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Abstract: We study the (3+1)-dimensional stochastic Jimbo–Miwa (SJM) equation induced by multi-
plicative white noise in the Itô sense. We employ the Riccati equation mapping and He’s semi-inverse
techniques to provide trigonometric, hyperbolic, and rational function solutions of SJME. Due to
the applications of the Jimbo–Miwa equation in ocean studies and other disciplines, the acquired
solutions may explain numerous fascinating physical phenomena. Using a variety of 2D and 3D
diagrams, we illustrate how white noise influences the analytical solutions of SJM equation. We
deduce that the noise destroys the symmetry of the solutions of SJM equation and stabilizes them
at zero.
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1. Introduction

Nonlinear evolution equations (NEEs) are used to simulate a wide range of compli-
cated real-world phenomena. NEEs are engaged in various fields of science and engi-
neering, including plasma physics, astrophysics, cosmology, acoustics, electrochemistry,
chemical reaction, optical fiber, biology, ecology, mechanics, fluid dynamics and elec-
tromagnetic theory. As a result, it is necessary to find the solutions to these NEEs. In
recent years, many techniques for solving NEEs, including the tanh–coth method [1],
generalized auxiliary equation [2], extended direct algebraic method [3], extended (G′/G2)-
expansion technique [4], Riccati equation method [5], He’s semi-inverse method [6], sine-
cosine method [7], auxiliary equation method [8], Jacobi elliptic function method [9], F-
expansion technique [10], Lie symmetry method [11], (G′/G)-expansion [12], exp(−φ(ς))-
expansion [13], etc., have been presented.

More generally, stochastic NEEs are utilized to address systems in physics, biology
and chemistry that are subject to random influences. During the past few decades, the
significance of including randomness into complex system models has been recognized.
The use of stochastic NEEs for developing mathematical models of complex processes is on
the rise in many fields, including materials sciences, condensed matter climate, finance, in-
formation systems, electrical engineering, biophysics and physics system modeling [14,15].
In recent years, analytical solutions for some stochastic NEEs have been acquired, for
example [16–20] and the references therein.
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Stochastic effects in NEEs must thus be considered. The (3+1)-dimensional stochastic
Jimbo–Miwa (SJM) equation driven by a multiplicative noise is considered here:

2Vyt + Vxxxy + 3VxVxy + 3VxxVy−3Vxz = 2λVyGt, (1)

where V = V(x, y, z, t) is an analytic function, G = G(t) is the standard Wiener process
(white noise), λ represents the noise intensity. Equation (1), with λ = 0, was found by Jimbo
and Miwa [21]. Equation (1) is the second one in the KP-hierarchy. Although Equation (1) is
nonintegrable, a variety of methods have been proposed to acquire the solutions, including
the extended rational expansion method [22], homogeneous balance method [23], extended
homogeneous balance method [24], generalized F-expansion method [25], multi-linear
variable separation approach [26], Hirota’s bilinear method [27], tanh–coth method [28]
and Riccati equation mapping method [29]. The exact stochastic solutions to Equation (1)
was not obtained until now.

The objective of this work is to determine exact stochastic solutions of SJM Equation (1).
He’s semi-inverse method (HSI-method) and Riccati equation mapping method (REM-
method) are utilized to obtain these solutions. Some previous results, including those
presented in [29], have been extended. The stochastic term in Equation (1) provides
solutions that are incredibly helpful for characterizing a variety of significant physical
phenomena. In addition, we provide a large number of graphs in MATLAB to investigate
the effect of white noise on the solution of the SJM Equation (1).

This is a brief summary of the article: Section 2 derives the wave equation of SJM
Equation (1). Section 3 focuses on obtaining exact solutions for the SJM equation. Section 4
investigates how white noise affects the solutions of the SJM equation. Finally, the findings
of the article are presented.

2. Wave Equation for SJM Equation

To derive the wave equation of SJM Equation (1), we use

V(x, y, z, t) = Y(ξ)e(λG(t)−
1
2 λ2t), ξ = ξ1x + ξ2y + ξ3z + ξ4t, (2)

where the function Y is a deterministic, ξ1, ξ2, ξ3 and ξ4 are undefined constants. We
observe that

Vx = ξ1Y ′e(λG(t)−
1
2 λ2t), Vy = ξ2Y ′e(λG(t)−

1
2 λ2t),

Vxz = ξ1ξ3Y ′′e(λG(t)−
1
2 λ2t), Vxx = ξ2

1Y ′′e(λG(t)−
1
2 λ2t),

Vxy = ξ1ξ2Y ′′e(λG(t)−
1
2 λ2t), Vxxxy = ξ2ξ3

1Y ′′′′e(λG(t)−
1
2 λ2t),

Vyt = [ξ2ξ4Y ′′ + λξ2Y ′Gt]e(λG(t)−
1
2 λ2t). (3)

Substituting Equation (3) into Equation (1), yields

(2ξ2ξ4 − 3ξ1ξ3)Y ′′ + ξ2ξ3
1Y ′′′′ + 6ξ2ξ2

1Y ′Y ′′e(λG(t)−
1
2 λ2t) = 0. (4)

When we take into account the expectations on both sides, we get

(2ξ2ξ4 − 3ξ1ξ3)Y ′′ + ξ2ξ3
1Y ′′′′ + 6ξ2ξ2

1Y ′Y ′′e−
1
2 λ2tEe(λG(t)) = 0. (5)

Since G(t) is white noise, then EeλG(t) = e(
1
2 λ2t), Equation (5) turns into

Y ′′′′ + `1Y ′′ + 2`2Y ′Y ′′ = 0, (6)

where

`1 =
(2ξ2ξ4 − 3ξ1ξ3)

ξ2ξ3
1

and `2 =
3
ξ1

. (7)
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Integrating Equation (6), yields

Y ′′′ + `1Y ′ + `2(Y ′)2 = C,

where C is the integral constant. We assume C = 0 to get

Y ′′′ + `1Y ′ + `2(Y ′)2 = 0. (8)

3. Exact Solutions of SJM Equation

Two different methods, such as the REM method and HSI method, are used to obtain
the solutions to Equation (8). As a result, the solutions to the SJM Equation (1) are found.

3.1. Application of the REM-Method

The Riccati–Bernoulli equation has the form:

Y ′ = sY2 + rY + p, (9)

where s, r, p are constants. Using Equation (9), we have

Y ′′′ = 6s3Y4 + 12rs2Y3 + (8ps2 + 7sr2)Y2 + (r3 + 8rsp)Y + (r2 + 2sp2). (10)

Substituting Equations (9) and (10) into (8), we get

(6s3 + s2`2)Y4 + (12rs2 + 2rs`2)Y3 + (8ps2 + 7sr2 + s`1 + 2ps`2 + r2`2)Y2

+(r3 + 8rsp + r`1 + 2pr`2)Y + (r2 + 2sp2 + p`1 + p2`2) = 0.

Equating each coefficient of Y k to zero yields

6s3 + s2`2 = 0,

12rs2 + 2rs`2 = 0,

8ps2 + 7sr2 + s`1 + 2ps`2 + r2`2 = 0,

r3 + 8rsp + r`1 + 2pr`2,

and
r2 + 2sp2 + p`1 + p2`2 = 0.

By solving these equations, we find

s =
−`2

6
, r = 0, and p =

−3`1

2`2
. (11)

Now, we can rewrite Equation (9) as

dY
Y2 + ( p

s )
= sdξ. (12)

There are different sets relying on p and s, as follows:
Family I: When ps > 0, thus, the solutions of Equation (9) are:

Y1(ξ) =

√
p
s

tan
(√

psξ
)

,

Y2(ξ) = −
√

p
s

cot
(√

psξ
)

,

Y3(ξ) =

√
p
s

(
tan(

√
4psξ)± sec(

√
4psξ)

)
,
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Y4(ξ) = −
√

p
s

(
cot(

√
4psξ)± csc(

√
4psξ)

)
,

Y5(ξ) =
1
2

√
p
s

(
tan(

1
2
√

psξ)− cot(
1
2
√

psξ)
)

.

Then, the SJM Equation (1) has the solutions :

V1(x, y, z, t) =
√

p
s

tan
(√

psξ
)

e(λG(t)−
1
2 λ2t), (13)

V2(x, y, z, t) = −
√

p
s

cot
(√

psξ
)

e(λG(t)−
1
2 λ2t), (14)

V3(x, y, z, t) =
√

p
s

(
tan(

√
4psξ)± sec(

√
4psξ)

)
, e(λG(t)−

1
2 λ2t), (15)

V4(x, y, z, t) = −
√

p
s

(
cot(

√
4psξ)± csc(

√
4psξ)

)
e(λG(t)−

1
2 λ2t), (16)

V5(x, y, z, t) =
1
2

√
p
s

(
tan(

1
2
√

psξ)− cot(
1
2
√

psξ)
)

e(λG(t)−
1
2 λ2t), (17)

where ξ = ξ1x + ξ2y + ξ3z + ξ4t.
Family II: When ps < 0, thus the solutions of Equation (9) are:

Y6(ξ) = −
√
−p

s
tanh

(√
−psξ

)
,

Y7(ξ) = −
√
−p

s
coth

(√
−psξ

)
,

Y8(ξ) = −
√
−p

s

(
tanh(

√
−4psξ)± isech(

√
−4psξ)

)
,

Y9(ξ) = −
√
−p

s

(
coth(

√
−4psξ)± csch(

√
−4psξ)

)
,

Y10(ξ) =
−1
2

√
−p

s

(
tanh(

1
2
√
−psξ) + coth(

1
2
√
−psξ)

)
.

Then, the SJM Equation (1) has the solutions:

V6(x, y, z, t) = −
√
−p

s
tanh

(√
−psξ

)
e(λG(t)−

1
2 λ2t), (18)

V7(x, y, z, t) = −
√
−p

s
coth

(√
−psξ

)
e(λG(t)−

1
2 λ2t), (19)

V8(x, y, z, t) = −
√
−p

s

(
tanh(

√
−4psξ)± isech(

√
−4psξ)

)
e(λG(t)−

1
2 λ2t), (20)

V9(x, y, z, t) = −
√
−p

s

(
coth(

√
−4psξ)± csch(

√
−4psξ)

)
e(λG(t)−

1
2 λ2t), (21)

V10(x, y, z, t) =
−1
2

√
−p

s

(
tanh(

1
2
√
−psξ) + coth(

1
2
√
−psξ)

)
e(λG(t)−

1
2 λ2t), (22)

where ξ = ξ1x + ξ2y + ξ3z + ξ4t.
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Family III: When p = 0, s 6= 0, then Equation (9) has the solution

Y11(ξ) =
−1
sξ

.

Hence, the SJM Equation (1) has the solution

V11(x, y, z, t) =
( −1

s(ξ1x + ξ2y + ξ3z + ξ4t)

)
e(λG(t)−

1
2 λ2t). (23)

At the end of this subsection, we can deduce that the REM method is direct, effective
and straightforward. Moreover, this method provide various kinds of solutions, for example
trigonometric, hyperbolic and rational solutions, which explain numerous phenomena
associated with the behavior of the Jimbo–Miwa equation.

Remark 1. Putting λ = 0 in Equations (13)–(23), identical solutions are given in [29].

3.2. Application of the HSI-Method

As stated in [30–32], we obtain the following variational formulations:

J(Y) =
∫ ∞

0
{1

2
(Y ′′)2 − 1

2
`1(Y ′)2 +

1
3
`2(Y ′)3}dξ. (24)

Now, let the solution of (6) take the form

Y(ξ) = Ksech(ξ), (25)

where K is an unknown constant. Substituting Equation (25) into Equation (24), we have

J =
1
2
K2

∫ ∞

0
[sech2(ξ) tanh4(ξ) + sech4(ξ) tanh2(ξ) + sech6(ξ)

−`1sech2(ξ) tanh2(ξ) +
2
3
`2Ksech3(ξ) tanh3(ξ)]dξ

=
1
2
K2

∫ ∞

0
[(sech2(ξ)− `1sech2(ξ) tanh2(ξ) +

2
3
`2Ksech3(ξ) tanh3(ξ)]dξ

=
K2

2
− `1
K2

6
− 2

45
`2K3.

Making the following J stationary associated with K

∂J
∂K = (1− 1

3
`1)K−

2
15

`2K2 = 0. (26)

Solving Equation (26) yields

K =
15− 5`1

2`2
.

Hence, Equation (6) has the solution

Y(ξ) = 15− 5`1

6`2
sech(ξ).

Now, the solution of the SJM Equation (1) is

V(x, y, z, t) =
15− 5`1

6`2
sech(ξ1x + ξ2y + ξ3z + ξ4t)e(λG(t)−

1
2 λ2t). (27)
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We may do the same with the solution (6), as follows

Y(ξ) = N sech(ξ) tanh2(ξ).

By repeating the previous steps, we obtain

N =
11(1199− 213`1)

1456`2
.

So, the solutions of SJM Equation (1) is

V(x, y, z, t) =
11(1199− 213`1)

1456`2
sech(ξ) tanh2(ξ)e(λG(t)−

1
2 λ2t), (28)

where ξ = ξ1x + ξ2y + ξ3z + ξ4t.
Analogously, we can assume

Y(ξ) = N tanh(ξ), Y(ξ) = N coth(ξ), Y(ξ) = N sech2(ξ).

to acquire another different solutions for the SJM Equation (1).
Finally, we can deduce that the HSI method is simple and powerful. This method also

provides various types of solutions; for instance, bright, kink, dark, periodic, and so on.

4. Impacts of Noise

Now, we examine the effect of white noise on the acquired solutions to the SJM
Equation (1). Numerous diagrams demonstrating the effect of white noise on solutions are
provided. Let us fix the parameters ξ1 = 1, ξ2 = −ξ3 = 1, ξ4 = −2, y = z = 1, x ∈ [0, 4]
and t ∈ [0, 4], for some obtained solutions, such as (13), (18), (27) and (28), so that we may
investigate them further. In the following figures, we can see the impact of white noise on
the solutions.

Figures 1–4 reveal that when the noise is eliminated (i.e., at λ = 0), there are numerous
types of solutions, such as bright, dark, periodic, and kink, among others. When the noise
appears and the intensity is increased, the surface becomes substantially flatter after a few
minor transit patterns. A two-dimensional graph was used to confirm this. This means that
the solutions to the SJM equation are influenced by white noise and are stabilized at zero.

(a) λ = 0 (b) λ = 1

Figure 1. Cont.
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(c) λ = 2 (d) λ = 0, 1, 2

Figure 1. (a) shows 3-D plot of singular solution given by Equation (13) for λ = 0, (b,c) show 3-D
plots of Equation (13) with noise strength λ = 1, 2 (d) presents 2-D profile for these values of λ.

(a) λ = 0 (b) λ = 1

(c) λ = 2 (d) λ = 0, 1, 2

Figure 2. (a) shows the 3-D plot of bright–dark solution given by Equation (18) for λ = 0, (b,c) show
3-D plots of Equation (18) with noise strength λ = 1, 2 (d) presents 2-D profile for these values λ.

(a) λ = 0 (b) λ = 1

Figure 3. Cont.
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(c) l = 2 (d) l = 0, 1, 2

Figure 3. (a) shows 3-D plot of dark solution given by Equation (27) for l = 0, (b,c) show 3-D plots
of Equation (27) with noise strength l = 1, 2 (d) presents 2-D pro�le for these values of l .

(a) l = 0 (b) l = 1

(c) l = 2 (d) l = 0, 1, 2

Figure 4. (a) shows 3-D plot of periodic solution given by Equation (28) for l = 0, (b,c) show 3-D
plots of Equation (28) with noise strength l = 1, 2 (d) presents 2-D pro�le for these values of l .

5. Conclusions

We considered here the (3+1)-dimensional stochastic Jimbo–Miwa (SJM) equation
was forced in the Itô sense by multiplicative white noise. Trigonometric, hyperbolic and
rational functions solutions of the SJM equation are achieved using the Riccati equation
mapping method and He's semi-inverse methods. Some previous results, including those
presented in [29], have been expanded. Since they are applied to the study of nonlinear
waves and solitons in dispersive media, plasma physics and �uid dynamics, the obtained
solutions can be used to explain an enormous variety of fascinating physical phenomena.
Additionally, Numerous 3D and 2D diagrams were constructed to illustrate the effect of
noise on the analytical solutions of the SJM equation. We concluded that the addition of
white noise to the Jimbo–Miwa equation stabilizes the solutions around zero.
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