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Abstract: The application of non-stationary Lamb wave signals is a promising tool in various indus-
trial applications where information about changes inside a structure is required. Phase velocity is
one of the Lamb wave parameters that can be used for inhomogeneities detection. The possibility
of reconstructing the segment of the phase velocity in a strong dispersion range using only two
signals is proposed. The theoretical study is performed using signals of the A0 mode propagating
in an aluminium plate at a frequency of 150 kHz, 300 kHz, 500 kHz and 900 kHz. The experiment
was carried out at a value of 300 kHz. The studies conducted indicated that the maximum distance
between two signals, at which the time-of-flight can be measured between the same phase points, is
the main parameter for the two signals technique application. Theoretical and experimental studies
were performed, and the mean relative error was calculated by comparing the obtained results with
those calculated via the SAFE method. In the theoretical study, the mean relative error of 0.33% was
obtained at 150 kHz, 0.22% at 300 kHz, 0.23% at 500 kHz and 0.11% at 900 kHz. The calculated mean
relative errors δcph = 0.91% and δcph = 1.36% were obtained at different distances in the experimental
study. The results obtained show that the estimation of the phase velocity in dispersion ranges using
only two received signals was a useful tool that saved time and effort.

Keywords: ultrasonic Lamb waves; signal processing; phase velocity; dispersion curve; frequency;
zero-crossing technique; mean relative error

1. Introduction

The Lamb waves, which propagate within structures, are a well-known technique
for Non-Destructive Testing (NDT) and Structural Health Monitoring (SHM) [1–3]. There
are two groups of dispersive modes of Lamb waves: symmetric Sn and anti-symmetric
An [4,5]. The signals of the anti-symmetric and symmetric modes have different wavelengths
depending on the frequency; therefore different sizes of defects can be detected. Since
the signals of these modes are highly sensitive to material properties, the detection and
evaluation of various cracks at different depths, heterogeneities, material fatigue, etc., could
be determined [1,3]. Therefore, various types of objects can be inspected for internal defects
using different symmetric Sn and anti-symmetric An modes of Lamb waves [1].

However, the real-time testing of objects remains a complex and challenging task due to
the multi-modal nature, dispersive phenomenon, multi-path characteristics of Lamb waves
and sensitivity to environmental and operational conditions (EOCs) parameters [6–8]. Thus,
one of the main reasons that complicates the application of these waves is the dispersion
phenomenon [2,4,9]. The non-stationary Lamb wave signal packets consist of frequency
components that propagate at different velocities [10] and are characterized by phase and
group velocities. These velocities are described by dispersion curves, which vary depending
on frequency (f ) and object thickness (d) [4,11,12]. Since the effect of dispersion is a function
of distance, it affects the signal’s temporal spreading duration and decreases signal amplitude
depending on the distance [4,13,14]. Therefore, the signal processing methods (SPMs) that
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can evaluate the dispersion phenomenon and relate the frequency with phase and group
velocities should be used in the Lamb wave applications. Thus, due to the dispersion
phenomenon, the application of such waves requires new or adapted SPMs that should
perform phase and group velocity estimation, relate them to frequencies, and reconstruct the
dispersion curves. Recently, considerable efforts have been made to develop digital SPMs
that are more suitable for the display, analysis and processing of non-stationary signals. A
number of signal processing techniques were adapted and used to estimate phase and group
velocities; these techniques include the two-dimensional fast Fourier transform (2D-FFT)
and variations, Wavelet Transform (WT), Wigner-Ville Distribution (WVD) and variations
and others [13,15–18]. However, to obtain a reliable fragment of the dispersion curve due
to the dispersion phenomenon, all these techniques require the acquisition of signals at
many points along the wave propagation path, which is time-consuming and laborious.
Therefore, new solutions that save time and effort are being sought. One of the recently
proposed solutions is the reconstruction of the phase velocity dispersion curves using two
received signals. Zeng et al. have proposed the use of the short-time chirp-Fourier transform
(STCFT) method [19,20], and Crespo et al. have proposed a method based on the Hilbert
transformation and cross-correlation techniques implemented together [21]. However, the
authors recognize that reconstructing the phase velocity segment in a strong dispersion range
using only two received signals is a difficult task. Therefore, the proposed methods have
limitations of one kind or other, such as the requirement for a specific signal generation when
using a chirp signal for Lamb wave generation, the need to achieve high resolution in both
the time and frequency domains simultaneously [19] or the technique’s high sensitivity to
mode shape distortions [21]. All of these limitations affect the accuracy of the final results
and complicate measurements.

A two-signal analysis method using a hybrid zero-crossing technique implemented
together with a spectrum decomposition technique was proposed to estimate the phase
velocity dispersion of Lamb waves [22]. This proposed technique is already used by other
authors to detect corrosion degradation of ageing structural components [23] and for
corrosion degradation monitoring of ship-stiffened plates [11]. However, using such a
hybrid technique, when the received signals are filtered, it is impossible to determine the
main parameters and regularities required for the estimation of the phase velocity in a
strongly dispersive medium. Thus, a method should be used that allows the identification
of the necessary information.

The zero-crossing method has been proposed and applied for the phase velocity
dispersion evaluation of anti-symmetric A0 and symmetric S0 modes of Lamb waves. A
description of the algorithm using a set of signals has been provided in our previous
work [10]. The results obtained indicated that the zero-crossing technique was a good tool
for the phase velocity dispersion evaluation using a set of signals. Since it was found that
the main requirement for determining the phase velocity is that the time-of-flight must be
measured between the same phase points between the two selected signals, the maximum
possible distance between the two received signals should be known [22]. Therefore, a
deeper analysis and explanation is necessary in order to understand these waves feature
and how to perfume the evaluation of the phase velocity in a strong dispersion range using
only two measured signals.

The objective of this work is to present the essential parameters and regularities needed
to evaluate the phase velocity of the anti-symmetric Lamb wave mode in various dispersive
ranges using only two signals. We also aim to identify the key constraints involved in
evaluating the phase velocity in the dispersive range and propose methods to overcome
these challenges, to perform a verification using analytically calculated and experimentally
measured signals at different propagation distances, calculating the mean relative error.
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2. Phase Velocity Evaluation in Dispersive Media
2.1. Analytical Calculation of Propagating Wave Signals

In order to perform a deeper analysis and explain the phase velocity characteristics
of the Lamb wave modes in the dispersion range, a simplified aluminium plate with a
thickness of 2 mm was selected for the study. The material properties of the aluminium plate
are: density ρ = 2780 kg/m3, Young modulus E = 71.78 GPa and Poisson’s ratio ν = 0.3435.
According to the presented object parameters, the phase and group velocities dispersion
curves of the A0 mode of Lamb waves were calculated using the SAFE method [24,25]
(Figure 1).
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Figure 1. The phase and group velocity dispersion curves of the A0 mode of Lamb waves calculated
using the SAFE method.

The calculated phase and group velocities dispersion curves indicate that the anti-
symmetric A0 mode possesses a strong dispersion within the frequency range of 100 to
1000 kHz. Thus, in order to explain the peculiarities of the signal propagation in the
dispersive medium and to determine main rules required for the phase velocity evaluation,
different frequency ranges were chosen for the study: 150 kHz, 300 kHz, 500 kHz and
900 kHz. Thus, the sets of simulated signals of the A0 mode at various frequency ranges
were obtained applying the simplified complex transfer function of the Lamb waves
propagating in a selected aluminium plate [26]:

u(x, t) =
1

2π

∞∫
−∞

FT(u0(t))e
−jω x

cp(ω) ejωtdω (1)

where u0(t) is the excitation signal, FT is the Fourier transform, t is the time, ω = 2πf is the
angular frequency, x is the propagation distance, f is the frequency, j is the basic imaginary
unit j =

√
−1. Since the attenuation of Lamb waves propagating in metal plates is very

low, this parameter is neglected.
The excitation signals u0(t) of three-period with 150 kHz, 300 kHz, 500 kHz and

900 kHz harmonic bursts with a Gaussian envelope were used as the incident signals. The
received signals u(x,t) of A0 mode of Lamb waves were calculated at a distance from 0 mm
to 2000 mm with a scanning step of ∆x = 0.1 mm. In this way, a set of 2001 simulated signals
were obtained in each analysis case. The B-scan images at different frequency ranges of the
A0 mode are presented in Figure 2a–d.
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Figure 2. The B-scan images of the simulated A0 mode of Lamb waves at 150 kHz, 300 kHz, 500 kHz
and 900 kHz (a–d), accordingly.

The B-scan images show that the phase velocity values are different for different
frequency ranges. Since the zero-crossing technique was presented and used in our previous
works [10,22], this method was selected and applied for the determination of regularities of
signals propagating in a dispersed medium and the estimation of phase velocity.

2.2. Zero Crossing Technique

The zero-crossing algorithm was presented in our previous work [10]. However, in
order to calculate the phase velocity dispersion curve as accurately as possible using only
two signals, some changes to the algorithm are required. So, the zero-crossing algorithm
can be divided in to three main parts.

The first part involves the calculation of the phase velocity values, the second part
is related to calculation of frequency values, and the third part is concerned with the
reconstruction of the phase velocity dispersion curves. A brief description of the algorithm
is presented below.

• The phase velocity calculation

The selection of the threshold level UL;
Time instants at which both signals ux1(t) and ux2(t) cross the zero-amplitude line

t1(x1), t2(x1), . . . , tN(x1) and t1(x2), t2(x2), . . . , tN(x2) are measured;
The phase velocity values are calculated using the expression:

cph,k(x1)
=

∆x
tk(x1 + ∆x)− tk(x1)

, (2)

where ∆x = x2 − x1, k = 1,2, . . . , N, k—the number of zero-crossing instant in the signals,
N—the total number of measured zero-crossing instants in the signals.
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• The calculation of frequency

The duration of each selected half-periods T0.5,1(x1), T0.5,2(x1), . . . , T0.5,N−1(x1) and
T0.5,1(x2), T0.5,2(x2), . . . , T0.5,N−1(x2) are calculated by:

T0.5,k(x1) = tk+1(x1)− tk(x1),
T0.5,k(x2) = tk+1(x2)− tk(x2)

(3)

The equivalent frequencies corresponding to the calculated duration of each selected
half-period for each signal are estimated by:

f0,5,k(x1)
=

1
2·T0.5k(x1)

, f0,5,k(x2)
=

1
2·T0.5k(x2)

, (4)

Determination of the frequency values ( f0,5,ki) for the dispersion curve reconstruction:

f0,5,ki =
f0,5,k(x1)

+ f0,5,k(x2)

2
(5)

• The segments of the phase velocity dispersion curve are described by creating sets of
pairs of frequencies fki and determined phase (cph,k) velocities:

{
fki, cph,k

}
, (6)

So, the phase velocity values were estimated from time delay measurements between
two registered signals at different spatial positions of known distance and equivalent
frequency values are calculated using the same registered signals. Therefore, the uniqueness
of the proposed technique is that it requires only a few zero-crossing instants, measured
according to half of the periods of a particular mode signal, to reconstruct its frequency
values. In this way, the segments of the phase velocity dispersion curves of Lamb waves
are reconstructed.

2.3. Phase Velocity Features in Dispersion Range

In order to explain the peculiarities of signal propagation in a dispersive medium, the
obtained set of the A0 mode signals at 300 kHz frequency is used. Using the presented
zero-crossing algorithm, the threshold level UL = 0.1 is set and one time instant at which
the signal crosses the zero-amplitude line is determined in Figure 3a. Figure 3b shows the
distribution of the zero-crossing instants of the signal in the whole propagation distance
and the zoom-in point shows the analysed area from 138 mm to 164 mm. In order to explain
Figure 3b, tree signals of the A0 mode at different distances: 139 mm, 158 mm and 162 mm
were selected for the study, which are presented in Figure 3c–e, accordingly.

Thus, using the selected UL = 0.1 for each analysed signal, one time instant at which
the signals cross the zero-amplitude line is determined (Figure 3c–e).

According to the algorithm, each signal is divided into half periods that show the
location of the first-time instant. These set points are used for the phase velocity evaluation.
Therefore, it is very important to use set points that are in the same half period of the
signals for the phase velocity calculation. However, due to the selected threshold level
and dispersion nature of the Lamb waves, which influence the signal form changes, the
first-time instant, which crosses the zero-amplitude line, is determined in different half-
periods. As shown in Figure 3c,d, the first-time instant, which crosses the zero-amplitude
line, is located in the second half-period of the signals at distances of 139 mm and 158 mm;
meanwhile, the first-time instant is determined in the first half-period of the signal at
the distance of 160 mm (Figure 3e). Thus, depending on the signal amplitude changes
and selected threshold level, the first zero-crossing points of the signals are determined
at different half-periods of the signal, depending on the propagation distances. In this
way, the time-of-flight is evaluated between the phase points, which are in the different
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half-periods, and that means that these phase points are not the same. So, it is assumed
that the time-of-flight between two signals at the distances of 139 mm and 160 mm should
be determined incorrectly; meanwhile, at the distances of 139 mm and 158, it should be
determined correctly. In order to confirm this regularity, the phase velocity values are
calculated by applying the zero-crossing technique and using six-time instants at which the
signals cross the zero-amplitude line. Figure 4a shows the distribution of six zero-crossing
instants of the signals in the whole propagation distance, and Figure 4b shows the analysed
area from 135 mm to 160 mm. The calculated phase velocity results are presented in Table 1.
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Figure 4. Measured zero-crossing instants at the whole propagating distance of the A0 mode (a) and
the zero-crossing instants at the analysed distance from 135 mm up to 160 mm (b). The different line
colours represent the different time instants at which the signals cross the zero-amplitude line.

Table 1. The calculated phase velocity results using calculated signals at different distances.

Zero-Crossing Point I II III IV V VI

x1 = 139 mm; x2 = 158 mm

cph, m/s 2092 2077 2058 2059 1984 1905

x1 = 139 mm; x2 = 160 mm

cph, m/s 2757 2755 2754 2750 2741 2724

The phase velocity value is obtained around 2000 m/s using selected signals at dis-
tances of 139 mm and 158 mm (Table 2). The obtained different phase velocity values
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indicate the distribution and propagation of different frequency components in different
parts of the signal [10]. The results obtained using signals at distances of 139 mm and
160 mm indicate that the time-of-flight in each half-period was determined incorrectly,
therefore, the phase velocity values were calculated incorrectly. The resulting signature of
the A0 mode in the dispersion range shows that the phase velocity estimation using only
two signals has a distance limit. Thus, to avoid this limitation, it is necessary to use a set of
signals to estimate the phase velocity in the dispersion ranges using conventional signal
processing techniques. However, it is possible to calculate the maximum possible distance
between two signals and estimate the phase velocity using only the two measured signals.
A study to estimate the phase velocity in the strong dispersive range using only two signals
is presented in the next section.

Table 2. The calculated results of the mean relative error δc ph using a pair of the signals at
different distances.

Distance of the signals, mm x1 = 24; x2 = 43 x1 = 120; x2 = 139 x1 = 177; x2 = 196

δc ph, % 0.22 0.22 0.2

2.4. Evaluation of the Phase Velocity Using Two Signals
2.4.1. Evaluation of the Phase Velocity at 300 kHz Frequency Range

The theoretical study was performed using simulated signals of the A0 mode, which
are presented in a B-scan image (Figure 2b). The phase velocity was calculated by applying
the zero-crossing technique, using the threshold level UL = 0.1 and six-times instants at
which the signal crosses the zero-amplitude line were chosen, as shown in Figure 4a. In
order to demonstrate the reconstruction of the phase velocity dispersion curve within
the dispersion range using only two signals, a study was performed using signal pairs at
different propagation distances. The maximal distance ∆l between two signals could be
determined from the dispersion curves of the phase and group velocities and calculated
according to:

∆l <
1
f
(cph· ( f )cgr ( f ) )∣∣∣cgr( f )− cph( f )

∣∣∣ , (7)

where f is the central frequency, cgr and cph are the group and phase velocities, accordingly,
of the Lamb wave A0 mode in the frequency range during the analysis.

The maximal distance between two signals at which the time-of-flight can be measured
between the same phase points for the A0 mode at 300 kHz frequency is ∆l= 20 mm.
In order to demonstrate the effectiveness of the method, three different distances were
chosen for the study, which are presented in Figure 5a–c. The first selected distance
was from 24 mm up to 43 mm, as shown in Figure 5a, the second from 120 mm up to
139 mm, shown in Figure 5b and the third from 177 mm up to 196 mm, as shown in
Figure 5c. Thus, the signals x1 = 24 mm and x2 = 43 mm, x1 = 120 mm and x2 = 139 mm and
x1 = 177 mm and x2 = 196 mm were selected for the segment of phase velocity dispersion
curve reconstruction. In order to verify the suitability of the method for reconstructing
phase velocity dispersion curves using only two signals, the obtained results were compared
with the dispersion curve calculated by the SAFE method, and the mean relative error was
calculated, in each case, according to:

δcph = 100%· 1
N∑N

n=1

∣∣∣cph,n − cSAFE
ph,n

∣∣∣
cSAFE

ph,n
. (8)

where cph,n is the values of the phase velocity calculated by the presented algorithm, cSAFE
ph,n is

the value of the phase velocity calculated by the SAFE method. The reconstructed segments
of the phase velocity dispersion curves of the A0 mode, using pair of the signals at different
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distances, are compared with those calculated by the SAFE method and presented in
Figure 5d–f, respectively. The calculated results of the mean relative error δcph are presented
in Table 2.
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Figure 5. Measured zero-crossing instants at the propagating different distances: from 24 mm up
to 43 mm (a), 120 mm up to 139 mm (b) and 177 mm up to 196 mm (c). The different line colours
represent the different time instants at which the signals cross the zero-amplitude line. The obtained
segments of the phase velocity, using two signals at different analysing distances, were plotted
together with those calculated using the SAFE method (d–f), accordingly.

The calculated mean relative error of the phase velocity (Table 2) obtained in each
selected case was around 0.22%. The results obtained in the 300 kHz frequency range,
using pairs of signals at varying distances, demonstrate that reconstructing phase velocity
in the dispersion range was an achievable task. Consequently, to validate these results, the
proposed technique should be tested across different dispersion ranges.

2.4.2. Evaluating Phase Velocity across Various Dispersion Ranges

Theoretical studies were carried out at three different frequency ranges: 150 kHz,
500 kHz and 900 kHz. These studies used simulated signals of the A0 mode, as shown in
the B-scan images (Figure 2a,c,d). For each scenario, the maximum distances between two
signals where the time-of-flight can be measured between identical phase points should be
calculated. Since, the maximum distance was calculated according to Equation (7), both
the phase and group velocities at the central frequencies should be determined. Thus, in
order to obtain the dispersion curves of the phase and group velocities, the elastic constants
of the material and the object’s geometry must be known (Figure 1). Based on this, the
maximum distance between two signals was determined according to Equation (7). The
phase and group velocities determined in the analysed frequency ranges, along with the
calculated maximum distances between two possible signals, are presented in Table 3.

Table 3. The calculated values of the phase and group velocities at different central frequency of the
A0 mode of Lamb waves and maximal distance ∆l between two signals.

Frequency,
kHz Phase Velocity, m/s Group Velocity,

m/s Distance ∆l, mm

150 1547 2571 25

500 2323 3115 18

900 2625 3117 18
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The phase velocity is calculated by applying the zero-crossing technique, setting the
threshold level to UL = 0.1 and determining six time instants at which the signal crosses
the zero-amplitude line for each case. The measured zero-crossing instants at the different
propagating distances are presented in Figure 6a–c. The obtained segments of the phase
velocity using two signals in each frequency range alongside the dispersion curve calculated
by the SAFE method are presented in Figure 6d.
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The reconstructed segments of the phase velocity dispersion curve at different frequen-
cies are compared with the dispersion curve calculated by the SAFE method, and the mean
relative error is calculated in each case according to Equation (8). The obtained results are
presented in Table 4.

Table 4. The calculated results of the mean relative error δcph using pair of the signals at
different frequencies.

Frequency, kHz 150 500 900

δcph, % 0.33 0.23 0.11

The obtained results of the theoretical study show that the segments of the phase
velocity dispersion curves can be estimated across various frequency ranges using only
two received signals. Therefore, the experimental study needed to be performed for the
verification of the obtained theoretical results.
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3. Experimental Study

An experimental study was carried out to verify the obtained theoretical results by
reconstructing the phase velocity dispersion curves in a dispersive medium using only
two signals. The A0 mode of Lamb waves were selected for the study. The experimentally
obtained signals of the Lamb waves propagating in an isotropic aluminium plate were used
for the study. An aluminium plate, with dimensions of 1.1 m × 0.62 m and thickness of
2 mm, was chosen for the experimental study. The parameters of the aluminium alloy plate
were the same as in the analytical verification: Young modulus E = 71.7 GPa, Poisson‘s ratio
ν = 0.33 and density ρ = 2810 kg/m3. The experimental set-up for generating and receiving
of the A0 mode signals is presented in Figure 7.
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Figure 7. The experimental set-up for generation and reception of Lamb waves in the aluminium plate.

The ultrasonic measurement system “Ultralab”, consisting of a voltage generator, a
low-noise amplifier and an analogue-to-digital converter, was used for the excitation and
reception of Lamb wave signals (Figure 7). Two low-frequency, wideband contact-type
ultrasonic transducers with 180 kHz resonant frequency, whose frequency bandwidth was
from 40 kHz up to 640 kHz (at −10 dB) [27], were used in the experimental study. The
resonant frequency of the contact transducers was chosen to be the same as in the analytical
study and was 300 kHz. The transmitter was excited by a three-period burst Gaussian
envelope signal with an amplitude of 10 V and was mounted in the selected location on
the plate. The position of the receiver was changed with a linear scanner. In order to
investigate the possibility of reconstructing the phase velocity dispersion curves using only
two signals acquired at different propagating distances, a set of experimentally collected
signals was used. The receiver was scanned along the surface of the sample, from 60 mm up
to 260 mm in 0.1 mm increments, and the B-scan image of the A0 mode was acquired. The
threshold level UL = 0.1 was selected, and six-time instants at which the signals crossed the
zero-amplitude line were selected. The experimentally collected signals of the Lamb wave
A0 mode are presented in the B-scan image (Figure 8a), and the measured zero-crossing
instants of the propagation distance are shown in Figure 8b.

Two different distances were selected for the A0 mode study. The first distance was
from 168 mm up to 187 mm, and the second was from 230 mm up to 250 mm. The pairs of
the signals at different distances between two points, x1 = 168 mm and x2 = 187 mm, and
x1 = 230 mm and x2 = 250 mm, were selected for further study.

The reconstructed segments of the phase velocity dispersion curves of the A0 mode
using pair of the experimentally measured signals at different distances were compared
with those calculated by the SAFE method and presented in Figure 9a,b, respectively. The
mean relative error was calculated for the reconstructed segment of the phase velocity
according to Equation (8), and the obtained results are presented in Table 5.
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Figure 8. The experimental B-scan image obtained for the A0 mode along the centreline of 2 mm thick
aluminium plate (a) and measured zero-crossing instants along the propagating distance (b). The different
line colours represent the different time instants at which the signals cross the zero-amplitude line.
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Figure 9. The obtained segments of the phase velocity using two signals at the selected propagation
distances: 168 mm–187 mm (a) and 230 mm–250 mm (b) are plotted together with those calculated
via the SAFE method.

Table 5. The calculated experimental results of the mean relative error δcph using a pair of signals at
different analysed distances.

Distance of the signals, mm x1 = 168; x2 = 187 x1 = 230; x2 = 250

A0 mode δcph , % 0.91 1.36

The obtained experimental results show that the phase velocity dispersion curves can
be reconstructed using only two signals, as shown in Figure 9a,b. An important condition
is that the distance between two possible signals should be known. If this condition is met,
then the segment of the phase velocity dispersion curve can be reconstructed at any distance
of the wave propagation path. Based on the reconstructed segments of the phase velocity
dispersion curve, the mean relative error δcph was calculated according to Equation (8) for
both analysed cases. The mean relative error δcph = 0.91% was obtained at the distance
x1 = 168 mm and x2 = 187, and δcph = 1.36% at the distance x1 = 230 mm and x2 = 250. So, the
obtained experimental results confirmed the theoretical results. Therefore, this technique can
be applied to solve various tasks, serving as a useful tool that allows for the saving of both
time and effort.

4. Conclusions

The presented work analyses the possibility of reconstructing a segment of the phase
velocity in the strong dispersion range using only two received signals. The basic parame-
ters and regularities required for the reconstruction of the phase velocity dispersion curve
using two received signals were presented and thoroughly explained. The theoretical and
experimental studies were performed using signals of the anti-symmetric A0 mode of
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Lamb waves propagating in an aluminium plate. The 300 kHz range was chosen for the
study, where the A0 mode had a strong dispersion character. It was determined that the
maximum distance between two signals registration points at which the time-of-flight can
be measured between the same phase points is the main parameter which should first be
known. Thus, the elastic constants of the material and the geometry of the object need to be
known in order to calculate the dispersion curves of the phase and group velocities, based
on which the maximum distance between two possible signals is determined. This is the
main limitation of the method. Therefore, this method, in its current form, can be used to
analyse guided wave propagation in known objects.

A comparison of the theoretical and experimental results with the SAFE method was
performed, and the mean relative error was calculated for each analysed case. In the
theoretical study, the mean relative error obtained was 0.33%, 0.22%, 0.23% and 0.11%
at 150 kHz, 300 kHz, 500 kHz and 900 kHz frequency ranges, accordingly. The obtained
results indicate that the phase velocity evaluation in the dispersion range using only two
received signals is a solvable task. The experimental study confirmed that the segments
of the phase velocity dispersion curve can be reconstructed in the strong dispersion range
using only two received signals. The calculated mean relative error δcph = 0.91% is obtained
at the distance x1 = 168 mm and x2 = 187, and δcph = 1.36% at the distance x1 = 230 mm and
x2 = 250. The application of this technique can be used to solve various tasks where phase
velocity values are required. It serves as a practical tool, saving both time and effort.
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