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Abstract: The effect of spacetime curvature on optical properties may provide an opportunity to
suggest new tests for gravity theories. In this paper, we investigated gravitational weak lensing
around a Bardeen black hole with the string clouds parameter. First, we examined the horizon
structure in the presence of string clouds around the gravitational compact object defined by Bardeen
spacetime. The effect of gravitational weak lensing in a plasma medium is also discussed. According
to the findings, the influence of the string cloud parameter on the circular orbits of a light ray around
the black hole is greater than that in the Schwarzschild case, while the influence of the charge is
reversed. The deflection angle of light rays in weak lensing is also used to study how much the image
is magnified.

Keywords: weak gravitational lensing; black hole; Bardeen gravity; string cloud

1. Introduction

In the modern study of gravitational fields, black holes (BHs) are regarded as one
of the most distinctive features. Due to the strong gravitational influence, nothing can
escape (either particles or radiations) from the event horizon of a BH, but it consumes
everything in its vicinity. These thermodynamical entities not only characterize some
outstanding classical insights but also improve our understanding of their quantum gravi-
tational properties. Schwarzschild, Reissner–Nordström (RN), Kerr, and Kerr–Newmann
are four well-known BH configurations that have a curvature singularity beyond their
event horizons. Hawking radiations, also referred as thermal radiations, are emitted by
BHs, and their emergence is supported by quantum mechanical considerations [1]. One
of the major issues with the classical Maxwell theory is that a charge appears to have
infinite self-energy at the charge location. While this discrepancy is easily addressed in
quantum electrodynamics, it remains a challenge in classical electrodynamics. Born and
Infeld created a unique Lagrangian to address this problem [2] in order to resolve it. More
research has been conducted on other nonlinear electrodynamic fields than Born–Infeld
nonlinear electrodynamics, including the logarithmic, exponential, and power law Maxwell
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fields [3–5]. The black hole solution put forth by James Bardeen [6] was groundbreaking
since it does not involve a curvature singularity, although there are currently many different
kinds of black hole solutions available. The model was initially without a source, but after
a few decades, Ayon-Beato and Garcia [7] provided a self-gravitating magnetic charge that
was characterized by nonlinear electrodynamics [2], and this made it a precise solution of
Einstein’s equations. Nonlinear electrodynamics was shown to allow for the construction
of a regular black hole [8], and as a result, we now have solutions that use electric charge as
a source [9,10]. It is worth mentioning that the region where the weak energy condition is
violated by any conventional black hole (including Bardeen black holes) is always protected
by the Cauchy horizon [11]. The literature has various works about the Bardeen black
hole. Eiroa and Sendra [12] investigated the gravitational lensing of a normal black hole.
Zhou et al. [13] investigated the geodesic structure of test particles in the vicinity of the
Bardeen black hole. Moreno and Sarbach [14] discussed gravitational and electromagnetic
stability. Sharif and Javed [15] presented quantum corrections for the Bardeen black hole.
Recently, Accretion disc properties, strong gravitational lensing, and Quasinormal modes
of charged Naked singularity spacetime metric have been studied in detail in [16–18].

The most frequently mentioned candidate for “the final theory” is the string theory.
The Universe is viewed as a collection of stretched objects rather than pointlike particles on
it. A one-dimensional continuum string object is a promising candidate under the current
scenario. M. Gürses and F. Gürsey [19] originally developed the string equation of motion
in General Relativity, then demonstrated [20] that a fluid determined by this equation may
describe the interior of a Kerr–Schild metric. An extension of the relativistic “dust cloud”
model for a perfect fluid was later developed by J. Stachel [21]. As so, Letelier [22] solved
Einstein’s equations for clouds of strings and applied the result to the construction of a
model of a star. As a result, many additional studies in the literature have interpreted string
clouds to be fluids that serve as a background for black holes, whether charged or not.
Hawking temperature, entropy, heat capacity, and Helmholtz free energy are computed and
studied in the Einstein-Gauss-Bonnet gravity with a string cloud field by Herscovich and
Richarte [23]. Another study [24] calculated quasinormal modes for a scalar field in such
spacetime, emphasizing the function of the parameter associated with the clouds of strings.
Ghosh and his coauthors Papnoi and Maharaj [25] found first- to third-order solutions of
D ≥ 4 dimensions and considered thermodynamic stability. Further, Ghosh and Maharaj,
in another study [26], generalized the solution to N dimensions, evaluated the energy
conditions, and studied the role of clouds of strings in the structure of the event horizon.
Recently, Mustafa and his coauthors [27] discussed the shadow of the Schwarzschild BH
in the background of the string cloud parameter and the quintessence parameter. Further,
they extended their investigation in another study [28,29] to check the effect of charge
within string cloud and the quintessence parameters.

It is necessary to mention that any novel approach or theory needs to be consis-
tent with previous observations and pass the experimental tests. The optical properties,
particularly light propagation in a curved background, can be used to test metric theo-
ries of gravity. In addition, the observation of the shadow by the EHT collaboration has
compelled scientists to verify the modified theories of gravity using optical features of
spacetime [30–32]. Light propagation in curved spacetime will be influenced by curvature
due to strong gravity. The viewer may detect the black spot on the celestial plane as a
result of photons captured by the central black hole. This black spot is known as a black
hole shadow, and Synge [33] was the first to suggest this phenomena, later developed
by Luminet [34] and Bardeen [35]. Several authors [36–56] have conducted substantial
research on the black hole shadow. Various authors [57–69] have also thoroughly examined
the impact of strong gravitational lensing caused by light deflection owing to spacetime
curvature. On the other hand, the light propagation is sensitive to the plasma surrounding
a compact gravitating object (for review see, e.g., [70–76]). The impact of different plasma
topologies on light propagation have been investigated in [77–87].
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The paper is formatted as follows: the features of a spacetime metric in Bardeen
spacetime with a cloud of string parameter are defined in Section 2. The influence of
plasma on gravitational weak lensing is discussed in more detail in Section 3. In Section 4,
the magnification of an image in plasma medium is examined by utilizing the gravitational
weak lensing phenomenon in Bardeen spacetime with the string cloud parameter a. Finally,
in Section 5, we present the final outcomes on the deflection angle of light rays as well
as magnifications.

2. Bardeen Spacetime with a Cloud of Strings

If we consider a spacetime pervaded by clouds of strings, we can construct a Bardeen
solution from general relativity minimally connected to nonlinear electrodynamics and the
cloud of strings by the following action of gravity

S =
∫

d4x
√
−g[L(F) + R] + SC, (1)

where g, R, L(F) are the metric determinant, curvature scalar, and the nonlinear general
Lagrangian of electromagnetic theory, respectively. Further, F = FµνFµν/4 and SC represent
the function of the scalar and the Nambu–Goto action describing the stringlike objects,
given by [22]. For the current analysis, in the Boyer–Linquist coordinate system, we take
into account the spherically symmetric black hole solution reported by the researchers in
Ref. [88]

ds2 = − f (r)dt2 +
1

f (r)
dr2 + r2(dθ2 + sin2 θdϕ2), (2)

with

f (r) = 1− a− 2Mr2√
(q2 + r2)3

, (3)

where q is the electric charge, M is the black hole’s mass, and a represents the string cloud
parameter. Now, using a cloud of strings and Bardeen gravity, it is possible to examine the
structure of a black hole’s horizon. To investigate it, one must examine the properties of the
lapse function of the metric by constraining f (r) = 0 in order to obtain the structure of the
BH horizon. Figure 1 demonstrates how the horizon is changing with the change of the
parameter a. One can easily see from Figure 1 that the horizon approaches the central object
with an increase in the q/M parameter. On the other hand, the location of the horizon shifts
further from the center with an increase in the parameter of string clouds a. Further, the BH’s
permitted range for the parameters a and q may be obtained, as seen in Figure 2. Using a
cloud string under Bardeen gravity, we determined the existence of BH and non-BH zones
and obtained the dependency of the border between them on the BH parameters a and q.
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Figure 1. Plots of horizon radius versus the parameter a and q/M.
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Figure 2. The separatrix line indicates the border corresponding to extremal black holes, which
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3. Weak Gravitational Lensing with Plasma

In the background of weak-field regime, the metric function (2) can be expressed
as [77]:

gαβ = ηαβ + hαβ , (4)

where the lapse function of Minkowski spacetime is represented by ηαβ, and the perturbed
flat geometry is denoted with hαβ, which is defined as [77]:

ηαβ = diag(−1, 1, 1, 1),

hαβ � 1, hαβ → 0 under xi → ∞ ,

gαβ = ηαβ − hαβ, hαβ = hαβ . (5)

Here, we may take into account how the plasma affects the deflection angle α̂k in a BH
gravitationally weak field. It is possible to formulate the general equation for the deflection
angle when plasma is present as [77,81]

α̂i =
1
2

∫ ∞

−∞

(
h33 +

h00ω2 − KeN(xi)

ω2 −ω2
e

)
,i
dz, i = 1, 2 (6)

where ω, ωe, Ke = 4πe2/me, and N(xi) denote the frequency of photon, frequency of the
plasma, a real constant, and particle number density of plasma, respectively [77], and z is
an axis for the motion of a photon in a curvature (see Figure 7). For the deflection angle,
by considering Equations (5) and (6), the Equation (6) can be written as [77]:

α̂b =
1
2

∫ ∞

−∞

b
r

(dh33

dr
+

1
1−ω2

e /ω2
dh00

dr

− Ke

ω2 −ω2
e

dN
dr

)
dz, (7)

where the impact parameter is denoted with b. It is interesting to mention that α̂b can be
considered for both values (negative or positive) [77].

Far away from the BH, the line element for the weak-field region becomes (2)

ds2 = ds2
0 +

(
a +

Rs

r
− 3Rsq2

2r3

)
dt2

+

(
a +

Rs

r
− 3Rsq2

2r3

)
dr2, (8)

where ds2
0 = −dt2 + dr2 + r2(dθ2 + sin2 θdφ2). For convenience, a new notation, Rs = 2M,

has been devised to represent the metric component of Minkowski spacetime geometry.
Rewriting the components hαβ in Cartesian coordinates allows one to study the deflec-

tion angle of light in the background of a plasma medium using Equation (10) as

h00 =

(
a +

Rs

r
− 3Rsq2

2r3

)
,

hik =

(
a +

Rs

r
− 3Rsq2

2r3

)
nink,

h33 =

(
a +

Rs

r
− 3Rsq2

2r3

)
cos2 χ , (9)

where cos2 χ = z2/(b2 + z2) and r2 = b2 + z2 are introduced (see, e.g., [81]). The impact
parameter b can be interpreted as the closest approach of the photons arround a BH.
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The angle of light deflection with respect to b for a black hole in a plasma environment may
be calculated using the calculation Equation (10) as

α̂b =
1
2

∫ ∞

−∞

b
r

(dh33

dr
+

1
1−ω2

e /ω2
dh00

dr

− Ke

ω2 −ω2
e

dN
dr

)
dz. (10)

To simplify things, we may expand the formula for the deflection angle to read as [80]:

α̂b = α̂1 + α̂2 + α̂3, (11)

with

α̂1 =
1
2

∫ ∞

−∞

b
r

dh33

dr
dz,

α̂2 =
1
2

∫ ∞

−∞

b
r

( 1
1−ω2

e /ω2
dh00

dr

)
dz,

α̂3 =
1
2

∫ ∞

−∞

b
r

(
− Ke

ω2 −ω2
e

dN
dr

)
dz, (12)

where the notations α̂1 represents the contribution of deflection angle due to gravitational
field, α̂2 is uniform plasma, and α̂3 denotes the non-uniform plasma. In this research, we
employ Equations (11) and (12) to investigate the effect of plasma on the deflection angle
produced by gravitational weak lensing. Following this introduction, we will break down
each scenario and examine it separately.

3.1. Uniform Plasma with ω2
e = const

In this section, we determine the angular deflection of light rays surrounding BH
within the influence of a uniform plasma medium by considering the Equation (11) as [80]:

α̂uni = α̂uni1 + α̂uni2 + α̂uni3, (13)

where α̂uni1 and α̂uni2 can be accounted for as a portion of the deflection angle caused by a
uniform plasma with gravity and α̂uni3 = 0 caused by the uniform plasma. By adjusting
the value of the parameter a in the expressions (11)–(13), one can determine the angle of
deflection of light beams around BH in a uniform plasma environment as follows.

α̂uni =
(πa

2
+

Rs

b
+

Rsq2

b3

)
+
( Rs

b
− 3Rsq2

b3

) ω2

ω2 −ω2
e

. (14)

For a wide range of values of a, q, and ωe/ω, the deflection angle of light beams
around BH is shown to depend on the impact parameter b in Figure 3. The dependence
of the deflection angle on plasma frequency ωe/ω, charge q, and parameter a for fixed
values of impact parameter is represented in the other three plots on the right of Figure 3.
These graphs suggest that the existence of the plasma properties causes an increasing of
the deflection angle of light beams around BH. Further, the angle at which light rays are
bent increases when the parameter a is increased. By contrast, with the rise of parameter q,
the value of the deflection angle decreases slightly until zero. With increasing impact of
parameter b, the gravitational deflection angle approaches zero.
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Figure 3. The dependence of the deflection angle α̂uni on the impact parameter b and parameter a,
and magnetic charge q for different values of parameter a/M, plasma medium ω2

e /ω2, and magnetic
charge q. The corresponding fixed parameter used is b = 4.

3.2. Non-Uniform Plasma with Singular Isothermal Sphere Medium

In the background of a non-uniform plasma with non-zero parameter a, we now
investigate the angle by which light beams orbiting Bardeen BH are deflected. If we require
a plasma distribution that is not perfectly uniform, we may use the Singular Isothermal
Sphere (SIS) medium [77,81]. In the SIS medium, the plasma number density is represented
as [77,81]

N(r) =
ρ(r)
kmp

(15)

with

ρ(r) =
σ2

ν

2πr2 (16)

where the density of plasma is ρ(r) and the velocity of dispersion is denoted with σν [77].
In this situation, the Equation (11) may be written as follows for the non-uniform plasma
case: [80]:

α̂SIS = α̂SIS1 + α̂SIS2 + α̂SIS3 , (17)

with α̂SIS1 describing the gravity part and α̂SIS2 representing the plasma effects. Addi-
tionally, α̂SIS3 is used to discuss the density part of the non-uniform plasma. By using
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Equations (9), (11), and (17), in the presence of a cloud of string parameters and non-
uniform plasma, we may be able to derive the equation for the bending of light rays around
a Bardeen BH:

α̂SIS =
πa
2

+
2Rs

b
− 2Rsq2

b3

+
R2

s ω2
c

πbω2

(
1− 2Rs

3b2 −
9Rsq2

5b4

)
(18)

where the following notation has been inserted for convenience:

ω2
c =

σ2
ν Ke

2kmpR2
s

. (19)

The left panels of Figure 4 correspond to the three different plots illustrating the depen-
dence of the deflection angle on the impact parameter for fixed values of charge q, the parame-
ter a, and plasma frequency ωc/ω. From these plots, one may easily see that the gravitational
deflection angle tends to zero with the rise of the impact parameter b. The right panels of
Figure 4 show that the value of the deflection angle relies on the change of charge q, non-
uniform plasma case, and parameter a. These figures illustrate that the deflection angle of the
light rays decreases in the presence of the charge parameter q, and that the opposite is true
under the impact of a non-uniform plasma medium and parameter a.
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3.3. Non-Singular Isothermal Gas Sphere

In order to provide a more realistic and physical context for the current research, we
will now look at the mobility of photons using a non-singular isothermal sphere (NSIS).
At its center, the gas cloud in the NSIS model has a finite core, and the density distribution
is defined as [77,89]

ρ(r) =
σ2

v
2π(r2 + r2

c )
=

ρ0

(1 + r2

r2
c
)

, ρ0 =
σ2

v
2πr2

c
, (20)

where the core radius is mentioned by rc. Further, the plasma concentration (16) for NSIS is
expressed as

N(r) =
σ2

v
2πκmp(r2 + r2

c )
. (21)

We compute the plasma frequency from Equations (20) and (21) as follows

ω2
e =

Keσ2
v

2πκmp(r2 + r2
c )

. (22)

Using the characteristics of the NSIS gravitational lens setup stated above, we can
obtain the angle of deflection by photon deviation as follows:

α̂NSIS =

(
πa
2

+
2Rs

b
− 2Rsq2

b3

)
+

R2
s ω2

c
ω2

[
Rs

bπr2
c

− 3b
4(
√

b2 + r2
c )

5

bRs arctan rc√
b2+r2

c

πr3
c
√

b2 + r2
c
−

3R2
s q2

πr2
c

(
3

2br3
c
+

1
b3 −

bRs arctan rc√
b2+r2

c

πr3
c
√

b2 + r2
c

)]
. (23)

As before, we use the same graphical representation to show the NSIS’s characteristics
as they relate to photon velocity. The parameter ω2

c /ω2 is associated with the NSIS distri-
bution here. When compared to the uniform plasma and SIS cases, it is clear from Figure 5
that the behavior of the impact parameter b, parameter α, magnetic charge q, and parameter
ω2

c /ω2 cannot be distinguished from a specific point of view. However, one can at least
identify the distribution that significantly affects the deflection angle. Figure 6 is a visual
view of the α̂uni, α̂SIS, and α̂NSIS as a function of the impact parameter and the coupling
constant. The deflection is greatest when a homogeneous plasma medium surrounds the
black hole, as can be seen. The following mathematical equation can be used to represent
the outcome: α̂uni > α̂SIS > α̂NSIS.
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Figure 6. Plot of the deflection angle α̂b as a function of the impact parameter b, magnetic charge q,
and parameter a. The corresponding fixed parameters used are b = 4 and rc = 3.

4. Magnification of Image Source in the Presence of Plasma

We now use a lens equation of the form to understand more about magnification of an
image source due to gravitational lensing in the context of a plasma (for a small deflection
angle) [81,90]

θDs = α̂bDds + βDs , (24)
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where Ds is the distances from observer to the distant source, and Dds denotes the lens
object (see Figure 7). The relation between the angle θ and the impact parameter b is
represented by b = Ddθ, where Dd denotes the observer distance from the lens object.
By considering such relations, we can write Equation (24) as [68,81,90]

β = θ − Dds
Ds

F(θ)
Dd

1
θ

, (25)

with
F(θ) = |α̂b|b = |α̂b(θ)|Ddθ.

Finally, using the above expressions, we can rewrite a lens equation for a small
deflection angle in the following form [68]:

β = θ − Dds
Ds

α̂b . (26)

The value of β = 0 is attained when the lens, observer, and source are all aligned
along a single axis. In this case, the Einstein angle θE corresponds to the solution of the lens
Equation (25) or (26), and the resulting image of the source takes the form of a so-called
Einstein ring. For the Schwarzschild case, the deflection angle is α̂b = 2Rs/b, and the
radius of Einstein’s ring is RE = DdθE. Einstein’s angle can be expressed as an instance of a
Schwarzschild BH such as

θE =

√
2RE

Dds
DsDd

. (27)

Figure 7. Schematic view of the gravitational lensing system (adopted from Ref. [81]).

We examine the source’s image brightness magnification in depth to learn more
about both the source and the lens object, which is directly connected to the observation.
The following form can be used as a generic equation for determining the magnification of
the picture source [77]:

µΣ =
Itot

I∗
= ∑

k

∣∣∣∣( θk
β

)(
dθk
dβ

)∣∣∣∣ , k = 1, 2, . . . , s , (28)

where Itot and s denote increased brightness I∗ and the total number of images of the source,
respectively.
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We now visualise the discussion of the effects of uniform and non-uniform plasma on
the amplification of the picture source in the Bardeen spacetime metric by use of a cloud of
string parameters.

4.1. Uniform Plasma with ω2
e = const

(θ
pl
E ) is the Einstein angle in the background of uniform plasma with parameters q

and a. From the Equations (14) and (25), one can obtain the following form of equation

(θ
pl
E )uni = θE

(
b

2Rs
α̂uni(b)

)1/2

. (29)

To determine the Einstein’s angle, we use b = Dd(θ
pl
E )uni in Equation (29) and then

evalute the equation considering (θ
pl
E )uni. The analytical solution of the equation is very

difficult. However, numerical computations may be used to determine the relationship
between Einstein’s angle and the BH and plasma properties.

From Equation (28), the term “magnification of the visual source” may be quickly
understood as

µ
pl
tot = µ

pl
+ + µ

pl
− =

x2
uni + 2

xuni

√
x2

uni + 4
, (30)

where

xuni =
β

(θ
pl
E )uni

. (31)

The image source’s magnifications are expressed as

(
µ

pl
+

)
uni

=
1
4

( xuni√
x2

uni + 4
+

√
x2

uni + 4

xuni
+ 2
)

, (32)

(
µ

pl
−

)
uni

=
1
4

( xuni√
x2

uni + 4
+

√
x2

uni + 4

xuni
− 2
)

. (33)

One may graphically represent the relationship between the total magnification and the
plasma parameter for various values of parameter a and magnetic charge q using Equation (30).
This dependence is presented in Figure 8, and one can see that the total magnification of the
image decreases due to the influence of magnetic charge q. Moreover, the total magnification
increases with the increase of uniform plasma parameter and parameter a.

=0.00

=0.01

=0.03

0.0 0.2 0.4 0.6 0.8
18

20

22

24

26

28

30

32

ωo
2 /ω 2

μ
to
t,u
ni

q /M=0.1

ωo
2 /ω 2

=0.1

ωo
2 /ω 2

=0.3

ωo
2 /ω 2

=0.5

0.0 0.2 0.4 0.6 0.8 1.0

20

25

30

35

40



μ
to
t,u
ni

q /M=0.1

Figure 8. Cont.



Symmetry 2023, 15, 848 13 of 18

ωo
2 /ω 2

=0.1

ωo
2 /ω 2

=0.3

ωo
2 /ω 2

=0.5

0.2 0.4 0.6 0.8 1.0
16

18

20

22

24

26

q /M

μ
to
t,u
ni

=0.01

ωo
2 /ω 2

=0.1

ωo
2 /ω 2

=0.3

ωo
2 /ω 2

=0.5

4 6 8 10 12

20

22

24

26

b/M

μ
to
t,u
ni

q /M=0.1; =0.01

Figure 8. The total magnification of the image brightness in the presence of uniform plasma as a
function of ω2

c /ω2, q, b, and a. The fixed parameters used are Rs = 2, b = 3, and x0 = 0.055.

4.2. Non-Uniform Plasma with SIS Medium

In this subsection, we will discuss the overall source magnification when a non-
uniform plasma medium surrounds the BH. By considering Equations (18) and (25), we
calculate the mathematical expression for Einstein’s ring by evaluating the equation

(θ
pl
E )SIS = θE

(
b

2Rs
α̂SIS(b)

)1/2

. (34)

The overall magnification of the picture source may be expressed as follows using the
Equation (28) as (

µ
pl
tot

)
SIS

=
(

µ
pl
+

)
SIS

+
(

µ
pl
−

)
SIS

=
x2

SIS + 2

xSIS

√
x2

SIS + 4
, (35)

where

(
µ

pl
+

)
SIS

=
1
4

( xSIS√
x2

SIS + 4
+

√
x2

SIS + 4

xSIS
+ 2
)

, (36)

(
µ

pl
−

)
SIS

=
1
4

( xSIS√
x2

SIS + 4
+

√
x2

SIS + 4

xSIS
− 2
)

, (37)

xSIS =
β

(θ
pl
E )SIS

. (38)

Figure 9 displays the relationship between magnetic charge q, the parameter a, and
plasma properties and the overall magnification of the pictures of the source. It is clear from
this relationship that the existence of the magnetic charge parameter causes the overall
magnification to drop. However, the overall magnification grows when the non-uniform
plasma parameter and the parameter a are both increased.
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Figure 9. The total magnification of the image brightness in the presence of SIS as a function of
ω2

c /ω2, q, b, and a. The fixed parameters used are Rs = 2, b = 3, and x0 = 0.055.

5. Conclusions

This work carefully examines the impact of plasma (both uniform and non-uniform)
on gravitational weak lensing for the Bardeen BH with a cloud of string. The following
comments can be used to sum up the results:

• We analyzed the horizon radius for various values of the black hole in Bardeen gravity
with a cloud string parameter a. The results show that the radius of horizon rh is
decreasing in the presence of parameter q, and the effect of string clouds is inverse.

• In the presence of the parameter a and magnetic charge q of the Bardeen spacetime
metric with a cloud of a string field, the deflection angle of light beams around the
BH decreases. In addition, with fixed values of the magnetic charge q and parameter
a, the influence of uniform plasma on the gravitational weak deflection angle is also
shown in Figure 3.

• As seen in Figure 4, the deflection angle of light rays around the compact object
increases as the value of the parameter responsible for the non-uniform plasma
medium increases.

• The deflection angle of a light beam around the BH is larger in the uniform case than
in the non-uniform case, and this is true regardless of the values of the parameters a
and q in the plasma (Figure 6).

• For various values of the parameter a and magnetic charge q in Bardeen spacetime
in the presence of a cloud string field, we have explored the overall magnification
of the image source caused by gravitational weak lensing. We have demonstrated
that the magnetic charge q/M has an impact on the total magnification of the image
but that the total magnification also increases with an increase in the parameter a (see
Figures 8 and 9).

• Finally, we have investigated the total magnification’s reliance on the plasma medium
and found that it increases as the plasma medium’s uniform and non-uniform proper-
ties are increased.

The observational data of the gravitational lensing in [91–94] may be further used to
obtain constraints on the spacetime parameters and estimate the plasma characteristics.
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