Super-Connectivity of the Folded Locally Twisted Cube

Lantao You 1,2,3,4, Yuejuan Han 4,* and Jianfeng Jiang 1

1 School of Information Engineering, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou 215213, China; yoult@siso.edu.cn (L.Y.); jiangjf@siso.edu.cn (J.J.)
2 Suzhou Industrial Park Human Resources Development Co., Ltd., Suzhou 215028, China
3 Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, China
4 School of Computer Science and Technology, Soochow University, Suzhou 215006, China
* Correspondence: hyj@suda.edu.cn

Abstract: The hypercube Q_n is one of the most popular interconnection networks with high symmetry. To reduce the diameter of Q_n, many variants of Q_n have been proposed, such as the n-dimensional locally twisted cube LTQ_n. To further optimize the diameter of LTQ_n, the n-dimensional folded locally twisted cube $FLTQ_n$ is proposed, which is built based on LTQ_n by adding 2^{n-1} complementary edges. Connectivity is an important indicator to measure the fault tolerance and reliability of a network. However, the connectivity has an obvious shortcoming, in that it assumes all the adjacent vertices of a vertex will fail at the same time. Super-connectivity is a more refined index to judge the fault tolerance of a network, which ensures that each vertex has at least one neighbor. In this paper, we show that the super-connectivity $\kappa^{(1)}(FLTQ_n) = 2n$ for any integer $n \geq 6$, which is about twice $\kappa(LTQ_n)$.

Keywords: super-connectivity; folded locally twisted cube; fault tolerance; interconnection network; reliability

1. Introduction

High-performance computers can be widely used in many fields thanks to the development of high performance computing technology. The topological properties of interconnection networks are very important for high-performance computers. One typically uses an undirected graph $G = (V(G), E(G))$ to model the topology of a multiprocessor system H, where the processor set of H is represented by $V(G)$ and the link set of H is represented by $E(G)$.

Interconnection networks have many important properties, one of which is the connectivity denoted by $\kappa(G)$. A graph’s connectivity is the minimum number of vertices whose removal makes the graph disconnected or trivial [1]. Connectivity is an important indicator to measure the fault tolerance and reliability of a network. In a large interconnection network, each vertex has a large number of neighbors. This property has an obvious deficiency, in that it assumes that all the adjacent vertices of a vertex will fail at the same time. However, this situation does not happen frequently in real networks. To address this deficiency, Esfahanian et al. [2] introduced the concept of restricted connectivity by imposing additionally restricted conditions on a network. Super-connectivity is a special case of restricted connectivity. When determining the super-connectivity of a network, one needs to ensure that each vertex has at least one neighbor. Hence, super-connectivity is a more refined index to judge the fault tolerance of a network.

Let K be a subset of $V(G)$. $G \setminus K$ (or $G - K$) denotes a graph obtained by removing all the vertices in K and edges incident to at least one vertex in K from G. If $G \setminus K$ is disconnected and each component of $G \setminus K$ has at least two vertices, then K is called a super vertex cut. Let S be a subset of $E(G)$. If $G \setminus S$ is disconnected and each component...
of $G \setminus S$ has at least two vertices, then S is called a super edge cut. The super-connectivity of G (or, respectively, the super edge connectivity), denoted by $\kappa^{(1)}(G)$ (or $\lambda^{(1)}(G)$), is the minimum cardinality of all super vertex cuts (or super edge cuts) in G, if any exist. Many relevant results have been obtained regarding super-connectivity and super edge connectivity [3–16].

The hypercube Q_n has become one of the most popular interconnection networks, because of its many attractive properties, such as its regularity and symmetry. Q_n is a Cayley graph and hence vertex-transitive and edge-transitive. However, the diameter of Q_n is not optimal. In order to enhance the hypercube, researchers have proposed many variants, such as crossed cubes [17], locally twisted cubes [18], and spined cubes [19]. The n-dimensional locally twisted cube LTQ_n was proposed by Yang et al. [18], whose diameter was only about half that of Q_n. Many research results have been published on the properties of LTQ_n [20–25]. LTQ_n is vertex-transitive if and only if $n \leq 3$, and it is edge-transitive if and only if $n = 2$ [25]. To further enhance the hypercube, inspired by the folded cube [26], Peng et al. [27] proposed a new network topology called the folded locally twisted cube $FLTQ_n$. So far there, no work has been reported on the super-connectivity of $FLTQ_n$. In this work, we studied the super-connectivity of $FLTQ_n$ and obtained the result that the super-connectivity $\kappa^{(1)}(FLTQ_n)$ is $2n$ for $n \geq 6$, which is about twice $\kappa(FLTQ_n)$.

2. Preliminaries

In this paper, we use the terms vertex and node interchangeably. We also use (x, y) to denote an edge between vertices x and y. For any vertex $x \in V(G)$, the neighboring set of x is denoted by $N_G(x) = \{y | (x, y) \in E(G)\}$ (or $N(x)$ for short). Let $S \subset V(G)$. The neighboring set of S is defined as $N_G(S) = (\cup_{x \in S} N(x)) \setminus S$ (or $N(S)$ for short). We define $N_G[S] = \cup_{x \in S} N(x)$ and $N_G[x] = N_G(x) \cup \{x\}$. We use $x_0x_1x_2 \cdots x_{n-1}$ to represent a binary string μ of length n, where $x_i \in \{0, 1\}$ for $1 \leq i \leq n$ is a part of μ. x_1 is the first part of μ, and x_n is the nth part of μ. The symbol x_i is used to represent the complement of x_i. As a variant of Q_n, LTQ_n has the same number of vertices as Q_n. Each vertex of LTQ_n is denoted by a unique binary string of length n. The definition of LTQ_n is given below.

Definition 1 ([18]). For $n \geq 2$, an n-dimensional locally twisted cube, LTQ_n, is defined recursively as follows:

1. LTQ_2 is a graph consisting of four nodes labeled with 00, 01, 10, and 11, which are connected by four edges, $(00, 01)$, $(00, 10)$, $(01, 11)$, and $(10, 11)$.
2. For $n \geq 3$, LTQ_n is built from two disjointed copies of LTQ_{n-1} named LTQ^0_{n-1} and LTQ^1_{n-1}. Let LTQ^0_{n-1} (or, respectively, LTQ^1_{n-1}) be the graph obtained by prefixing the label of each node of one copy of LTQ_{n-1} with 0 (or with 1); each node $x = 0x_nx_{n-2} \cdots x_2x_1$ of LTQ^0_{n-1} is connected to the node $1(x_n-1 + x_1)x_{n-2} \cdots x_2x_1$ of LTQ^1_{n-1} with an edge, where $+ replace$ represents modulo 2 addition.

LTQ_3 and LTQ_4 are demonstrated in Figure 1. Each node in LTQ^0_{n-1} has only one adjacent node in LTQ^1_{n-1}. The set of edges between LTQ^0_{n-1} and LTQ^1_{n-1} is called a perfect matching M of LTQ_n. Hence, we can write $LTQ_n = G(LTQ^0_{n-1}, LTQ^1_{n-1}, M)$.

In [18], Yang et al. also provided a non-recursive definition of LTQ_n.

Definition 2 ([18]). Let $\mu = x_nx_{n-1} \cdots x_1$ and $\nu = y_ny_{n-1} \cdots y_1$ be any two distinct vertices of LTQ_n for $n \geq 2$. μ and ν are connected if and only if one of the following conditions is satisfied:

1. There is an integer $3 \leq k \leq n$ such that
 (a) $x_k = y_k$;
 (b) $x_{k-1} = y_{k-1} + x_1$ (‘+’ represents modulo 2 addition);
 (c) all the remaining bits of μ and ν are the same.
2. There is an integer $1 \leq k \leq 2$ such that μ and ν only differ in the kth bit.
Let $\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_2x_1$ be any vertex of LTQ_n. By Definition 2, all the n neighbors of μ are listed as follows:

$\mu_1 = x_nx_{n-1}x_{n-2} \ldots x_3x_2x_1$;

$\mu_2 = x_nx_{n-1}x_{n-2} \ldots x_3x_2x_1$;

$\mu_3 = x_nx_{n-1}x_{n-2} \ldots x_3(x_2 + x_1)x_1$;

\ldots

$\mu_{n-1} = x_nx_{n-1}(x_{n-2} + x_1)x_{n-3} \ldots x_2x_1$;

$\mu_n = x_n(x_{n-1} + x_1)x_{n-2} \ldots x_3x_2x_1$.

We call μ_i the ith dimensional neighbor of μ for $1 \leq i \leq n$.

![Diagram of LTQ_3 and LTQ_4](image-url)

Figure 1. (a) The three-dimensional locally twisted cube LTQ_3; (b) the four-dimensional locally twisted cube LTQ_4.

Definition 3 ([27]). For any integer $n \geq 2$, an n-dimensional folded locally twisted cube, denoted by $FLTQ_n$, is a graph constructed based on LTQ_n by adding all complementary edges. Each vertex $x = x_nx_{n-1} \ldots x_1$ in LTQ_n is incident to another vertex $\overline{x} = \overline{x}_nx_{n-1} \ldots \overline{x}_1$ through a complementary edge, where $\overline{x}_i = 1 - x_i$.

We call the added complementary edges c-links. $FLTQ_n$ has 2^{n-1} c-links, and each vertex $\mu = x_nx_{n-1} \ldots x_1$ is connected to a complementary vertex $\mu_c = \overline{x}_n\overline{x}_{n-1} \ldots \overline{x}_1$ by a c-link. The set of complementary edges between $LTQ_n^{0}_{n-1}$ and $LTQ_n^{1}_{n-1}$ is a perfect matching C of $FLTQ_n$. Hence, we can write $FLTQ_n = G(LTQ_n^{0}_{n-1}, LTQ_n^{1}_{n-1}, M, C)$ or $G(LTQ_n, C)$. Each node $\mu \in V(FLTQ_n)$ in $LTQ_n^{0}_{n-1}$ (or, respectively, $LTQ_n^{1}_{n-1}$) has two neighbors, μ_n and μ_c, in $LTQ_n^{0}_{n-1}$ (or $LTQ_n^{1}_{n-1}$) for $n \geq 3$. Compared with LTQ_n, each vertex in $FLTQ_n$ has one more neighbor. Then, the node degree of $FLTQ_n$ is $n + 1$ and $\kappa(FLTQ_n) = n + 1$ [27]. Figure 2 demonstrates $FLTQ_3$ and $FLTQ_4$, respectively, and Figure 3 demonstrates $FLTQ_5$.
Figure 2. (a) The three-dimensional folded locally twisted cube \(\text{FLTQ}_3 \); (b) the four-dimensional folded locally twisted cube \(\text{FLTQ}_4 \).

Figure 3. The five-dimensional folded locally twisted cube \(\text{FLTQ}_5 \).

3. Super Connectivity of \(\text{FLTQ}_n \)

In this section, we study the super connectivity of \(\text{FLTQ}_n \) for any integer \(n \geq 6 \). Since \(\text{FLTQ}_n \) is composed of \(\text{LTQ}_n \) and the complementary edge set \(C \), we can use some properties of \(\text{LTQ}_n \) to prove the super-connectivity property of \(\text{FLTQ}_n \).
Lemma 1 ([18]). For $n \geq 2$, $\kappa(LTQ_n) = \lambda(LTQ_n) = n$.

Lemma 2 ([28]). For any two vertices $\mu, \nu \in V(LTQ_n)(n \geq 2)$, we have $|N_{LTQ_n}(\mu) \cap N_{LTQ_n}(\nu)| \leq 2$.

Lemma 3 ([28]). Let μ and ν be any two distinct vertices in $LTQ_n(n \geq 4)$ such that $|N_{LTQ_n}(\mu) \cap N_{LTQ_n}(\nu)| = 2$.

1. If $\mu \in V(LTQ^0_{n-1})$ and $\nu \in V(LTQ^1_{n-1})$, then the two common neighbors in LTQ^0_{n-1} and the other one is in LTQ^1_{n-1}.
2. If $\mu, \nu \in V(LTQ^0_{n-1})$ or $V(LTQ^1_{n-1})$, then the two common neighbors are in LTQ^0_{n-1} or LTQ^1_{n-1}.

Lemma 4. Let μ and ν be any two distinct vertices in the same LTQ^i_{n-1} for $0 \leq i \leq 1$ and $n \geq 6$. If $\mu_n = \nu_c$ or $\mu_c = \nu_n$, then $|N_{FLTQ_n}(\mu) \cap N_{FLTQ_n}(\nu)| = 1$.

Proof. Without loss of generality, we suppose that $\mu, \nu \in V(LTQ^0_{n-1})$, and $\mu_n = \nu_c$. Then, μ_n is the common neighbor for μ and ν. Let $\mu = x_nx_{n-1}x_{n-2} \cdots x_3x_2x_1$ and $X = LTQ_n \setminus \{\mu_n\}$. Next, we consider the neighbors of μ and ν in X according to different values of the first part x_1 of μ.

Case 1. $x_1 = 0$.

$\mu_n = x_nx_{n-1}x_{n-2} \cdots x_3x_20 = \nu_c$ and $\nu = x_nx_{n-1}x_{n-2} \cdots x_3x_21$. We list $N_X(\mu)$ and $N_X(\nu)$ separately in Table 1.

<table>
<thead>
<tr>
<th>$N_X(\mu)$</th>
<th>$N_X(\nu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_1 = x_nx_{n-1}x_{n-2} \cdots x_3x_21$</td>
<td>$\nu_1 = x_n\bar{x}{n-1}\bar{x}{n-2} \cdots \bar{x}_3\bar{x}_20$</td>
</tr>
<tr>
<td>$\mu_2 = x_nx_{n-1}x_{n-2} \cdots x_3\bar{x}_20$</td>
<td>$\nu_2 = x_n\bar{x}{n-1}\bar{x}{n-2} \cdots \bar{x}_3x_21$</td>
</tr>
<tr>
<td>$\mu_3 = x_nx_{n-1}x_{n-2} \cdots \bar{x}_3x_20$</td>
<td>$\nu_3 = x_n\bar{x}{n-1}\bar{x}{n-2} \cdots \bar{x}_3x_21$</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>$\mu_{n-1} = x_n\bar{x}{n-1}x{n-2} \cdots x_3x_20$</td>
<td>$\nu_{n-1} = x_nx_{n-1}x_{n-2} \cdots \bar{x}_3\bar{x}_21$</td>
</tr>
<tr>
<td>$\mu_c = x_n\bar{x}{n-1}x{n-2} \cdots x_3x_21$</td>
<td>$\nu_c = x_nx_{n-1}x_{n-2} \cdots \bar{x}_3\bar{x}_21$</td>
</tr>
</tbody>
</table>

It is obvious that $|N_X(\mu) \cap N_X(\nu)| = 0$.

Case 2. $x_1 = 1$.

$\mu_n = x_nx_{n-1}x_{n-2} \cdots x_3x_21 = \nu_c$ and $\nu = x_nx_{n-1}\bar{x}_{n-2} \cdots \bar{x}_3x_20$. We list $N_X(\mu)$ and $N_X(\nu)$ separately in Table 2.

<table>
<thead>
<tr>
<th>$N_X(\mu)$</th>
<th>$N_X(\nu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_1 = x_nx_{n-1}x_{n-2} \cdots x_3x_20$</td>
<td>$\nu_1 = x_nx_{n-1}x_{n-2} \cdots \bar{x}_3\bar{x}_21$</td>
</tr>
<tr>
<td>$\mu_2 = x_nx_{n-1}x_{n-2} \cdots x_3\bar{x}_21$</td>
<td>$\nu_2 = x_nx_{n-1}\bar{x}_{n-2} \cdots \bar{x}_3x_20$</td>
</tr>
<tr>
<td>$\mu_3 = x_nx_{n-1}x_{n-2} \cdots \bar{x}_3\bar{x}_21$</td>
<td>$\nu_3 = x_nx_{n-1}\bar{x}_{n-2} \cdots \bar{x}_3x_20$</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>$\mu_{n-1} = x_n\bar{x}{n-1}x{n-2} \cdots x_3x_21$</td>
<td>$\nu_{n-1} = x_n\bar{x}{n-1}x{n-2} \cdots \bar{x}_3\bar{x}_20$</td>
</tr>
<tr>
<td>$\mu_c = x_n\bar{x}{n-1}x{n-2} \cdots x_3\bar{x}_21$</td>
<td>$\nu_c = x_nx_{n-1}\bar{x}_{n-2} \cdots \bar{x}_3x_20$</td>
</tr>
</tbody>
</table>

It is obvious that $|N_X(\mu) \cap N_X(\nu)| = 0$.

Hence, μ and ν have only one common neighbor in $FLTQ_n$ and $|N_{FLTQ_n}(\mu) \cap N_{FLTQ_n}(\nu)| = 1$. □

Lemma 5. Let μ be any node in $FLTQ_n$, where $n \geq 6$ and $X = FLTQ_n \setminus \{\mu\}$. Then, $|N_X(\mu_n) \cap N_X(\mu_c)| = 0$.

Proof. Let $\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_2x_1$. We consider the different values of the first part x_1 of μ.

Case 1. $x_1 = 0$.

Let $\alpha = \mu_n = \bar{x}_n x_{n-1} x_{n-2} \ldots x_3 x_2 0$ and $\beta = \mu_c = \bar{x}_n \bar{x}_{n-1} \bar{x}_{n-2} \ldots x_3 \bar{x}_2 1$. All the neighbors of α and β in X are listed separately in Table 3.

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x}n x{n-1} x_{n-2} \ldots x_3 x_2 1$</td>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 0$</td>
</tr>
<tr>
<td>$\bar{x}n \bar{x}{n-1} x_{n-2} \ldots x_3 x_2 1$</td>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 1$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\bar{x}n \bar{x}{n-1} x_{n-2} \ldots x_3 x_2 0$</td>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 0$</td>
</tr>
</tbody>
</table>

It is obvious that $N_X(\alpha) \cap N_X(\beta) = \emptyset$.

Case 2. $x_1 = 1$.

Let $\alpha = \mu_n = \bar{x}_n x_{n-1} x_{n-2} \ldots x_3 x_2 1$ and $\beta = \mu_c = \bar{x}_n \bar{x}_{n-1} \bar{x}_{n-2} \ldots x_3 \bar{x}_2 0$. All the neighbors of α and β in X are listed separately in Table 4.

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x}n \bar{x}{n-1} x_{n-2} \ldots x_3 x_2 0$</td>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 1$</td>
</tr>
<tr>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 1$</td>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 0$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 0$</td>
<td>$\bar{x}n \bar{x}{n-1} \bar{x}_{n-2} \ldots x_3 x_2 0$</td>
</tr>
</tbody>
</table>

It is obvious that $N_X(\alpha) \cap N_X(\beta) = \emptyset$.

Hence, $|N_X(\mu_n) \cap N_X(\mu_c)| = 0$. \(\square\)

Lemma 6. Let $\mu, \nu \in V(LTQ_n)$ where $n \geq 6$. Then $|N_{LTQ_n}(\mu) \cap N_{LTQ_n}(\nu)| \leq 2$.

Proof. Since LTQ_n is constructed from LQ_n by adding the complementary edge set C, we can study this lemma based on LQ_n.

Case 1. μ, ν are in the same LTQ_{n-1} for $0 \leq i \leq 1$.

Without loss of generality, we suppose that $\mu, \nu \in V(LTQ_{n-1})$. According to Lemmas 2 and 3, $|N_{LQ_{n-1}}(\mu) \cap N_{LQ_{n-1}}(\nu)| \leq 2$ for $n \geq 6$, and the two common neighbors are in LQ_{n-1}. According to the definition of LTQ_n, we have $N_{LTQ_{n-1}}(\mu) = \{\mu_n, \mu_c\}$, $N_{LTQ_{n-1}}(\nu) = \{\nu_n, \nu_c\}$, where $\mu_n \neq \nu_n$ and $\mu_c \neq \nu_c$. If $\mu_c \neq \nu_c$, then μ and ν do not have the same neighbors in LQ_{n-1}. Hence, $|N_{LTQ_n}(\mu) \cap N_{LTQ_n}(\nu)| \leq 2$. According to Lemma 4, if $\mu_c = \nu_c$ or $\mu_n = \nu_n$, then μ and ν have only one common neighbor in LQ_n and $|N_{LTQ_n}(\mu) \cap N_{LTQ_n}(\nu)| = 1 \leq 2$.

Case 2. μ and ν are in a different LTQ_{n-1} for $0 \leq i \leq 1$.

Without loss of generality, we suppose that $\mu \in V(LTQ_{n-1})$ and $\nu \in V(LTQ_{n-1})$. According to Lemma 2, $|N_{LTQ_{n-1}}(\mu) \cap N_{LTQ_{n-1}}(\nu)| \leq 2$. Based on the definition of LTQ_n, we have $N_{LTQ_{n-1}}(\mu) = \{\mu_n, \mu_c\}$ and $N_{LTQ_{n-1}}(\nu) = \{\nu_n, \nu_c\}$. According to Lemma 5, $|N_{LTQ_n}(\mu) \cap N_{LTQ_n}(\nu)| = 0$. Hence, we cannot find a vertex $\mu' \in V(LTQ_{n-1})$, where μ' and $\mu \in V(LTQ_{n-1})$ have two common neighbors, nor can we find a vertex $\nu' \in V(LTQ_{n-1})$, where ν' and $\nu \in V(LTQ_{n-1})$ have
two common neighbors. Then, \(u \) and \(v \) cannot have three or four common neighbors in \(\text{FLTQ}_n \). Hence, \(|N_{\text{FLTQ}_n}(\mu) \cap N_{\text{FLTQ}_n}(v)| \leq 2 \). \(\square \)

Lemma 7 ([28]). If \(\mu \) and \(v \) are two vertices of \(\text{LTQ}_n \) and \((\mu, v) \in E(\text{LTQ}_n) \), where \(n \geq 2 \), then \(|N_{\text{LTQ}_n}(\mu) \cap N_{\text{LTQ}_n}(v)| = 0 \).

Lemma 8. If \(\mu \) and \(v \) are two vertices of \(\text{FLTQ}_n \) and \((\mu, v) \in E(\text{FLTQ}_n) \), where \(n \geq 3 \), then \(|N_{\text{FLTQ}_n}(\mu) \cap N_{\text{FLTQ}_n}(v)| = 0 \).

Proof. According to the position of \(\mu \) and \(v \), we consider two cases.

Case 1. \(\mu \) and \(v \) are in the same \(\text{LTQ}^i_{n-1} \) for \(0 \leq i \leq 1 \).

Without loss of generality, we assume that \(\mu, v \in V(\text{LTQ}^0_{n-1}) \). According to Lemma 7, \(|N_{\text{LTQ}^0_{n-1}}(\mu) \cap N_{\text{LTQ}^0_{n-1}}(v)| = 0 \). We have \(N_{\text{LTQ}^0_{n-1}}(\mu) = \{\mu_n, \mu_0\} \) and \(N_{\text{LTQ}^0_{n-1}}(v) = \{v_0, v_c\} \). If \(N_{\text{LTQ}^0_{n-1}}(\mu) \cap N_{\text{LTQ}^0_{n-1}}(v) = \emptyset \), then \(|N_{\text{LTQ}^0_{n-1}}(\mu) \cap N_{\text{LTQ}^0_{n-1}}(v)| = 0 \). Otherwise, if \(\mu_0 = v_c \) or \(\mu_c = v_n \), then we let \(\mu = x_nx_{n-1}x_{n-2} \ldots x_2x_1 \). All the possible values of \(\mu \) and \(v \) are listed in Table 5.

| Table 5. The possible values of \(\mu \) and \(v \). |
|-----------------|-----------------|-----------------|
| \(\mu_n = v_c \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(x_1 = 0 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(v = x_nx_{n-2} \ldots x_3x_21 \) |
| \(\mu_n = v_c \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(x_1 = 1 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(v = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) |
| \(\mu_c = v_n \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(x_1 = 0 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(v = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) |
| \(\mu_c = v_n \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(x_1 = 1 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(v = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) |

It is obvious that \((\mu, v) \notin E(\text{FLTQ}_n) \); then, we reach a contradiction, and all these values of \(\mu \) and \(v \) are impossible. Hence, \(|N_{\text{FLTQ}_n}(\mu) \cap N_{\text{FLTQ}_n}(v)| = 0 \).

Case 2. \(\mu \) and \(v \) are in a different \(\text{LTQ}^i_{n-1} \) for \(0 \leq i \leq 1 \).

Without loss of generality, we assume that \(\mu \in V(\text{LTQ}^0_{n-1}) \) and \(v \in V(\text{LTQ}^1_{n-1}) \). Since \((\mu, v) \in E(\text{LTQ}_n) \), \(v \) should be \(\mu_0 \) or \(\mu_c \). If \(\mu_0 = v \), let \(K = \{\mu, v, \mu_n, v_n\} \). Otherwise, If \(\mu_c = v \), let \(K = \{\mu, v, \mu_c, v_c\} \). Let \(\mu = x_nx_{n-1}x_{n-2} \ldots x_2x_1 \). All the possible values of \(K \) are listed in Table 6.

| Table 6. The possible values of \(\mu \) and \(v \). |
|-----------------|-----------------|-----------------|
| \(\mu_n = v_c \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(x_1 = 0 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(v = x_nx_{n-2} \ldots x_3x_21 \) |
| \(\mu_n = v_c \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(x_1 = 1 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(v = x_nx_{n-2} \ldots x_3x_21 \) |
| \(\mu_c = v_n \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) | \(x_1 = 0 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(v = x_nx_{n-2} \ldots x_3x_21 \) |
| \(\mu_c = v_n \) | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(x_1 = 1 \) |
| | \(\mu = x_nx_{n-1}x_{n-2} \ldots x_3x_21 \) | \(v = x_nx_{n-1}x_{n-2} \ldots x_3x_20 \) |

Because \((\mu, v), (\mu_n, v), (\mu_n, v_n) \notin E(\text{FLTQ}_n) \), when \(\mu_c = v \), \(\mu \) and \(v \) do not have common neighbors. Hence, \(|N_{\text{FLTQ}_n}(\mu) \cap N_{\text{FLTQ}_n}(v)| = 0 \).

Lemma 9. Let \(\mu \) be any node in \(\text{LTQ}_n \) for any integer \(n \geq 3 \). Then, \(\text{LTQ}_n \setminus N_{\text{LTQ}_n}[\mu] \) is connected.

Proof. We use mathematical induction on \(n \) to prove this lemma. According to Lemma 1, we know that this lemma obviously holds when \(n = 3 \). Suppose that this lemma holds for \(n \leq k (k \geq 3) \). Let \(\mu \) be any node in \(\text{LTQ}_{k+1} \). Without loss of generality, we suppose that \(\mu \in V(\text{LTQ}^k_k) \). Then, by the induction hypothesis, \(\text{LTQ}^k_k \setminus N_{\text{LTQ}^k_k}[\mu] \) is connected. Since \(N_{\text{LTQ}^k_k}(\mu) = \{\mu_{k+1}\} \), according to Lemma 1, \(\text{LTQ}^k_k \setminus \{\mu_{k+1}\} \) is connected. Since each node in \(\text{LTQ}^0_k \) is connected to a node in \(\text{LTQ}^1_k \), \(\text{LTQ}^0_k \setminus N_{\text{LTQ}^0_k}[\mu] \) is connected to \(\text{LTQ}^1_k \setminus \{\mu_{k+1}\} \). Then, \(\text{LTQ}_{k+1} \setminus N_{\text{LTQ}_{k+1}}[\mu] \) is connected. Hence, this lemma holds. \(\square \)
prove that \(\kappa \)
vertices, then we have the lower bound
\[
\{ \text{FLTQ} \}
\]
and each vertex in \(\text{FLTQ} \)
Therefore, we have
\[
\kappa
(\text{FLTQ})
\]
Suppose that \(\kappa \)
is disconnected, and the edge \(\kappa \)
Consider an edge \(\kappa \)
\[
\{ \text{FLTQ} \}
\]
Then, we just need to find a super vertex cut
\[
\text{FLTQ}
\]
According to Lemma 8, \(|N_{\text{FLTQ}}(a) \cap N_{\text{FLTQ}}(x)| \leq 2 \) and \(|N_{\text{FLTQ}}(a) \cap N_{\text{FLTQ}}(y)| \leq 2 \). Since \(\kappa(\text{FLTQ}) = n + 1 \) and \(n + 1 - 2 - 2 \geq 1 \) for \(n \geq 6 \), \(a \) has at least one neighbor in \(K \). Hence, \(N_{\text{FLTQ}}(F) \) is a super vertex cut and \(\kappa(\text{FLTQ}) \leq 2n \) for \(n \geq 6 \).

Lemma 10. \(\kappa(\text{FLTQ}) \leq 2n \) for any integer \(n \geq 6 \).

Proof. Consider an edge \((x, y) \in E(\text{FLTQ}) \). Let \(F = \{x, y\} \). Then, \(\text{FLTQ} \setminus N_{\text{FLTQ}}(F) \) is disconnected, and the edge \((x, y) \) is one component of \(\text{FLTQ} \setminus N_{\text{FLTQ}}(F) \). According to Lemma 8, \(|N_{\text{FLTQ}}(F)| = (n + 1) + (n + 1) - 2 = 2n \). Let \(K = \text{FLTQ} \setminus N_{\text{FLTQ}}[F] \). To prove that \(K \) is a super vertex cut, we need to show that each vertex \(a \in V(K) \) has at least one neighbor. According to Lemma 6, \(|N_{\text{FLTQ}}(a) \cap N_{\text{FLTQ}}(x)| \leq 2 \) and \(|N_{\text{FLTQ}}(a) \cap N_{\text{FLTQ}}(y)| \leq 2 \). Since \(\kappa(\text{FLTQ}) = n + 1 \) and \(n + 1 - 2 - 2 \geq 1 \) for \(n \geq 6 \), \(a \) has at least one neighbor in \(K \). Hence, \(N_{\text{FLTQ}}(F) \) is a super vertex cut and \(\kappa(\text{FLTQ}) \leq 2n \) for \(n \geq 6 \).

Lemma 11. \(\kappa(\text{FLTQ}) \geq 2n \) for \(n \geq 6 \).

Proof. Suppose that \(F \) is a super vertex cut of \(\text{FLTQ} \). Then, \(\text{FLTQ} \setminus F \) is disconnected, and each vertex in \(\text{FLTQ} \setminus F \) has at least one neighbor. To prove \(\kappa(\text{FLTQ}) \geq 2n \), we will show that \(\text{FLTQ} \setminus F \) is connected when \(|F| \leq 2n - 1 \). Let \(F_i = F \cap LTQ^i_{n-1} \) for \(0 \leq i \leq 1 \), \(K_0 = LTQ^0_{n-1} \setminus F_0 \), and \(K_1 = LTQ^1_{n-1} \setminus F_1 \). Without loss of generality, we suppose that \(|F_0| \geq |F_1| \). Then, \(|F_1| \leq n - 1 \).

Case 1. \(K_1 \) is connected.

Let \(a \) be any node in \(K_0 \). We have \(N_{LTQ^1_{n-1}}(a) = \{a, a\} \). If \(|N_{LTQ^1_{n-1}}(a) \cap F_1| \leq 1 \), then \(a \) is connected to \(K_1 \). Since \(K_1 \) is connected, then \(K_0 \cup K_1 \) is connected, which means that \(\text{FLTQ} \setminus F \) is connected. Otherwise, since each vertex in \(\text{FLTQ} \setminus F \) has at least one neighbor, there must be a vertex \(\beta \in K_0 \) such that \((a, \beta) \in E(K_0) \). We have \(N_{LTQ^1_{n-1}}(\beta) = \{\beta, \beta\} \). If \(|N_{LTQ^1_{n-1}}(\beta) \cap F_1| \leq 1 \), then \(a \) can be connected to \(K_1 \) through vertex \(\beta \), and \(\text{FLTQ} \setminus F \) is connected. Otherwise, we have \(\{a, \alpha, \beta, \beta\} \in F_i \), \(|F_i| \geq 4 \), and \(|F_0| \leq 2n - 5 \). Let \(Y = N_{LTQ^0_{n-1}}(a) \cup N_{LTQ^1_{n-1}}(\beta) \setminus \{a, \alpha\} \). According to Lemma 8, \(|Y| = (n - 1) + (n - 1) - \)
2 = 2n − 4. Since |F₀| ≤ 2n − 5, we can find at least one vertex γ ∈ Y such that α and β are connected to K₁ through γ. Hence, FLTQₙ \ F is connected.

Case 2. K₁ is disconnected.

According to Lemma 1, we have κ(LTQₙ₋₁) = n − 1. Since K₁ is disconnected, then |F₁| = n − 1 and |F₀| = n. There should be an isolated vertex ω in K₁ and F₁ = NLTQₙ−₁[ω].

According to Lemma 9, LTQ₁ₙ₋₁ \ NLTQₙ−₁[ω] is connected. For any vertex α in K₀ where (α, ω) ∈ EFLTQₙ, based on Lemma 8, α and ω do not have common neighbors. Then, there exists a neighbor α' of α in LTQₙ such that α' \ NLTQₙ−₁[ω]. Hence, α is connected to LTQ₁ₙ₋₁ \ NLTQₙ−₁[ω] through α'. For any vertex α in K₀ where (α, ω) \ EFLTQₙ, there must exist a neighbor β in K₀. Let Y = NLTQₙ−₁(α) \ NLTQₙ−₁(β). According to Lemma 8, |Y| = (n − 1) + (n − 1) = 2n − 2. Since |F₀| = n, we can find at least n − 2 vertices in Y connected to LTQ₁ₙ₋₁. Since there exist two neighbors in LTQ₁ₙ₋₁ for each vertex in Y and 2n − 4 > n − 1 when n ≥ 6, we can find a vertex γ in Y such that α and β are connected to LTQ₁ₙ₋₁ \ NLTQₙ−₁[ω] through γ. Hence, FLTQₙ − F is connected.

Thus, FLTQₙ \ F is connected when |F| ≤ 2n − 1 and κ(FLTQₙ) ≥ 2n for any integer n ≥ 6. □

According to Lemmas 10 and 11, we obtain the following result:

Theorem 1. κ(FLTQₙ) = 2n for n ≥ 6.

4. Conclusions

The folded locally twisted cube FLTQₙ was introduced based on the locally twisted cube LTQₙ and the folded hypercube FQₙ. In this paper, we studied the super-connectivity of folded locally twisted cubes, which is an important indicator to measure the fault tolerance and reliability of a network. The main contribution of this work was that we addressed the super-connectivity of FLTQₙ. We proved that κ(FLTQₙ) = 2n for any integer n ≥ 6. Independent spanning trees and mesh embedding could be considered as future research directions. Independent spanning trees could be applied to reliable communication protocols, reliable broadcasting, and so on [29]. Meshes are fundamental guest graphs on which many algorithms, such as linear algebra algorithms and combinatorial algorithms, can be efficiently performed [30]. The results of independent spanning trees and mesh embedding for FLTQₙ could be compared with the results of LTQₙ [31,32].

Author Contributions: Conceptualization, L.Y.; methodology, Y.H.; investigation, J.J.; writing—original draft preparation, L.Y. and J.J.; writing—review and editing, Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Research Project of Suzhou Industrial Park Institute of Services Outsourcing (No. SISO-ZD202202) and sponsored by the Qing Lan Project.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.