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Abstract: Industries are increasingly shifting towards unmanned and intelligent systems that require
efficient processing and monitoring of structures across various applications, ranging from machine
manufacturing to waste disposal. In order to achieve the goal of intelligent processing, it is crucial to
accurately classify and differentiate various components and parts. However, existing studies have
not focused on simultaneously classifying electro-mechanical machinery components. This poses
a challenge as these components, including capacitors, transistors, ICs, inductors, springs, locating
pins, washers, nuts, and bolts, exhibit high intra- and inter-class similarity, making their accurate
classification a tedious task. Furthermore, many of these components have symmetrical shapes
but are asymmetrical among different classes. To address these challenges, this article introduces
a new double-single (D-S) pooling method that focuses on the higher resemblance of seventeen
electro-mechanical component classifications with minimum trainable parameters and achieves
maximum accuracy. The industrial machine component classification model (IMCCM) consists of
two convolutional neural network (CNN) blocks designed with a D-S pooling method that facilitates
the model to effectively highlight the differences for the higher similar classes, and one block of
grey-level co-occurrence matrix (GLCM) to strengthen the classification outcome. The extracted fused
features from these three blocks are then forwarded to the random forest classifier to distinguish
components. The accuracy achieved by this proposed model is 98.15%—outperforming the existing
state of the arts (SOTAs) models, and has 141,346 trainable parameters– hence, highly effective for
industrial implementation.

Keywords: industrial machine component; convolutional neural network; GLCM; D-S pooling;
electrical component; mechanical component

1. Introduction

In the twenty-first century, industrial production, massive in scale and diverse in
scope, is difficult to organize and recognize the industrial parts for efficient use and meet
the demands of the fourth revolution. The solution to this problem is the implementation of
automatic systems that can efficiently classify industrial components to enhance industrial
processing performance. Machines, regardless of size, from the Michigan Micro Mote to
the Large Hadron Collider, are composed of numerous components that work in tandem to
perform specific functions. For optimal performance, machines require automatic classifica-
tion of their manufacturing, design, sorting, and handling functions. Industrial machinery
components can be broadly categorized into four categories, namely mechanical, electri-
cal, hydraulic, and optical, but mechanical and electrical components are predominantly
utilized in industrial machinery.

The human brain can easily differentiate between objects, but machines require specific
algorithms to learn and classify. Artificial intelligence has made this task easier. Industrial
machine components, such as bolts, locating pins, diodes, capacitors, transistors, and po-
tentiometers, have similar appearances across their various categories, generating similar
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features when viewed from different angles. Although these components have a symmet-
ric shape, their depth varies within and between classes, making accurate and efficient
classification a real challenge for an automated and robust industrial setup.

Industrial image classification is complex due to the plain background, which lacks
information compared to colorful natural images [1,2]. This makes classification chal-
lenging, along with the minimal differences between inter and intra-class components.
However, image-based processing is fast, efficient, and objective compared to manual
processing, allowing for non-contact evaluation, optimization of solutions, and instant
automatic processing of large amounts of data.

The existing literature focuses on component classification following three main meth-
ods: fine-tuning, transfer learning, and generic feature extraction [3–5]. The literature has
focused on classifying individual mechanical or electrical components, but most machines
comprise both components concurrently. The components from both categories show
a higher resemblance and variation among inter and intra-classes; a few are shown in
Figure 1. The problem of image classification is exacerbated by the fact that many electronic
components, such as springs and inductors, appear similar when viewed from different
angles, while others, such as transistors, capacitors, and LEDs, resemble each other only
when viewed in a specific direction. Moreover, most components have a limited range of
colors, consisting mainly of black and grey, against a plain background. As a result, existing
technologies often struggle to achieve high precision and recall when dealing with these
components. To overcome this problem, CNNs are used as they are powerful tools that
utilize a hidden black box calculation to recognize images from given datasets, enabling
accurate and efficient image classification even in the presence of challenging features such
as similar classes, different color schemes, and plain backgrounds.

Symmetry 2023, 15, x FOR PEER REVIEW 2 of 20 
 

 

and potentiometers, have similar appearances across their various categories, generating 

similar features when viewed from different angles. Although these components have a 

symmetric shape, their depth varies within and between classes, making accurate and ef-

ficient classification a real challenge for an automated and robust industrial setup. 

Industrial image classification is complex due to the plain background, which lacks 

information compared to colorful natural images [1,2]. This makes classification challeng-

ing, along with the minimal differences between inter and intra-class components. How-

ever, image-based processing is fast, efficient, and objective compared to manual pro-

cessing, allowing for non-contact evaluation, optimization of solutions, and instant auto-

matic processing of large amounts of data. 

The existing literature focuses on component classification following three main 

methods: fine-tuning, transfer learning, and generic feature extraction [3–5]. The literature 

has focused on classifying individual mechanical or electrical components, but most ma-

chines comprise both components concurrently. The components from both categories 

show a higher resemblance and variation among inter and intra-classes; a few are shown 

in Figure 1. The problem of image classification is exacerbated by the fact that many elec-

tronic components, such as springs and inductors, appear similar when viewed from dif-

ferent angles, while others, such as transistors, capacitors, and LEDs, resemble each other 

only when viewed in a specific direction. Moreover, most components have a limited 

range of colors, consisting mainly of black and grey, against a plain background. As a 

result, existing technologies often struggle to achieve high precision and recall when deal-

ing with these components. To overcome this problem, CNNs are used as they are pow-

erful tools that utilize a hidden black box calculation to recognize images from given da-

tasets, enabling accurate and efficient image classification even in the presence of chal-

lenging features such as similar classes, different color schemes, and plain backgrounds. 

 

Figure 1. Industrial components with higher resemblance. 

The current literature on component classification predominantly relies on machine 

learning algorithms, but these methods lack the required level of precision and accuracy. 

Moreover, the research has been restricted to a limited number of components. Most CNN 

models used either max pooling or average pooling, both focusing on different features. 

While mixed pooling addresses this issue using both layers, it can use a single pooling 

method alternatively [6]. It lacks in collecting important features collection. As a result, 

they fail to accurately differentiate between highly similar inter and intra-classes. To ad-

dress these limitations, we propose the solution with the D-S pooling method that focuses 

Figure 1. Industrial components with higher resemblance.

The current literature on component classification predominantly relies on machine
learning algorithms, but these methods lack the required level of precision and accuracy.
Moreover, the research has been restricted to a limited number of components. Most CNN
models used either max pooling or average pooling, both focusing on different features.
While mixed pooling addresses this issue using both layers, it can use a single pooling
method alternatively [6]. It lacks in collecting important features collection. As a result, they
fail to accurately differentiate between highly similar inter and intra-classes. To address
these limitations, we propose the solution with the D-S pooling method that focuses on
the classification of highly similar components with its variable three pooling layers and
GLCM that help us to differentiate diverse materials components. The model is designed
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with a combinational pooling layer that eliminates unwanted data and emphasizes specific
key features. Considering the dataset characteristics and component types, a pooling layer
focuses on the maximum and average values in a given region, highlighting the brighter
and darker side of the images, respectively. A double average pooling layer will emphasize
the darker section in a lighter area, while the max pool will collect the information from
a brighter section in a darker part. The third pool layer will take full advantage of the
findings and helps the model to distinguish these components more precisely, eradicating
the unnecessary information that may lead to misclassification. So, this strategy classifies
electro-mechanical components regardless of similarity, color, and background. It also
offers the minimum number of trainable parameters that are highly effective for automatic
industrial processing. This paper proposes IMCCM—a convolutional neural network-
based model with the D-S pooling and GLCM feature extractor following the classifier.
With its powerful strategy, CNN will facilitate forwarding the features while passing
them through D-S pooling layers focusing on brighter and dull areas in both CNN blocks.
GLCM-based features are added that signify the correlation, contrast, and dissimilarity
among adjacent feature vectors highlighting the similarity and differences and enhancing
the classification performance of colorful images. Pre-trained models focus on a specific
classification problem. It shows higher performance for some cases and lowers for others.
The IMCCM model has been designed considering all constraints, and its implementation
offers better results.

Industrial machine components have a vast range. This study precisely considers sev-
enteen electrical and mechanical components due to their extensive industrial usage. They
have variations from large to small and have higher inter-class and intra-class similarity.
The IMCCM model produces feature vectors extracted from dense layers of CNN blocks
and GLCM, fused by direct fusion to pass on to a random forest classifier for categorization.
The classifier distinguishes the seventeen classes with an accuracy of 98.15%, outperforming
the existing SOTA. This article contributes the following:

• A framework for industrial machine components based on CNN and GLCM to effec-
tively distinguish electrical and mechanical components simultaneously.

• It offers a unique pooling design that facilitates the model to efficiently differentiate
highly similar components with a minimum number of trainable parameters.

• The proposed model experimented extensively with different numbers of compo-
nents, and it outperforms the existing state-of-the-art with higher attained accuracy
and precision.

The work has the potential to be extended in the coming days. Considering electrical
and mechanical datasets, the proposed model has strong potential to be employed in
hydraulic and optical components in the future.

2. Related Work
2.1. Mechanical Components Classification

The progression of industrial infrastructure, incorporating a transition towards un-
manned development structures, has underscored the significance of intelligent and auto-
mated categorization of machine components. Mechanical components constitute a funda-
mental element of machining, spanning from the chipboard to the locomotive. Conventionally,
human personnel are engaged in multiple tasks throughout the production cycle. Beyond
manual sorting, other approaches have also relied upon rudimentary information for the
purpose of component classification. In this case, considering literature [7–10] approaches:
extract the geometric characteristics of the components and compare them to the parts data
in the dataset collection. The authors in [11] employed particle swarm optimization and BP
neural network for parts classification, utilizing invariant moment, circularity, and rectangu-
larity features of multiple parts. Other researcher such as Dong et al. [12], Yildiz et al. [13],
and Taheritanjani et al. [14] proposed classification models based on CNN. Dong et al. [12]
proposed a model based on AlexNet with three convolutional layers amid to differentiate
between multiple components. However, classification performance was limited by accu-
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racy as well as time constraint, and it also did not count angle variation in similar classes
images. Yildiz et al. [13] and Taheritanjani et al. [14] used a pre-trained model with fine-tuning.
Yildiz et al. [13] classified the components covering multiple effects of the brightness, variation
of angle, and rotation with various state-of-the-art models, e.g., EfficentB2A, DenseNet121,
Densenet201, Resenet50v2. Parts detection for a large number of components was also carried
out, and the dataset size used for training was reasonable. However, while EfficentB2A
achieved an accuracy of 97%, its average precision did not exceed 0.75, indicating a limitation
in its performance.

Siamese networks and the One-Shot learning algorithm have been employed to ad-
dress the issue of similarity among various classes. Hossain et al. [15] proposed a model
for banknotes that achieved similarity detection with minimal data availability, improv-
ing problem formulation with a small sample size while maintaining comparable results.
Similarly, Tastimur et al. [16] presented a fastener classification approach based on Siamese
Convolutional Neural Networks using one-shot learning for multiple-component classifica-
tion. However, while the one-shot learning algorithm performed well for smaller datasets
and similar classes, its performance was compromised for multi-inter-class problems.

2.2. Electrical Components Classification

In the digital age, electronic components carry information for communication and
transmission. These components are embedded into micro to macro devices. Their common
usage necessitates their identifiable classification in the era of unmanned assembling,
disassembling, automatic handling, designing, etc. Limited literature is available on the
classification of electrical components. However, the changing patterns of globalization and
the soaring demand for automation have amplified the fastest implementation of Industry
4.0. The existing techniques-cum-approaches follow four essential solutions: the traditional
method, machine and deep learning models, transfer learning, and the Siamese network.

Traditional methods focused on feature extraction with various representations, cal-
culations, and diverse geometric elements, as observed in [17,18]. These methods present
better classification performance, but their working performance was limited for large
images. Multiple component classification could not be achieved at once as the calculation
increased, ultimately aggregating the higher complexity level [19].

Salvador et al. [20] presented six types of electrical components classification based
on transfer learning. The authors experimented on Matlab with three pre-trained models
(GoogleNet, Inception V3, and Resnet101). The dataset used for research is small, holding
632 images. Incpetion-V3 shows a bit smoother training and validation results, while
others showed higher disturbances after 200 epochs. Wang et al. [21] designed components
classification and feature selection focusing on 2D patterns of electronic components with
artificial neural networks (ANNs) and achieved an accuracy of 95.8%.

Atik [22] proposed a model that showed an accuracy of 98.9% for the three most
fundamental components (resistor, capacitor, and inductor). It experimented on Matlab
to classify the components with pre-trained models (AlexNet, GoogleNet, ShuffleNet,
SqueezNet) and attained higher accuracy with the suggested model. Although the attained
accuracy of the proposed model was very high, it just focused on three types of components.
On the other hand, it did not show the time constraint for training, and the number of
trainable parameters was also high. V. kaya et al. [23] explored machine learning-based
classification performance for the same components using SVM, Random forest, and Naïve
Bayes and attained an accuracy of 95.24%.

S. Hu et al. [24] experimented with electrical components that focused on three differ-
ent brands of laptops. The author used Machine Learning and deep learning techniques
to classify Apple, HP, and ThinkPad laptops. The dataset size was limited, containing
210 images. Machine learning techniques (Naïve Bayes (NB), Support vector machine
(SVM), edge histogram descriptor(EHD) and Scale-invariant features(SIFT)) and deep
learning techniques (Vgg-16, GoogleNet, Inception-V3, ResNet-50, and Inception-V4) were
conducted. The experiment was performed with different scopes and attained the best
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performance with SVM-Poly(SIFT) with 90% training Accuracy and 69% testing accuracy.
While GoogleNet performed best with a testing accuracy of 92% having minimum trainable
parameters (5 million). Although this study gained quite good training and testing accuracy,
it showed the performance with limited dataset size and types of classes.

Lefkaditis et al. [25] gained 92.3% accuracy by combining support vector machines
(SVMs) and multilayer perceptions (MLPs) using an algorithm for six electronic com-
ponents. However, the size of the dataset was minimal. X. Hu et al. [26] presented a
hierarchical convolutional neural network to overcome the complexity and computational
cost with other existing models and achieved an accuracy of 94.26%. Cheng et al. [27] intro-
duced the Siamese network-based classification model using Vgg-16 as a feature extractor
that attained very commendable results of 95%. However, the model performance was
lacking as similar components appeared, and the number of components decreased. The
tabular presentation of available works from the literature is shown in Table 1.

Table 1. Existing literature representation of machine components.

Authors No. of
Components Techniques Type of

Components
Datasets

Size

Training
Accuracy

(%)

Testing
Accuracy

(%)

Dong et al. (2018)
[12] AlexNet Screw, Nut, Washer 40 - 95.4

Yildiz (2020) [13] 12 EfficientNet,
DenseNet, ResNet Screws 20,000 96.1 97

Taheritanjani et al.
(2019) [14] 2 AlexNet, VGG16,

Inception v3 Bolt, Washer 1300 100 99.4

Slavander et al.
(2018) [20] 6

Inception-v3,
GoogleNet, and
Resnet101

Resistors, inductor,
Capacitor, Transistor,
Diode, Transformer,
IC

632 100 94.64

Atik (2022) [22] 3 CNN Capacitor, Diode,
Resistor 2708 - 98.99

Kaya et al. (2022)
[23] 3 SVM, RF, NB Capacitor, Diode,

Resistor 2708 95.24

Hu et al. (2021) [24] 3

Naïve Bayes(Bernoulli,
Gaussian,
Multinomial distribu-
tions),SVM(Linear,
Radial Basis Function
(RBF)), VGG-16,
GoogleNet,
Inception-v3,
Inception-v4

Laptop HP,
ThinkPad, Apple 210 98.3 92.9

Lefkaditis et al.
(2009) [25] 6

Support Vector
Machine(SVMs),
Multilayeperceptron’s
(MLPs)

Electrolytic
Capacitors, Ceramic
Capacitors, Resistor,
Transistors, Power
transistors

87 92.3

Hu et al. (2020) [26] 8 Convolutional
Automatic Coding

IC, Capacitor,
Resistor, Inductance,
Diode, LED, Speaker,
Transistor

4500 - 94.26

Cheng et al. (2022)
[27] 17 Siamese Network - 3094 - 94.6
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The above-discussed literature on different electrical and mechanical component
models shows better accuracy but with limited datasets and classes. Additionally, neither
of them is simultaneously applicable to electrical and mechanical, and they have a higher
number of trainable parameters. It has also been observed that they perform inadequately
when applied to components of similar appearance, reflecting a gap that demands a model
with higher accuracy, a minimum number of trainable parameters, and dual applicability
(electrical and mechanical).

2.3. Feature Fusion

Feature Fusion is a technique that accumulates valuable and meaningful features
vector from multiple sources. It is often used to improve the accuracy and robustness of
computer vision algorithms. The fusion process of various sources can be weighted, direct,
multi-level, multi-scale, etc. Numerous methods have been proposed for feature fusion
to enhance the model performance for various imaging applications. Farman et al. [28]
presented the fusion for sensors, documented daily record data, and witnessed improved
performance with the fusion technique. The source for the feature vector can either be a
model or layers. Fusion was implemented by extracting feature information from multiple
pre-trained models, as Yang et al. [29], Cai et al. [30], and Kang et al. [31] presented. The
literature showed feature fusion by extracting features from the last fully connected or
middle layer or combination with pooling layers and producing highly accurate results for
maritime and texture analysis [32,33]. Pan et al. [34] presented feature fusion by gathering
the multiple classifier model features vector, ultimately enhancing classification accuracy.

3. Materials and Methods
3.1. IMCCM Design

The industrial machine components classification model (IMCCM) has been designed
to classify machinery components robustly and correctly. The developed model comprises
two convolutional neural network blocks (1 and 2) and GLCM-based feature extractor
blocks, as presented in Figure 2. Blocks 1 and 2 have two convolutional layers following
D-S pooling layers with the alternative combination. It also contains two dense layers; the
final output layer contains the softmax functions output. The convolutional layers have 64
neurons with a 3 × 3 convolutional kernel and RELU [35] as an activation function. Both
blocks follow the symmetric pattern for multiple layers. The number of neurons for all
convolutional and dense layers is the same. The extracted features from blocks and GLCM
vectors are fused and then forwarded to a random forest classifier.
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3.2. D-S Pooling Layer

The pooling layer is a significant layer in a convolutional neural network, as it acts
like a cleaner. The convolutional layers calculate too many features and excessive data,
leading the model to overfit and misclassification. So, the compact pooling layers’ design
eliminates undesirable data, focuses on significant features, and makes the model learning
impeccable and efficient. Two conventional pooling types, max, and average pooling are
widely used in neural network model designing [6]. Both categories have pros and cons
and specific performance with specific images.

Primarily, Max pooling follows the phenomenon of finding the maximum value from
a given region and eliminating the other values. The following formula defines the max
pooling function:

ykij = max
x∈Rk

Xkij (1)

The situation in a sample image can be challenging, following all high values in a
feature vector or all lower values specifically for similar images. The performance of max
pooling may have comprised the essential features as it highlights the brighter parts of
the image.

On the other side, the average pooling function considers all values from feature
vectors and passes the mean value toward the next layer. It believed all the features of
the given vector to be significant. The average pooling function can be defined in the
following formula:

ykij =
1
n

n

∑
i,j=0

Xkij (2)

All features’ mean values may prone the model towards unnecessary calculation and
may subside the effect of the lower values features. Average pooling performance may
affect the image by having smaller bright and larger dark areas. Both pooling functions
have different outcomes and importance. The dataset used in this study comprised images
with multiple brighter and darker regions. They also have higher similar representations
at different angles producing similar situations. Here, we designed a unique and novel
approach to pooling following both properties in such a way that it will help us emphasize
the image’s essential features.

The D-S pooling stands for “Double-Single” combinational pooling. Considering the
importance of both conventional pooling, the D-S pooling method has been designed in
such a combination that it focuses on all the images with different characteristics, effec-
tively eliminates unnecessary features, and distinguishes similar items by highlighting the
notable features.

The D-S pooling works with max pooling following the max pooling that focuses
on the brightest edges and corners, whereas activated lower values will be eliminated.
While implementing the double max pooling layer will boost the brighter features in a
darker region. The average pooling layer will spread the edges and corners of peak values
achieved in y1 to help distinguish the more similar features.

y1k
=

1
n∑

(
max
x∈Rk

(
max
x∈Rk

Xk

))
(3)

Similarly, the second block will follow the double average pooling layer, as shown in
Figure 3. Which will enhance the darker edges, specifically from the brighter areas, and
result in the feature map focusing on the maximum value y2. It ultimately improves the
quality of the image with less prominent features for classification. It also potentially offers
a lower number of trainable parameters 141,346.

y2k
= max

x∈Rk

(
max
x∈Rk

(
1
n∑(Xk)

))
(4)
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The layer-wise implementation and their corresponding results are shown in the
experiment section in Figure 4. First three maps (a, b, c) show the double max pooling layer
following the average layer. At the same time, the last three (d, e, f) show the result of the
convolutional layer following twice the average pooling impact and then the max pooling
layer. After collecting features, the max pooling layer will focus on the highest features,
improving the classification quality. From the figures, it can be seen that it eliminates
unwanted features while focusing on the essential features and highlighting the shape of
the corresponding element.
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3.3. Hyperparameter Tuning, Loss Function, and Optimization

There are several parameters required to process the model for multiclass classification
efficiently and optimally. The softmax function f(s) is most suitable for classifying multiclass
problems. It evaluates the probability of each class at the final layer output. The softmax
f(s) is presented as:

f (s)i =
e(si)

∑C
j e(sj)

, (5)

After evaluation conducted by the softmax function at the final layer output, the
cross-entropy(CE) loss function is calculated to find the actual distance from accurate labels.

CE = −
C

∑
i

tilog( f (s)i). (6)

So, the cross entropy function is a loss function comprised of the log value of softmax
function f(s). It helps the model evaluate the given problem’s more precise weight.

Adaptive moment estimation (Adam) is used as an optimizer because of its excellent
convergence [36]. It adjusts the adaptive gradient and root means square propagation
algorithm by adopting the mean and variance. The simulation has been configured with a
batch size of 32 and a learning rate of 0.001.

3.4. Grey-Level-Co-Variance-Matrix (GLCM)

GLCM is a great tool that helps to estimate the different co-occurrence matrices in
a given image [37]. It calculates the intensity variation of the image pixels, which helps
distinguish the region of diverse classes with multiple colored areas and structures having
higher likeness. Several features can be extracted using GLCM that help classify the original
type. The dataset used for the given study consists of classes with higher similarity. The
three most essential features, correlation, contrast, and dissimilarity are considered to assist
our model in evaluating performance more effectively and correctly.

3.4.1. Correlation

Correlation is a statistical tool that calculates the linear relationship dependencies between
two pixels. It calculates the dependencies based on the mean and the standard deviation.

Gcorr = ∑
ij

(i−µi)(j−µj)Cij
θiθj

,

µk = −∑
ij

k.cij, θ2
k = ∑ cij(i− µk)

2 (7)

where µk represents the mean of the ith and jth vectors of the images, and θ represents the
standard deviation.

3.4.2. Contrast

Contrast focuses on the spatial frequency and moment of the image. It finds the
variation of the neighboring pixel in an image, computing the object and background
differences. It is also called inertia. The smaller value Gcon means lower variation in
object and background, while the more significant value shows higher differences. The
mathematical representation of the contrast is given below:

Gcon = ∑
ij
(i− j)2Cij. (8)
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3.4.3. Dissimilarity

Dissimilarity presents the liner difference of the local variation in the pixels, and the
mathematical representation is given below:

GDis = ∑
ij

C(i, j)g|i− j|. (9)

3.5. Feature Fusion

Features Fusion is a technique to combine and rearrange multiple features to en-
hance information collectively. Valuable features extracted from numerous sources can be
combined differently for value-added results. Feature fusion has several methods for its
implementation: direct fusion, weighted fusion, additive fusion, maximum fusion, etc. The
fusion method used in this study follows the direct fusion method. Features extracted from
CNN blocks 1 and 2 and GLCM-based elements are fused by concatenating them. The
extracted features have been designed considering the features vector Fi with train images
features Vj:

Fi = [V1, V2, V3, . . . , Vj]. (10)

These feature vectors Fi is fused with direct (concatenate) fusion data as shown here:

FConcat = [F1 F2 . . . Fi], (11)

where i = 1,2,3,. . . . n.

3.6. Random Forest Classifier

Random forest is an ensemble decision-based technique that uses multiple trees to de-
cide the best outcome. Every tree makes a specific decision, and the final output is selected
based on a maximum vote [38]. It works with the phenomenon of the same task performed
by multiple groups without information sharing and finalizing the task having a higher sim-
ilar outcome, as shown in Figure 5. The model has minimum association among different
trees produced ensemble most suitable assessments, that is, the beauty of the model. This
model does not generate overfitting problems where particular feature sets are forwarded
to everyone, allowing every tree to sort out its specific error problems individually.
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4. Experiment Results and Analysis
4.1. Dataset

Industrial machinery components have various sizes, types, and functions. The indus-
trial and logistics distribution cell may not afford extensive processing and data storage.
The virtual dataset decreases data collection costs and enables fast model retraining during
rapid production cycles. The dataset chosen for the study of the mechanical components is
mainly CAD model 2D images comprised of seven main classes (nuts, bolt, washers, locat-
ing pin, spring, bearing, and plug) and include 13,700 images. The electrical components’
dataset has been collected from images from various web sources. It included ten compo-
nents: a diode, resistor, capacitor, inductor, transformer, LED, IC, pushbutton, transistor,
and potentiometer. The electrical components dataset has 30,545 images for these ten types.
Every category has unequal distribution, as can be seen in Table 2. The total dataset size is
44,245. The dataset has been divided into 80% for training and 20% for testing data and
resized to 100 * 100. All class images are stored in the training and testing directory folder.
These images are read from the folder with the folder’s name used as a class label. The
corresponding images from each folder are stored with pre-processing. This accumulates
the dataset into seventeen classes and is stored in arrays of testing and training.

Table 2. Industrial machinery component dataset.

Electrical Components Size Mechanical Components Size

Resistor 5104 Nut 1908

Capacitor 3719 Plug 1764

Inductor 1476 Washer 1908

LED 2004 Spring 2074

IC 2506 Locating pin 1908

Transistor 4504 Bearing 2230

Transformer 2639 Bolt 1908

Diode 3391

Push button 2508

Potentiometer 2694

Total 30,545 Total 13,700

4.2. Data pre-Processing and Augmentation

The collected images need to be pre-processed before the implementation of classifica-
tion techniques. All images are resized to 100× 100 and filtered out unnecessary and vague
photos. The images are converted into “.jpg” image format so that handling and imple-
mentation of the neural network can efficiently process. Depending upon the application,
various data augmentation techniques can be implemented on a dataset. Some applications
favor data augmentation; on the other hand, real-time industrial application has a time
constraint. In this design, a few augmentation techniques are applied, e.g., rotation, height
shift, fill mode, and zoom.

4.3. Performance Evaluation

The model’s performance is evaluated based on the confusion matrix and four pa-
rameters accuracy, precision, recall, and f1-score. The number of correct predictions to
overall predictions defines accuracy. The formula for calculating accuracy can be expressed
as the sum of true positive (TP) and true negative (TN), divided by the sum of true and
false values.

Accuracy =
TP + TN

TP + TN + FP + FN
, (12)
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Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1− Score =
2× Precision× Recall

Precision + Recall
. (15)

where
TP: True Positive, the number of correctly predicted positive cases.
TN: True Negative, the number of correctly predicted negative cases.
FP: False Positive, the number of incorrectly predicted positive cases.
FN: False Negative, the number of incorrectly predicted negative cases.

4.4. Experiment Results

The experiment has been performed on the designed IMCCM model, as shown in
Figure 2. Both blocks have two convolutional layers consisting of 64 neurons following
D-S pooling layers and two fully connected layers following the softmax output layer. The
total trainable parameter for blocks 1 and 2 is 80,913 and 60,433, respectively. To train
the neural network model, Adam is used as an optimizer. The batch size for both blocks’
simulation is 32. Both blocks are trained with 50 epochs from scratch, and their valuable
features are extracted from a fully connected layer after training. The features are also
extracted from GLCM by considering the three characteristics discussed in the methodology
section. These three types of extracted features are stacked and fused with direct fusion and
forwarded to the random forest for its classification. With its powerful ensemble attributes,
the random forest classified the machinery components following the 80 estimators and
42 as the random state. The classification performance of CNN with the standard pooling
method has been presented in Figure 6. The confusion matrix of seventeen machinery
components is shown in Figure 7. The use of D-pooling has significantly improved the
performance, as evidenced by the confusion matrix. The layer-level significance of D-S
pooling has been demonstrated in Figure 4. Compared to the standard method where
many components were misclassified, the D-S pooling approach correctly identified the
components with higher similarity. It is evident from the matrix that the locating pin,
bolt and washer have a higher degree of similarity and are associated with the maximum
misclassified components. Similarly, the transformer, inductor, and capacitor exhibit a
higher degree of misclassification.

The simulation of different machinery components has also been performed with our
novel model for compact analysis of the existing state of the art.

The three electrical components show higher accuracy than others, around 99.34%.
The experiment has also been executed considering electrical and mechanical compo-
nents separately. Ten electrical components achieved an accuracy of about 97.5%, slightly
lower than the final seventeen components’ performance presented in Figure 8 due
to higher resemblance and imbalance in the datasets. Seven mechanical components
attained an accuracy of 98.72%, higher than the seventeen components’ classification
performance. Their corresponding confusion matrix is illustrated in Figure 7. The ex-
periment has also been conducted, wherein the model was randomly tested using five
images of each component, resulting in an accuracy of 98%. The experiment has also
been performed for multiple existing deep learning models to check their performance
for our dataset, as seen in Table 3.
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Figure 8. IMCCM-based performance of seventeen components.

Table 3. Deep learning models results.

Model Training
Accuracy Validation Accuracy No. of Trainable

Parameters

Densenet201 97.3 94.9 18,216,977
Densenet121 98.9 93.5 7,020,561
EfficientNetB1 98.56 91.6 6,596,273
Resnet50 97.03 69.8 23,666,833
VGG16 84.4 86.5 15,010,769
VGG19 83.9 84.8 20,320,465
InceptionV3 94.4 95.6 21,900,593
Xception 98.8 97.5 21,987,769

Our Model
Block 1 92.02 90.45 60,433
Block 2 92.47 91.39 80,913
IMCCM 98.15 141,346

The IMCCM has achieved higher accuracy with the minimum number of trainable
parameters using the D-S pooling method. The D-S pooling-based IMCCM CNN BLOCK
1 and CNN Block2 has been tested for two well-known data sets: MNIST and CIFAR10.
The resultant Top-1 and Top-5 accuracy for these three datasets can be seen in Table 4. The
maximum Top-5 accuracy achieved by the MNIST dataset is 99.98. Although image size is
different for all these datasets but still achievable Top-1 accuracy by all these is above 67%,
and the Top-5 accuracy is above 97%. The number of trainable parameters is also limited,
which shows that our D-S pooling strategy has shown excellent results.

Table 4. Implementation for multiple datasets.

Datasets CNN Top-1
Accuracy

Top-5
Accuracy

No. of Trainable
Parameters

Image
Size

CIFAR-10
Block 1 67.98 97.26 47,690

32 × 32
Block 2 71.4 98 47,690

MNIST
Block 1 98.25 99.98 46,538

28 × 28
Block 2 97.76 99.97 54,794

Machine
Components

Block 1 92.02 99.72 60,433
100 × 100

Block 2 92.47 99.64 80,913
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4.5. Discussion

As the world is swiftly moving for deeper integration and interconnectedness under
the globalization paradigm, industrial components have gained currency for the Industry
4.0 vision and many to come. These components have a diverse range and are essential
for all electrical and mechanical machines. Their automatic classification with advanced
methods is the demand of the information revolution in the digital era. The proposed
IMCCM will help the efficient automatic classification of electrical and mechanical compo-
nents categories.

The IMCCM has been applied to classify industrial machinery’s most fundamental
seventeen components. The accuracy attained by seventeen components is 98.15%, which
is higher than the existing ones. Various components have shown even more than 99%
classification performance (see Figure 8 wherein the graph represents that locating pin has
recall as 93% and F1-score 95% smaller than all other components). The confusion matrix
(see Figure 7) illustrated that the locating pin has a higher number of misclassification.
Furthermore, the plug category achieved a perfect accuracy of 100% with no misclassifi-
cation. On the other hand, ICs exhibited a higher degree of appearance similarity with
transistors and pushbuttons from different angles, leading to some misclassified elements
despite yielding satisfactory results. The potentiometer, bolt, and transformer displayed a
lower precision rate of 96% due to their similar appearances. However, these components
still demonstrated satisfactory outcomes. Conversely, the plug, washer, diode, and resistor
achieved a perfect precision rate of 100%.

The designed model has also been tested individually for both electrical and mechani-
cal categories (see Figures 9 and 10). The accuracy achieved by both groups is 97.5% and
98.72%, respectively. The accuracy achieved by mechanical components is higher than sev-
enteen components. On the other hand, the three electrical components’ accuracy has been
recorded at 99.34%—higher than the result of the seventeen categories. In both cases (elec-
trical and mechanical, as shown in Figures 9 and 10), the different number of components
leads to variation in the performance—for minimum number, IMCCM shows maximum
accuracy of 100% for mechanical and 99.34% for electrical. However, the performance goes
down slightly as the number of components increases. Nonetheless, the performance bar
rises when the number of components increases—more than ten. The precision, recall,
and F1-Score show symmetric behavior for different numbers of components. However,
the performance curve for these evaluating parameters is more symmetric for electrical
components than for mechanical components.

In the existing techniques of component classification, the IMCCM model outperforms
other existing models. Specifically, after being trained with seventeen components, the
IMCCM achieved an accuracy of 98.15%, whereas Cheng’s (2022) model, which also utilized
seventeen components, only achieved an accuracy of 94.6%. The IMCCM improved the
accuracy by 4.41%. The model has been evaluated with a different number of components
and the performance of the model. Similarly, IMCCM has shown (see Table 5) improved
performance with multiple components and fewer trainee parameters.

Table 5. Performance Improvement from existing SOTA.

Existing SOTA Taheritanjani et al.
(2019) [14]

Kya et al. (2022)
[23] Atik (2022) [22] Salvador et al.

(2018) [20]
Hu et al. (2020)

[26]
Cheng et al.
(2022) [27]

Improvement
rate 0.603% 3.05% 0.35% 3.7% 3.11% 4.41%

No. of
components 2 3 3 6 8 17
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Other models, for instance, DenseNet201 [39], VGG16 [40], and Resnet50 [41] have
been trained on the industrial machinery components dataset, and their corresponding
results have been shown in Table 3. It can be seen that the Xception [42] model achieved
higher testing accuracy of 97.5% that too with 21 million trainable parameters. At the same
time, Resnet50 presents the lowest results—69%. The IMCCM model results are the best
among existing models—98.15%, with the highest accuracy and fewest number of trainable
parameters—141,346. The lesser number of parameters, and highest accuracy, make the
IMCCM model most suitable and robust for the automatic industrial classification system.

5. Conclusions

The industrial revolution has gradually pushed industries towards fully automatic
handling of each process. To achieve the entire processing of the industrial task inde-
pendently and systematically, it is necessary to monitor and control each component and
part efficiently and intelligently. Machine components, in many cases, differ in size and
functions but have higher inter-class and intra-class similarities. Machines generally have
electrical and mechanical components that work in unison. They have a resemblance, for
instance, capacitor and transistor, locating pin and transistor, push button, and potentiome-
ter, to name a few. Despite these similarities and interrelationships in machines, they need
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to classify separately. For the said purpose, CNN classification models are required to be
efficient in accuracy, precision, and recall while dealing with a large number of components.
However, contemporary existing models lack desired sophistry and said parameters. The
proposed IMCCM model has shown significant results while simultaneously considering
the classification of electrical and mechanical components. IMCCM consists of two con-
volutional neural network (CNN) blocks, one grey-level co-occurrence matrix (GLCM)
block, and a random forest as the classifier. CNN blocks utilized the D-S pooling method to
differentiate machine components by extracting distinct features. The extracted features
from these three blocks, fused with direct fusion, pass to the random forest to distinguish
machine components. The model achieved 98.15% accuracy, outweighing other existing
models and heralding great potential for effective industrial implementation. In a nutshell,
this study proposes a convolutional neural network-based model with maximum accuracy
and robustness to multiple components. It also offers a unique pooling design that controls
the model in a range of a minimum number of trainable parameters and improves classi-
fication performance. Finally, this research proposes a new dual-used model: automatic
classification of electrical and mechanical machine components simultaneously. The work
has the potential to be extended in the upcoming days. The proposed IMCCM model,
taking electrical and mechanical datasets into account, has strong potential to be employed
in hydraulic and optical components.
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