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Abstract: The application of fog Internet of Things (IoT) technology helps solve the problem of weak
computing power faced by IoT terminals. Due to asymmetric differences in communication methods,
sensing data offloading from IoT terminals to fog and cloud layers faces different security issues, and
both processes should be protected through certain data transmission protection measures. To take
advantage of the relative asymmetry between cloud, fog, and sensing layers, this paper considers
using physical layer security technology and encryption technology to ensure the security of the
sensing data unloading process. An efficient resource allocation method based on deep reinforcement
learning is proposed to solve the problem of channel and power allocation in fog IoT scenarios, as
well as the selection of unloading destinations. This problem, which is NP-hard, belongs to the
attribute of mixed integer nonlinear programming. Meanwhile, the supporting parameters of the
method, including state space, action space, and rewards, are all adaptively designed based on scene
characteristics and optimization goals. The simulation and analysis show that the proposed method
possesses good convergence characteristics. Compared to several heuristic methods, the proposed
method reduces latency by at least 18.7% on the premise that the transmission of sensing data is
securely protected.

Keywords: fog IoT; physical layer security; encryption; reinforcement learning; resource allocation

1. Introduction

With the rapid development and progress of electronic and communication technology,
the Internet of Things (IoT) has become an important application technology in today’s
society. It refers to the interconnection of everyday physical objects via the internet, enabling
data exchange and communication between these objects. The key characteristics of IoT
include: interconnectivity, things-related services, heterogeneity, enormous scale and low
cost. IoT terminals can obtain various information about the surrounding environment
through their own sensing capabilities, and they report sensing data to IoT servers through
various communication methods; this working mechanism has made it widely used in
industrial, household, environmental monitoring and other scenarios [1–4]. The benefits of
IoT include improved automation and efficiency, optimized resource utilization, reduced
costs, and enhanced customer experiences. However, IoT also faces challenges such as
compatibility and interoperability, privacy and security, massive data management, and
impact on jobs. IoT is transforming industries and society in profound ways [5–8].

Fog computing refers to a new computing architecture and network structure that
provides an intermediate layer between the cloud and end devices for data storage and
processing. Fog computing could improve efficiency and real-time performance, enabling
new applications. It combines cloud resources with edge nodes to achieve low latency,
real-time response, and flexible resource allocation [9–11]. The IoT, composed of low-cost
sensing terminals, naturally faces the problem of unbalanced processing capacity in the
network, while the proposal and application of cloud computing and edge computing
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are expected to effectively solve this problem. Due to its powerful computing power and
storage capabilities, the cloud layer can process perceptual data quickly and efficiently.
In contrast, the comprehensive capability of fog layer devices is between cloud layer and
sensing layer devices, but the auxiliary effects brought by its ability are more easily enjoyed
by the sensing device, as it is physically closer to the sensing devices, and it can receive
sensing data earlier than the cloud layer [12–14]. From this perspective, there is a significant
asymmetry between the IoT devices, fog layer nodes, and cloud layer servers in terms of
their own capabilities and potential utility.

Due to the weak computing, storage, and battery capacities of IoT sensing terminals,
the fog IoT also faces many security issues, among which the issue of secure transmission
of sensing data should be taken seriously, considering that it is the foundation for the
effective work of the fog IoT. Ensuring the transmission security of sensing data is also of
great significance for user privacy and data security. In particular, the wireless transmission
process in the sensing layer, as well as the wired transmission process between the fog layer
and the cloud layer, should receive corresponding security protection, to prevent the data
from being eavesdropped, resulting in information disclosure and network attacks [15–17].

1.1. Related Work

Resource allocation in the fog IoT has received widespread attention from scholars [18–22].
In order to reduce the energy consumption of transmission and offloading strategies for
the fog IoT computing system supported by non-orthogonal multiple access (NOMA),
the authors in [18] decomposed the target problem into two sub-problems with different
optimization variables and proposed a multi-node cooperative transmission and computing
algorithm. X. Huang et al. [19] jointly optimized drone trajectory and transmission power
and computed an offload radio in unmanned aerial vehicle (UAV)-assisted fog IoT network
scenarios by using problem decomposition and parallel optimization. Considering the
complexity of task offloading and resource allocation for execution on fog IoT nodes, an
intelligent method based on deep reinforcement learning was proposed in [21] to achieve
efficient problem solving. A two-tier task scheduling scheme and an uplink and downlink
power allocation factor are jointly optimized by problem transformation and decomposition
in [22] for reducing the data processing delay as well as improving fairness among different
users in fog IoT scenarios.

Building a secure fog IoT environment, especially ensuring the secure transmission of
sensing data, is of great significance [23–29]. A framework consisting of two components,
i.e., the security component and the trust management component, was proposed in [23]
to address blackhole, sinkhole, sybil, and collusion challenges faced by fog IoT. O. A.
Khashan [24] presented a hybrid proxy re-encryption scheme combining both lightweight
symmetric and asymmetric encryption algorithms, which have been proven to ensure the
safety of the data sharing process in fog IoT computing. In order to settle the inefficient
problem of the fuzzy inference system that could be utilized to offer customized encryption
algorithm decisions to the fog IoT users, a solution for determining the appropriate encryp-
tion scheme and the key was proposed in [25]. A secure data-sharing system based on key
aggregate searchable encryption using blockchain was raised in [26], and the resistance of
the proposed scheme against various attacks has been proven. J. Ren et al. [28] proposed
a task offloading strategy with a centralized decision-making approach to facilitate the
resource-constrained fog nodes for task offloading. To ensure the efficiency of federated
learning (FL) while protecting the privacy of device input data in fog IoT, Y. Liu et al. [29]
presented a secure aggregation protocol based on efficient additive secret sharing, the
security and performance of which were analyzed.

It is also essential to conduct research on improving various components of the entire
fog IoT. Formal methods [30,31] may include: the anomaly detection methodology; the data
exchange mechanism; the analysis of collected data; the optimization of utilized resources;
and the protection of private and sensitive data. Only when all these components are
enhanced can the robustness and effectiveness of the system be further improved. With
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these formal methods, the paper [32] presented a brief survey on the use of smartphone
sensors to detect various anomalies in several fields, including environment, agriculture,
healthcare and road/traffic conditions. Meanwhile, a cloud-based system architecture for
fraud detection and customer profiling in the banking domain was proposed in [33] to
address cyberattacks and financial frauds by using systematic risk assessment.

1.2. Contributions of This Paper

Table 1 summarizes the existing security protection methods for fog IoT. As can be
seen, the existing research has mostly focused on efficient authentication, lightweight
encryption algorithms, data privacy protection, modular security checks for the overall
system and other issues in fog-based IoT scenarios. Less attention has been paid to the
offloading and computing issues based on the secure transmission of perception data in
the IoT system oriented to the cloud–fog–terminal architecture. This is an area that needs
to be further enriched in the current work. Specifically, it is of research significance to
leverage the asymmetric advantages of fog and cloud layers on sensing layer devices and
to achieve security protection for sensing data transmission. Although current methods
such as artificial intelligence, machine learning, and federated learning have been helpful
in improving work execution efficiency, only federated learning can achieve efficient
joint training of models under secure conditions, while artificial intelligence and machine
learning do not inherently possess security capabilities. These methods cannot be directly
applied to the scenarios considered in this paper. Artificial intelligence methods, physical
layer security technologies, encryption algorithms, etc., need to be deeply integrated with
fog IoT scenarios to provide security protection for the transmission and processing of
sensing data. This paper investigates resource allocation issues in the fog IoT and aims to
minimize the latency of sensing data processing and transmission on the premise of the
security of data transmission. The key contributions of this paper are threefold:

• We construct a comprehensive resource decision-making model in which the sensing
data are transmitted to the fog layer under the physical layer security protection, and
the security of unloading to the cloud layer is ensured through encryption.

• To settle the NP-hard resource planning problem, we propose an intelligent method on
the basis of deep reinforcement learning to realize the rapid allocation of transmission
power, channels and of deciding whether to process the data in the cloud.

• Through generating a large number of snapshots corresponding to the scenario, we
train the proposed model and verify the performance of the proposed method through
the test set.

Table 1. Summary of existing research on security protection for the fog IoT.

Ref. Application Area Complexity Potential Contribution

[23] fog layer moderate trust management

[24] fog/cloud layer high data security sharing

[25] perceptual layer moderate encryption scheme selection

[26] cloud layer high ciphertext retrieval

[28] fog/cloud layer moderate task offloading

[29] fog/cloud layer moderate secret sharing

[30,31] ensemble moderate formal methods for detecting security anomalies

[32,33] ensemble moderate anomaly detection

[34] fog/perceptual layer moderate wireless secure transmission

This paper is organized as follows. Section 2 presents the system model and formulates
the resource planning problem. Section 3 introduces the preliminary knowledge required
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for this paper. Section 4 covers the proposed intelligent method. Section 5 provides the
simulation results and performance analysis, and Section 6 gives the conclusions.

Notation: Throughout the paper, scalars are denoted by a nonboldface type, while
vectors and matrices are denoted by a boldface type. (·)T and E{·}, respectively, signify
matrix transpose and statistical expectation. Furthermore, ωi represents the ith entry of the
vector ω.

2. System Model and Problem Formulation
2.1. System Model

Figure 1 illustrates the resource decision-making process for fog IoT scenarios, in which
there are K fog nodes and one cloud server serving U sensor terminals or user equipment
(UE) located at the sensing layer. Compared to cloud servers, the available computing
resources of fog nodes are relatively limited, but sensing data offloading from edge nodes
to cloud servers requires a large amount of communication bandwidth. Queuing and
transmission delays may affect the speed of data processing and information feedback.
Meanwhile, although the wired transmission process of data has significantly stronger
anti-interference capabilities compared to wireless transmission, the transmission of data
in plaintext may pose significant security risks to IoT systems and devices. For example,
the data transmission process may be intercepted, tampered with, or hidden by attackers,
which may lead to attacks against IoT systems, affecting their normal operation.

Figure 1. Schematic diagram of resource decision making for fog IoT scenarios.

This paper set that the wireless transmission from terminals to fog layer nodes is
protected by physical layer security technology, and the wired transmission among the
edge router and the cloud is protected by encryption technology. Specifically, considering
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the weak computing power and battery life of sensor terminals, this paper relies on fog
nodes to transmit artificial noise to ensure the secrecy capacity of the target channel (for
more details, please refer to our previous paper [34]). We also assume that each fog node has
the ability to eliminate self interference using co-time co-frequency full duplex technology,
based on which fog nodes can effectively receive signals sent by sensing terminals (i.e.,
UEs). Furthermore, this paper sets that the bidirectional data transmission between the
edge router node and the cloud must be protected through an encryption method. In this
case, the offloading process of perception data in cloud–edge–terminal fog IoT scenarios
is protected during transmission. We assume that the encryption and decryption rates of
the edge router are ER and DR, respectively. To simplify the system model, it is assumed
that the data transmission time between the fog node and the edge router is negligible and
has undergone corresponding encryption protection. Set the encryption and decryption
processing speeds of the cloud server to be EC and DC. It is assumed that the signal
propagation time between the cloud end and the edge end is negligible, and the data
transmission rate between the two is fixed to r. Set the processing speeds of fog node
k and cloud server for sensing data to τk and τC, respectively. This paper considers the
issue of computing and offloading data sensed by IoT devices and focuses on considering
the duration between the data that are processed from the fog node or cloud node and
ultimately fed back to the fog node. Set the proportion of the feedback information obtained
after processing the data at the fog node and cloud node in the input data amount (i.e., the
amount of data before processing) as β.

2.2. Problem Formulation

If the data from the terminal u, u = 1, 2, . . . , U is processed at the fog node k,
k = 1, 2, . . . , K, the corresponding time required to obtain feedback information can be
expressed as:

T f
u,k =

Zu × αu,k

τk
, (1)

where Zu denotes the amount of data sensed by terminal u, αu,k = 0 or 1 is the indicator
function. When αu,k = 1, it represents that the sensing data of node u is processed at fog
node k. Otherwise, the data will be processed in the cloud. Considering the presence of
multiple terminal sensing data aggregated at the fog node, the average data processing
delay of terminal u at fog node k can be expressed as:

T̄ f
u,k =


1

U
∑

u=1
λu,k

×
U
∑

u=1

λu,k×Zu×αu,k
τk

, i f
U
∑

u=1
λu,k 6= 0

0, i f
U
∑

u=1
λu,k = 0

, (2)

where λu,k is an indicator function for terminal u to report sensing data to fog node k. If the
sensing data are selected for processing on the cloud server, the corresponding total delay
can be expressed as:

TC
u,k =

Zu × (1− αu,k)

τC
+

Zu × (1− αu,k)

r
+

β× Zu × (1− αu,k)

r
+

Zu × (1− αu,k)

ER
+

Zu × (1− αu,k)

DC
+

β× Zu × (1− αu,k)

EC
+

β× Zu × (1− αu,k)

DC
, (3)

where the first item in the right formula represents the delay of processing the sensing data
of node u on the cloud server; the second and third items represent the transmission delay
and reverse transmission delay of sensing data from the fog node (edge router) to the cloud
server, respectively. The fourth and fifth items represent the encryption delay of sensing
data in the edge router and the decryption delay in the cloud server, respectively. The
sixth and seventh items denote the encryption delay at the cloud server and the decryption
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delay at the edge router after the data being processed by the cloud server, respectively.
Equation (3) can be further simplified as:

TC
u,k = Zu × (1− αu,k)×

(
1

τC
+

1 + β

r
+

1
ER

+
1

DC
+

β

EC
+

β

DC

)
. (4)

Considering the existence of multiple terminal sensing data aggregated in the cloud
server, the delay of processing the data from the terminal u in the cloud service and
returning information to the edge router can be expressed as:

T̄C
u,k =



U
∑

u=1

K
∑

k=1
TC

u,k

U
∑

u=1

K
∑

k=1
(1−αu,k)

, i f
U
∑

u=1

K
∑

k=1
(1− αu,k) 6= 0

0, i f
U
∑

u=1

K
∑

k=1
(1− αu,k)=0

. (5)

Based on the premise of secure transmission at the sensing layer of the IoT in [34], and
with the goal of minimizing the latency of sensing data processing, the security resource
planning issues at the cloud edge of fog IoT can be summarized as follows:

min
λu,k ,pk,u ,αu,k

K

∑
k=1

U

∑
u=1

λu,k(Tu,k + Φu,k) (6a)

s.t. Tu,k(t) =
Zu

Cu
sec

(6b)

Φu,k = T̄ f
u,k + T̄C

u,k, ∀u, k (6c)

Cu
sec = Blog2(1 + ηu,k)− Blog2(1 + ηu,e) (6d)
K

∑
k=1

λu,k = 1, λu,k = 0, 1 ∀u, k (6e)

U

∑
u=1

pk,u ≤ Pk, ∀k, (6f)

where Cu
sec denotes the secrecy capacity of data sent by device u. B, ηu,k and ηu,e respectively

represent the channel bandwidth, the signal to noise ratio (SNR) of the target channel (i.e.,
the channel between device u and fog node k), and the SNR of the eavesdropping channel
(i.e., the channel between device u and the untrusted node). Pk and pk,u respectively denote
the total available transmission power of the fog node k and the artificial noise transmission
power allocated to protect (for more details on the physical layer security approach, please
refer to [34]). the device u.

We could observe that the complexity of problem (6) is further improved compared
to the planning channel and power resources of the fog nodes. It belongs to the NP-hard
problem of mixed integer nonlinear programming. It is difficult to directly obtain the
optimal solution through mathematical programming methods. In this case, this paper
explores the use of artificial intelligence methods combined with heuristic methods to
efficiently solve the problem in Section 4.

3. Preliminaries
3.1. Reinforcement Learning

Reinforcement learning aims to obtain model parameters for using high reward actions
in different environmental states through certain interactions with the environment [35–40].
Reinforcement learning can be described by the Markov Decision Process (MDP), in which
an agent takes decision-making actions in a given environment, driving the state of the
environment to change with a certain probability, and it receives corresponding rewards.
Specifically, if the environmental state at time t is represented by st, the agent takes action
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at, it would receive a numerical reward rt, and then the environment enters the state of the
next moment st+1. Mathematically, the change (learning) process of reinforcement learning
can be described by quadruple 〈S, A, P, R〉, in which S, A, P, R respectively denote the state
space, action space, reward set, as well as the state transition probability matrix.

The agent’s decision-making strategy πt(s, a), which indicates the action selection
recommendation with state s at time t, could be updated when the experience sequence
{(st, at, rt, st+1), . . .} is acquired during the process of the agent’s continuous exploratory
learning. The goal of reinforcement learning is to enable the agent to obtain a series of
maximum cumulative rewards in future decisions. Mathematically, we can express it as

Rt =
∞

∑
l=0

ϑlrt+l , (7)

where ϑ ∈ [0, 1] represents the discount ratio.
The Q-learning method is widely adopted in current reinforcement learning

methods [39,40], in which the Q-value of the model can be updated through the inter-
action with the environment. The Q-value reflects the utility value of adopting action a
under the condition of policy π in environmental state s. The process can be written as

Qπ(s, a) = E[Rt | st = s, at = a]. (8)

Denote Q∗(s, a) = maxπQπ(s, a) as the optimal action value function, where we can
obtain the following formula by using, according to the Bellman optimality equation,

Q∗(s, a) = E
[
rt+1 + ϑmaxa′Q

∗(s′, a′
)
| st = s, at = a

]
, (9)

where s′ represents the new state after the action a was selected and performed.
Q-learning aims to continuously update the optimal action value function by utilizing

the experience sequence acquired through the interaction between the agent and environ-
ment. Denote the estimated Q-value in the iterative process as q(st, at), where we could
use the following formula to express the update process of Q-learning

q(st, at)←q(st, at)+ξ(rt+ϑmaxa′q(st+1, at+1)−q(st, at)), (10)

where ξ ∈ [0, 1] denotes the learning rate.
To quickly obtain the Q-value and the policy relationship, the balance between explo-

ration and exploitation should be handled by the agent. The exploitation process represents
the use of learned decision-making strategies by the agent, i.e., the selection of actions
based entirely on the output of the model, while the exploration process denotes that the
agent selects actions in a certain random manner to explore the content of the decision.
It should be added that an agent should not only bias toward a certain process to avoid
situations where model training is not in place or model decisions are excessively random.
The ε-greedy algorithm is a widely utilized balancing method that adopts the following
probability mechanism [35–40]

a =

{
arg maxaq(s, a), with probability 1−ε

a random action, with probability ε
. (11)

3.2. Deep Reinforcement Learning

Under normal circumstances, reinforcement learning can efficiently train the decision
model to guide the agent in selecting reasonable actions. Unfortunately, reinforcement
learning will lead to a decrease in training efficiency and decision-making efficiency due
to the large database corresponding to the Q-table, when the number of elements in state
space or action space increases significantly. In this case, the deep reinforcement learning
(DRL), which combines both reinforcement learning and deep learning, was proposed [41].
Unlike directly recording the correspondence between state elements and action elements,
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DRL aims to rely on deep neural networks (DNNs) to achieve mapping between states and
actions, i.e., using the neural network to intelligently estimate the action value function.
Due to the ability of DNNs to fit complex nonlinear relationships, DRL can generally handle
the problem with a large amount of elements brought about by large state space and action
space well.

The alternative process of DRL to reinforcement learning can be written as Q∗(s, a) ≈
Q(s, a|θ). The input and output of the DNNs in the DRL are respectively a state s and the
Q-value of each action among the action space. q(s, a|θ) denotes the output of the DNNs,
and it is determined only by the weights θ of the DNNs. To update θ, the back propagation
of the learning process is usually adopted. Similar to Equation (9), the following equation
should be adopted to acquire the target in the Actor–Critic learning model with dual
DNN architecture

L
(
θ, θ′

)
=E
[(

r(s, a)+ϑmaxa′Q
(
s′, a′ | θ′

)
−Q(s, a | θ)

)2
]
, (12)

where θ and θ′ respectively represent the weights of the main network and the target network.

4. Proposed Intelligent Method

By analyzing problem (6), it can be concluded that the solution involves selecting
values for the three parameters λu,k, pk,u, αu,k, ∀u, k in order to minimize the average trans-
mission and processing delays corresponding to the target (6a). If the ergodic method
is used to obtain the parameters, it can be calculated that the number of parameters to
be estimated is KU × MK × 2U , where M denotes the number of optional power allo-
cation methods. This requires significantly high computational power for the traversal
process and brings significantly large delays to the decision-making process. Obviously,
it is not suitable for fog IoT scenarios that require high timeliness in resource decision
making. This paper considers using a deep reinforcement learning method that has ad-
vantages in decision-making efficiency to solve the problem. The method constructs the
decision-making environment faced by the executive into a mathematical vector, and forms
a mapping relationship with possible decision-making results. Through training based on a
large number of sample data, an automatic mathematical model with good decision-making
performance is obtained.

4.1. Preliminary Exploration of the Method

Intuitively, the parameters of DRL can be extended and supplemented based on
the method proposed in our previous work [34] to match the problem scenario. In this
case, considering that in the cloud–edge–end resource decision-making process, new
environmental factors mainly include the encryption and decryption rate of the edge router,
the encryption and decryption processing speed of the cloud server, the processing speed
of the fog node k and the cloud server for sensing data, the data transmission rate, and
the proportion of feedback information to the input data, the corresponding state of the
environment can be set as

s = { Zu︸︷︷︸
U

, Cu,k︸︷︷︸
U×K

, pu︸︷︷︸
U

, gu,e︸︷︷︸
U

, gk,e︸︷︷︸
K

, ER, DR, EC, DC, r, τR, τC, β}1×(U×K+3U+K+8). (13)

By referring to the optimization objective of problem (6), the action space for security
resource decisions can be set as follows:

a = {λu,k︸︷︷︸
U×K

, τm︸︷︷︸
M

, αu,k︸︷︷︸
U

}1×(U×K+M+U). (14)

From Equations (13) and (14), it can be concluded that the current state space size and
action space size are respectively QU

Zu
QUK

Cu,k
QU

pu QU
gu,e QK

gk,e
QER QDR QEC QDC QrQτR QτC Qβ and

2U × KU MK, where Q(·) denotes the quantization progression of parameter (·). The two
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spatial sizes have significantly exceeded the corresponding sizes in [34], which means that
the DRL method faces more complex decision-making scenarios with more state action
pairs than the proposed method in [34], which in turn can lead to greater training delays,
and this is detrimental to the timely updating and adjustment of models. In the next
subsection, this paper proposes a lightweight intelligent decision-making method to reduce
the complexity of model training and updating.

4.2. Lightweight Decision-Making Method

Compared to constructing all environmental impact factors in the cloud–edge–end
decision scenarios of the fog IoT into a state space, this paper observes that there is a low
coupling characteristic between the sensing layer decision scenario and the cloud–edge
decision scenario. In other words, it is possible to achieve separation between how to
securely and quickly transmit terminal sensing data to the fog node and determining
whether the sensing data are processed in the cloud or in the fog layer. This means that
the decision of the latter can be made after the decision of the former, rather than linking
all the influencing factors together. In view of this, this paper considers constructing a
DRL model separately for the latter decision scenario. Compared to the decision model
in the previous subsection, this method reduces the computational complexity from a
multiplicative relationship to an additive relationship. Mathematically, the spatial size of
the state and action pairs of the decision model in the previous subsection is

2U × KU MKQU
Zu

QUK
Cu,k

QU
pu QU

gu,e QK
gk,e

QER QDR QEC QDC QrQτR QτC Qβ. (15)

The overall spatial size of the state and action pairs for the new lightweight method
proposed in this paper is at most

QU
Zu

QUK
Cu,k

QU
pu QU

gu,e QK
gk,e

KU MK + 2U ×QU
Zu

QER QDR QEC QDC QrQτR QτC Qβ. (16)

It can be seen that the decision space size of the new method has been significantly reduced,
i.e., the training and updating efficiency of the decision model has been significantly
improved. The details of the new method are described below.

State Space

Based on the safe and rapid transmission of terminal sensing data to fog nodes, that is,
using the algorithm proposed in [34] as the decision-making premise, it can be determined
that the sensing data of each terminal currently uses the corresponding fog node as the
starting point for data transmission, and whether the decision-making data are processed
in the local fog layer or transmitted to the cloud server for processing and transmitting back.
The current relevant impact factors are constructed into an environmental state, which can
be expressed as

s = { Zu︸︷︷︸
U

, ER, DR, EC, DC, r, τR, τC, β}1×(U+8). (17)

4.3. Action Space

From the objective function of problem (6), it can be observed that with the operation
of the algorithm proposed in [34], the relevant parameters to be solved (i.e., λu,k, pk,u, ∀u, k)
have obtained results, while the unknown parameters are mainly αu,k, ∀u, k. Therefore, the
action of the deep reinforcement learning model should be set to

a = { αu,k︸︷︷︸
U

}1×(U). (18)

4.4. Action Reward

The goal of problem (6) is to minimize the processing of sensing data and feedback
delay by discarding the parameters that have been optimized through the algorithm
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proposed in [34] (i.e., Tu,k). The parameters to be optimized are Φu,k, ∀u, k. This paper sets
the reward of the proposed method as

rw = −
K

∑
k=1

U

∑
u=1

Φu,k. (19)

This means that the lower the average processing and return latency of the sensing data
at each terminal, the greater the corresponding reward value, which in turn can guide the
method to adjust to low latency decision parameters to improve the decision-making effect.

4.5. Method Summary

We summarize the proposed Secure Lightweight Resource Allocation method of the
Fog IoT (S-LFRA) method in Algorithm 1 with the process diagram in Figure 2. The method
relies on the decay process of the ε-greedy algorithm to execute the training process of the
DNN model. By randomly obtaining action values, a state action pair is obtained, and
a quad sample is formed with the corresponding rewards and the next state. It is added
to the training memory for use. By randomly obtaining batch samples from the memory,
the parameters of the main network are updated using the Adam algorithm [35,36], and
they timely update the main network parameters to the target network to ensure a smooth
training and learning process. Through the implementation of Algorithm 1, the final output
for the three types of parameters αu,k, λu,k, τm, ∀u, k, m can be obtained, which can then be
intuitively converted to the set of actions that the edge router needs to perform.

Algorithm 1 The proposed S-LFRA method
1: Input: ER, DR, EC, DC, r, τR, τC, β, Zu, ∀u.
2: Output: αu,k, λu,k, and τm, ∀u, k, m.

———————————————————————————————————
3: Initialize replay memory Γ, random parameters of models θ = θ′, ε, εdelay, εmin,

training rounds I, learning threshold v, update frequency of the target network
F, and j = 0.
———————————————————————————————————

4: Run Algorithm 1 in [34], and obtain the output λu,k as well as τm, ∀u, k, m.
5: While ε > εmin Do
6: ε← ε× εdelay
7: For i← 1, . . . , I Do
8: Take a random value from 0 to 1, and execute Equation (11);

9: Execute the selection of action a, calculate the reward received, and store the
quad (s, a, rw, s′) into Γ;

10: If i > v Do
11: Take a batch of experience samples randomly from Γ;

12: Calculate L(θ, θ′) using Equation (12);
13: Let j = j + 1;
14: End If
15: If j mod F = 0 Do
16: θ′ ← θ, s← s′;
17: Let j = j + 1;
18: End If
19: End For
20: End While
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Figure 2. Process diagram of Algorithm 1.

To avoid the problem of degradation of traditional network structures, the Residual
Network (ResNet) [42] is adopted in the proposed S-LFRA method. Specifically, ResNets
employ skip connections to overcome the issues of degradation and difficulty in training
deep neural networks. By skipping some layers during training, the gradients can flow
directly through the shortcut paths, mitigating the gradient vanishing/exploding effect.
This enables the training of very deep networks beyond 100 layers. The proposal of ResNet
is a milestone that unleashes the depth potential of neural networks and spearheads a new
wave of deep learning revolution. Furthermore, the Relu activation function is employed
in the training process of the ResNet. In order to avoid violent fluctuations in the process of
training, the dual neural network is adopted in the method; the replay memory and small
batch learning approaches are also utilized.

The advantages of Algorithm 1 are mainly reflected in efficiency and forward com-
patibility. The former ensures that the proposed model can quickly make decisions with
high rewards, and the latter ensures that the trained model has good interoperability. Its
disadvantages are mainly that the model is required to be updated and trained, and the
training complexity is high. Fortunately, this disadvantage can be overcome by selecting
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high-performance processing nodes and pre-computing. The complexity of the proposed
method mainly gathers at the training stage, as a lot of differentiation and other operations
are required at this stage, while the complexity is quite low in the testing or application
stages, since only relatively simple forward linear and nonlinear calculations are needed in
these stages. This further ensures the applicability of the method, as the calculations can
be performed in advance on devices or networks with strong comprehensive capabilities.
Upon applying the trained model to practical scenarios, one merely needs to input a state
vector of identical form to that used in training. The model can then promptly generate
an action vector directing resource allocation. The proposed method possesses forward
compatibility. Specifically, when the scenario nodes mapped to the trained model are
complex, the model remains applicable to more simple fog-based IoT scenarios. For simpler
scenarios, it can be achieved through setting corresponding prior values to zero or infinity.
This indicates that the proposed method has a degree of interoperability.

5. Simulation and Performance Analysis

This paper adopts the Keras platform [43,44] to perform the simulation. Keras is
an open source deep learning library written in Python. It provides a high-level API
for building and training deep learning models. Keras makes it easy to start with deep
learning and provides useful abstractions that can be used in Theano, TensorFlow, and
CNTK. With its simple and consistent interface, Keras accelerates experiments in deep
learning and machine learning. The settings of parameters related to the proposed method
are summarized in Table 2. The encryption and decryption rate of the edge router, the
encryption and decryption processing speed of the cloud server, the data transmission
rate between the cloud and the edge, the processing speed of the sensing data by the fog
node and the cloud server, and the proportion of the feedback information obtained after
processing by the fog node and the cloud node in the input data volume are randomly
generated according to the data range shown in the table. The basic settings of parameters
are consistent with the simulation in [34]. This paper verifies the performance of methods by
generating multiple samples. Specifically, each sample corresponds to a scenario snapshot,
which includes the node state, sensing data, and other variables of the scenario. The state
vector is a mathematical description of the snapshot. With a large number of snapshots, we
can quickly and effectively train and test the decision model of the proposed method.

Table 2. Parameters in the simulation.

Hyper-Parameter Value

ϑ, ε, ξ, v 0.9, 0.6, 0.01, 7

Decay rate of ε, εdecay 0.99

The minimal value of ε, εmin 0.001

Experience-replay memory capacity Γ 2000

Update frequency F of the target network 500

Experience–replay minibatch size 32

U, K, M 5, 2, 8

δ for training/test set 5000/1000

Channel bandwidth B 1 MHz

pu, ∀u ∈ U −5∼10 dBm

Zu, ∀u ∈ U 10∼50 Mbit
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Table 2. Cont.

Hyper-Parameter Value

Pk, ∀k ∈ K 20∼30 dBm

gk,e, gu,e, gu,k, ∀k ∈ K, ∀u ∈ U −80∼−120 dB

Ntrain, Ntest 2000, 500

Number of layers of the used RESNET 8

Number of neurons in each layer of RESNET 64

ER, DR 2∼5, 3∼8 Mbit/s

EC, DC 10∼20, 15∼40 Mbit/s

r, β 3∼10 Mbit/s, 0.1∼0.5

τk, τC 5∼15, 20∼60 Mbit/s

Figure 3 shows the verification process for the method proposed in this paper, where
a large number of snapshots are generated to form training sets and test sets to update
and verify the performance of the eight-layer ResNet model parameters. Meanwhile, to
demonstrate the performance of the proposed method, the following methods are adopted.

• LFRA: This method corresponds to Method S-LFRA that does not perform Step 4.
• SIRA: The method proposed in [34].
• FCRA: A variation of SIRA. This method finds the optimal power allocation through

traversal operation on the basis of using a randomly specified connection relationship
between sensing devices and fog nodes.

• APRA: A variation of SIRA. This method finds the optimal connection matching
relationship through traversal operation on the basis of using uniform power alloca-
tion mode.

• RanF: This method randomly determines whether the sensing data are processed in
the cloud or in the fog layer.

• MidV: This method takes the average value of all the sensing data to be processed as
the threshold value. Data exceeding this threshold value are processed in the cloud;
otherwise, it is processed in the fog layer.

• S-LFRA-O: This method obtains the optimal solution for selecting whether to process
in the cloud layer through traversal. It has a high complexity and is not practical
in application.

Firstly, considering that the operational complexity of the proposed method will
greatly affect the decision-making efficiency of the edge router in fog IoT scenarios, we
specifically compare the convergence speed of the proposed LFRA method with the pre-
viously proposed SIRA method, to ensure that the proposed LFRA method does not
significantly increase computational complexity and runtime latency. For ease of obser-
vation, the simulation only shows the performance of the method for one snapshot, and
the performance results are shown in Figure 4. Although the convergence values of the
two methods are not comparable, it can be seen from the figure that the two methods
have significantly different convergence performances. The LFRA method has a faster
convergence speed than the SIRA method, which is due to the smaller state and action
space compared to the SIRA method. This also fully demonstrates that the proposed LFRA
method has lower complexity compared to the SIRA method and preliminarily proves that
the proposed method has strong application deployment feasibility.
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Figure 3. Schematic diagram of the simulation process. It relies on a large number of generated
snapshots to compose training sets and test sets to update and verify the performance of ResNet
model parameters.

Next, this paper verifies the performance of the proposed S-LFRA algorithm and
selects three comparison methods, namely, the S-LFRA-O method, the SIRA+RanF method,
and the SIRA+MidV method. The S-LFRA-O method requires calculation of all possible
combinations, which is very complex and not feasible in reality. The simulation results
are shown in Figure 5. As can be seen from the figure, method S-LFRA is significantly
superior to the SIRA+RanF method and the SIRA+MidV method in terms of delay (reward)
performance. Overall, the performance of the SIRA+RanF method is relatively unstable,
and the performance of the S-LFRA method is basically equivalent to that of the S-LFRA-O
method, with only a slightly lower reward on individual snapshots. Considering the poor
feasibility of the S-LFRA-O method in reality, this indicates the rationality and performance
advantages of the proposed S-LFRA method. Among them, LFRA-O is a variant of LFRA.
This method finds the optimal action through traversal operations, which takes a long time
and can reflect performance boundaries. RanF is a random method in which the system
randomly selects whether the sensing data are offloaded to cloud computing or processed
in fog. MidV is a median allocation method that takes the average of all data volumes,
uploads data that are greater than the average for cloud processing, and processes data that
are less than the average in the fog layer. From the simulation results, it can be seen that
LFRA and LFRA-O almost completely coincide, and in practical applications, LFRA-O, a
traversal operation method, is not applicable. By relying on 2000 snapshots for testing, this
paper finds that the proposed method S-LFRA has an average increase in latency (reward)
values by more than 37.3% compared to methods SIRA+RanF and SIRA+MidV. Therefore,
the results fully reflect the advantages of the LFRA method proposed in this paper.
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Figure 4. Convergence performance comparison of proposed methods.

Figure 5. Performance results of S-LFRA method and comparative methods on random snapshots.

Finally, this paper utilizes multiple sensing layer decision-making methods, which are
combined with the cloud–edge–end LFRA method, to simulate on a test set to demonstrate
the rationality of the proposed method. The methods used for the sensing layer include
SIRA, APRA, FCRA, and SIRA-R. These methods are described in [34]. The simulation
results are shown in Figure 6. In order to more clearly observe the differences between the
four methods, part of the data in Figure 6 are zoomed in and are displayed in Figure 7.
Combining the two figures, it can be clearly seen that the effect of combining SIRA with
LFRA is significantly better than that of combining other methods with LFRA. Through
experiments on an additional 2000 samples (snapshots), this paper observes that the
proposed method S-LFRA yields an average of at least 18.7% higher reward compared to
these other three methods. This fully demonstrates the rationality and advantages of this
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chapter’s rapid allocation of sensing layer channel and power resources and cloud side
resource planning decisions in the fog IoT, and it significantly reduces latency overall.

Figure 6. Performance comparison of LFRA combined with different methods.

Figure 7. Enlarged display of some results in Figure 6.

6. Conclusions

This paper considered the issue of security resource decision making for the fog Inter-
net of Things under the cloud–edge–end architecture. Through analyzing the complexity
of the problem and solution methods, it is proposed to independently solve the computing
and offloading problem of the sensing data of the IoT devices after implementing the
resource decisions corresponding to the wireless security transmission of the sensing layer.
The problem aims to minimize the latency of sensory data processing in fog IoT scenarios
on the premise of secure transmission of sensory data at the cloud edge layer. A lightweight
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intelligent decision-making method that matches the depth of the scene on the basis of deep
reinforcement learning technology was proposed, where the key factors such as status,
actions, rewards, and network parameters were reasonable designed. A large number of
snapshot simulations have verified the proposed method, indicating that the convergence
speed of the method is fast, that it has lower model training and update complexity, and
that is has significantly better resource decision-making performance compared to multiple
heuristic methods.

The future work can be explored in the following three directions: Firstly, given
the existence of various encryption techniques between the fog computing layer and
cloud layer, it is worthwhile to study how to achieve a balance between efficiency and
security in data collaborative processing. Secondly, it is worth considering providing
physical layer security protection for the downstream processes of the perception layer so
as to protect the data security of IoT devices without consuming their limited computing
resources. Finally, it is significant to consider how to achieve secure data transmission and
fast processing under the scenario where there are multiple untrusted third parties with
unknown prior information.
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