter or an initial condition.
Therefore, sometimes it is difficult to determine how exactly offset boosting happens since
the final derived offset may be the balanced result from the competition of a parameter and
an initial start. In this work, a 2D hyperchaotic map with symmetric coexisting attractors is
designed, where hyperchaotic sequences with opposite polarities are obtained, and multiple
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modes of offset boosting controlled both by the initial condition and system parameter are
found. As a result, multiple alternatives of offset boosting and offset competition show up.
The main contributions are summarized as follows:

(1) A new control knob is found, which can control the interval and direction of attractor
self-reproduction.

(2) Various alternatives of offset boosting are systematically explored, which include
initially controlled offset boosting, parameter-oriented offset boosting and competitive
offset boosting.

(3) Competitive offset boosting is firstly discussed, where the newly introduced constants
show the function of offset boosting determining the direction of the shifted attractor
in the phase space, and as a result, based on the constant, the bipolar and unipolar
chaotic signals can be switched accordingly.

(4) Periodic windows are caught by the plot of the bifurcation diagram, which poses a
great threat to engineering applications. However, competitive offset boosting can be
easily applied to cross this interval and reach hyperchaos.

(5) An STM32-based circuit implementation is constructed to prove two different offset
boosting regimes. PRNG is employed to demonstrate the practical application of the
proposed map.

The rest of this paper is organized as follows. A basic analysis of the 2D hyperchaotic
map, including stability of fixed points and bifurcation are provided in Section 2. In
Section 3, various mechanisms of offset boosting are exhaustively explored. In Section 4,
STM32-based circuit implementation is set up for physical verification, and PRNG is
derived to explore its chaos-based applications. Discussions and conclusions are presented
in Section 5.

2. A 2D Hyperchaotic Map
2.1. Model Description

By introducing a periodic nonlinearity [23], a novel 2-D discrete map is proposed,{
xn+1 = xn + sin(xn + yn),
yn+1 = axn,

(1)

where n represents a natural number, xn and yn respectively denote the nth states. System
parameters are represented by the symbol a. When xn+1 →–xn+1, yn+1 →–yn+1, xn →–xn,
yn→–yn, map (1) keeps its polarity balance indicating that map (1) is of inversion symmetry.

2.2. Bifurcation Analysis

The Lyapunov exponent is a direct theoretical description and widely used criteria
indicating the existence of chaos, which is widely accepted in nonlinearity community. The
Lyapunov exponent of a differential equation xi+1 = f (xi), denoted as λf (x), is mathemati-
cally defined as

λ f (x) = lim
n→∞

{
1
n

ln
∣∣∣∣ f n(x0 + ε)

ε

∣∣∣∣}, (2)

where ε is a very small positive value nearing zero. One positive value indicates chaos, and
more positive values show hyperchaos.

When (x0, y0) = (1, 0) and a varies in (−3.4, 2.5), several kinds of evolution including
period, chaos, and hyperchaos are found in map (1) [24–26], as depicted in Figure 1. When
a is in (−2.7, −2.248), hyperchaos shows up; when a varies in (−2.248, −2.03), map (1) is
chaotic; when a increases in (−2.03, −2.01), a small range periodic window is captured;
when a increases in (1.758, 1.882), quasi-periodic oscillation behavior is exhibited; when the
parameter a varies in (1.892, 2.5), map (1) is chaotic, and two separate periodic windows
(1.99, 2.115) and (2.333, 2.365) are embedded. Typical dynamical behaviors of map (1) are
summarized in Table 1, corresponding phase orbits are shown in Figure 2. When x0 →–x0,
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y0→–y0, the polarity in map (1) is switched and its symmetrical attractors are produced, as
shown in Figure 2d–f, their symmetrical waveforms are displayed in Figure 3.
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Figure 1. Dynamical evolution of hyperchaotic map (1) under the initial condition (x0, y0) = (1, 0)
when a varies in (−3.4, 2.5): (a) Lyapunov exponents, (b) bifurcation diagram.

Symmetry 2023, 15, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Typical phase trajectories of map (1): (a) a = −2.6, (b) a = −2.2, (c) a = −1.96, (d) a = 1.887, (e) a 

= 2.336, (f) a = 2.5, where (a–c) under the initial condition (x0, y0) = (1, 0). 

 

Figure 3. Symmetrical waveforms of map (1): (a) a = 1.887, (b) a = 2.336, (c) a = 2.5. 

Table 1. Typical dynamics of map (1) when (x0, y0) = (1, 0). 

a Attractor Type Lyapunov Exponents 
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−2.2 Chaos 0.1034, −0.0136 
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Figure 2. Typical phase trajectories of map (1): (a) a = −2.6, (b) a = −2.2, (c) a = −1.96, (d) a = 1.887,
(e) a = 2.336, (f) a = 2.5, where (a–c) under the initial condition (x0, y0) = (1, 0).
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Table 1. Typical dynamics of map (1) when (x0, y0) = (1, 0).

a Attractor Type Lyapunov Exponents

−2.6 Hyperchaos 0.2256, 0.09648
−2.2 Chaos 0.1034, −0.0136
−1.96 Quasi-period 0, −0.2493
1.877 Quasi-period 0, −0.3204
2.336 Periodic points −0.1134, −0.2626

2.5 Chaos 0.3369, −0.1136
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3. Multiple Alternatives of Offset Boosting
3.1. Initially Controlled Offset Boosting

Discrete map (1) is a dynamic system with self-reproduction. According to the iterative
relationship, suppose the initial data of xn receives the offset boosting, and the properties of
the attractor are not disturbed by the value of offset boosting. For the periodicity of the sine
function, the attractor is shifted in phase space with inconsistent steps, and the coexisting
attractors are arranged by the polarity of x0 and a.

Case I: x0 > 0, a < 0: when x0 > 0, a < 0, attractor self-reproducing is heading in the
negative direction of y, as shown in Figure 4a,b.

Case II: x0 > 0, a > 0: when x0 > 0, a > 0, coexisting attractors are arranged in the
positive direction of y, as plotted in Figure 4c,d.

Case III: x0 < 0, a < 0: when x0 < 0, a < 0, the direction of attractor self-reproduction is
in the negative direction of y, which is the same as that of case I.

Case IV: x0 < 0, a > 0: when x0 < 0, a > 0, self-reproducing attractors are extracted in
the phase space in the positive direction of y, as in case II.

The initial condition x0 controls the position of coexisting attractors in two-dimensional
space. As depicted in Figure 5a, the plot of Lyapunov exponents with many periodic
windows indicates the nonsmooth switch from one state to another when a = −2.6 and
x0 varies in [0, 15]. When a = −2.6 and x0 varies on the negative side of the coordinate
axis, in pace with the change in x0 in the positive direction, the dynamic behavior is also
accompanied by mutations. Correspondingly, when a = 2.5 and x0 varies in [0, 8], Figure 5b
shows that the dynamic evolution is relatively smooth without a change in state. Moreover,
when a = 2.5 and x0 > 0, a similar smooth dynamic evolution will also appear. The basins
of attraction of the coexisting attractors plotted in Figure 6 also prove this phenomenon.
When a = −2.6, the separate basins are nonsmooth, while when a = 2.5, the boundary of the
basins is smooth. The rule of attractor reproduction agrees with the evolution of the square
plot of bifurcation.
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3.2. Parameter-Oriented Offset Boosting

Suppose the sequence xn has the offset shift l while sequence yn obtains offset boosting
with −l, map (1) turns out to be,{

xn+1 + l = xn + l + sin(xn + l + yn − l),
yn+1 − l = a(xn + l),

(3)

set d = al + l = (a + 1) l, Equation (3) turns out to be,{
xn+1 = xn + sin(xn + yn),
yn+1 = axn + d,

(4)

It means that the constant d in Equation (4) indicates the offset boosting l = d/(a + 1) in
the opposite direction along the axis of x and y. Shifted attractors of map (4) are arranged
in phase space along a specific direction defined by the parameters a and d.

Case I: a < −1, d < 0 or a > −1, d > 0: when a < −1, d < 0 or a > −1, d > 0, then l > 0, so
the sequence xn is given a positive offset boosting (PX), and the sequence yn is offered a
negative offset boosting (NY).

Case II: a > −1, d < 0 or a < −1, d > 0: when a > −1, d > 0 or a < −1, d > 0, then l < 0,
and then the sequence xn is assigned with negative offset boosting (NX), and the sequence
yn is equipped with positive offset boosting (PY).

As shown in Figure 7, the attractor is constantly shifted on the y-axis as well as moved
in a certain interval on the x-axis. Four different modes of offset boosting are revealed in
Table 2.

Table 2. Various modes of offset boosting in the map (4).

Parameters a < −1 a > −1

d < 0
l > 0 l > 0
PX NX
NY PY

d > 0
l < 0 l > 0
NX PX
PY NY
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(d) a = 2.5.

When a < −1, d > 0, and l < 0, the chaotic signal xn is shifted in the positive direction,
and the signal yn is moved in the negative direction. The dynamical evolution of d is
accompanied by many periodic windows, indicating the threat to engineering can be
effectively diagnosed by competitive offset boosting. Different from the above-mentioned
offset boosting, when a > −1, d > 0, and l > 0, the attractor moves in the negative direction
of x and the positive direction of y. The dynamical behavior of d is non-bifurcation without
revising Lyapunov exponents, as plotted in Figure 8b. From Figure 8, it is obvious that
the evolution of parameter d makes the offset boosting of the signals xn and yn different
according to the period of 2π. Further explanation will be discussed later.

Suppose the sequence of xn receives offset boosting with p while the offset of yn is
revised by q, map (1) turns out to be,{

xn+1 + p = xn + p + sin(xn + p + yn + q),
yn+1 + q = a(xn + p),

(5)

When q = ap, and let p + q = h, Equation (5) turns out to be,{
xn+1 = xn + sin(xn + yn + h),
yn+1 = axn,

(6)

It indicates that the constant h in Equation (6) implies the offset boosting p = h/(a + 1)
in various combinations of movement in the axis of x and y when a and h are located in
different regions, respectively. When a < −1 and h > 0, then p < 0 and q > 0, the sequence xn
is given a negative offset boosting, and the sequence yn is offered a positive offset boosting.
Conversely, when a > 0 and h > 0, then p > 0 and q > 0, the sequence xn and yn are assigned
with positive offset boosting. Six different modes of competitive offset boosting are revealed
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in Table 3. As shown in Figure 9, the attractors are arranged in a certain interval on the
x-axis and y-axis.
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Table 3. Regulated directions of offset boosting in the map (6).

Parameters a < −1 −1 < a < 0 a > 0

h < 0
p > 0, q < 0 p < 0, q > 0 p < 0, q < 0

PX NX NX
NY PY NY

h > 0
p < 0, q > 0 p > 0, q < 0 p > 0, q > 0

NX PX PX
PY NY PY
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The starting position of the chaotic signal can be regulated by the offset constant h, as
shown in Figure 10a. When a < −1, h > 0, p < 0, and q > 0, the dynamical evolution of h
is accompanied by many periodic windows, and signal xn and yn have migrations in the
opposite direction, as shown in Figure 10b–d.

Because the periodic function appears in the iterative equation of map (1) in the first
dimension, offset boosting of map (1) becomes more flexible and shows multiple patterns.
According to parameter d in Equation (4), the offset boosting of the signal xn oscillates
periodically with the interval of 2π, but that of the signal yn climbs periodically, as shown
in Figure 8. According to parameter h in Equation (6), the offset boosting with signals xn
and yn oscillates periodically with a period of 2π, as shown in Figure 10. The multiple
alternatives of offset boosting controlled by parameters are summarized in Table 4. Average
values of chaotic sequences xn and yn are shown in Figure 11.

Table 4. Multiple parameter-oriented patterns of offset boosting.

x y

d Periodic Offset Boosting Oscillatory Offset Boosting
h Periodic Offset Boosting Periodic Offset Boosting
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As shown in Figures 8a and 11a, according to parameter d, the offset of signal yn climbs
globally but falls locally with a period of 2π, the offset of signal xn oscillates periodically
with a period of 2π, as plotted in Figures 8b and 11b. That is to say, there are two different
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offset evolutions in a large scope of initial conditions. Specifically, when a < −1, the offset
of xn increases in the period but totally remains at the same level according to parameter d
in Equation (4). The offset of yn decreases in the period but grows globally, as shown in
Figures 8a and 11a. The evolution of offset boosting according to h in Equation (6) seems
to be similar. Here, the offset of yn decreases periodically while the offset of xn increases
periodically, as shown in Figures 10c,d and 11c.

3.3. Competitive Offset Boosting

Suppose map (1) is given constants d and h at the same time, map (1) turns out to be,{
xn+1 = xn + sin(xn + yn + h),
yn+1 = axn + d,

(7)

As proved above, the offset boosting in the dimensions x and y can be defined by
the newly introduced constants d and h along with the initial conditions. This can be
called offset competition. In the map (7), due to the existence of the periodic function, the
parameters d and h and the initial value of x0 influence the offset of coexisting attractors,
as shown in Figure 12, which means that to obtain a desired offset, the parameter and the
initial condition should match each other. From Figure 12, we also know that in map (7)
the power of offset boosting of parameter d seems stronger than parameter h, which is
because parameter h is in the sinusoidal function. More demonstrations based on Lyapunov
exponents can verify this phenomenon further. As shown in Figure 13, when a < −1 and x0
varies with constants d and h, respectively, in different ranges, the largest 2D Lyapunov
exponent under the mixture control of a parameter and initial condition is given, showing
the strength of offset boosting under the evolutions of a parameter or an initial condition.
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4. Hardware Implementation and Application
4.1. Hardware Implementation Based on STM32

In this section, the implementation of chaotic signal acquisition and transmission using
the STM32F103 microcontroller as the core and the TLV5618 module for digital-to-analog
conversion are obtained. The resulting waveforms are displayed on an oscilloscope of
SDS1102X [27,28]. The TLV5618 is a 12-bit voltage output digital-to-analog converter. The
hardware implementation for map (1) is presented in Figure 14. The waveform of map (1)
under the initial condition of (x0, y0) = (1, 0) is shown in Figure 15. Coexisting phase orbits
of map (1) observed from the oscilloscope under various initial conditions are presented in
Figure 16. Phase trajectories of map (1) observed from the oscilloscope with competitive
offset boosting under (x0, y0) = (1, 0) are illustrated in Figure 17. Phase orbits of map (1)
with different offset constant h under (x0, y0) = (1, 0) are shown in Figure 18. All figures
from the hardware implementation based on the STM32 microcontroller and TLV5618
module are consistent with the numerical simulation.
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4.2. Application in PRNG

Assuming that the chaotic sequence generated by map (1) is denoted as X = {x1, x2, . . . ,
xn} or Y = {y1, y2, . . . , yn} [29,30]. The quantization function Pi employed in this experiment
can be expressed as follows

Pi = b(Xi + |Xmin|·K)cmodN, (8)

let K = 107 and N = 256 in this paper.
In this experiment, we utilized the hyperchaotic sequence generated by map (1) with

parameters a = −2.6 and initial condition (x0, y0) = (1, 0), the National Institute of Standards
and Technology (NIST) test suite is used to measure its performance. To ensure high
precision in detection, each sequence set should consist of no less than 1 × 106 bits. By
setting the number of test groups as m = 128, the proportion (Prop) of passing test groups
can indicate the pseudo-randomness of the sequence, thereby demonstrating the potential
value for engineering applications of map (1). The results of the NIST statistical test of
PRNG are illustrated in Table 5.
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Table 5. NIST statistical test of the proposed PRNG.

No. Statistical Test Terms
PRNG Generated by x PRNG Generated by y

Prop p-Value Prop p-Value

01 Frequency 0.992 0.534146 0.984 0.689019

02 Block frequency 0.984 0.804337 0.976 0.654467

03 Cumulative sums 0.992 0.585209 0.984 0.204076

04 Runs 0.992 0.392456 1 0.178278

05 Longest run 1 0.057146 1 0.437274

06 Rank 0.992 0.723129 0.992 0.242986

07 FFT 0.984 0.253551 0.992 0.090936

08 Non-overlapping
template 1 0.991468 1 0.980885

09 Overlapping template 1 0.134686 0.984 0.551026

10 Universal 0.984 0.170294 1 0.324108

11 Approximate entropy 0.968 0.204076 0.992 0.848588

12 Random excursions 1 0.162606 1 0.602458

13 Random excursions
variant 1 0.275709 1 0.213309

14 Serial 0.992 0.739918 0.992 0.500934

15 Linear complexity 0.992 0.452799 1 0.324108

5. Discussion and Conclusions

In this paper, a new symmetric hyperchaotic map with multiple regimes of offset
boosting is proposed and exhaustively explored. Multiple alternatives of offset boosting
are proposed by two parameters and initial conditions. Offset competition is disclosed,
where offset is determined by two parameters and initial conditions. In this case, infinitely
many coexisting phase orbits are born, which are arranged by the coefficient-matched
initial conditions. Therefore, the location of the coexisting hyperchaotic attractor is flexibly
selected by the offset parameter and a matched initial condition. This elegant hyperchaotic
map with multiple alternatives of offset boosting definitely shows greater potential in
other relevant research fields and chaos-based applications, including Brownian movement,
neural networks, and image encryption [31–35], which could be our future work.
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