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Abstract: Continuous-variable quantum key distribution (CV–QKD) is a system that provides secret
keys for symmetric key systems. In the application of CV–QKD, the practical security of the system
is crucial. In this article, we investigate the practical security issues caused by non–ideal Gaussian
modulation, which is caused by fitting defects of the amplitude modulator’s (AM) modulation curve.
We provide the effect of fitting error on parameter estimation. We also give the relationship between
the fitting order and the secret key rate. The simulation results indicate that the system is completely
unable to communicate during first–order fitting. During second–order fitting, the system’s perfor-
mance decreases by more than half. During third–order fitting, the system’s performance will be
consistent with the ideal. Therefore, to ensure the performance of the CV–QKD system, the fitting
order must be at least three or higher.

Keywords: continuous–variable quantum key distribution; non–ideal Gaussian modulation; parameter
estimation; secret key rate

1. Introduction

Continuous–variable quantum key distribution (CV–QKD) can allow Alice and Bob
to complete secure communication over untrusted channels [1–4]. The CV–QKD system
has unconditional security. So, people have conducted in-depth research on the security of
CV–QKD. Nowadays, the security of CV–QKD has been proven in many aspects [5–9]. In
addition, due to the greater compatibility between CV–QKD and existing communication
systems [10], CV–QKD experiments have been completed in various scenarios [11–18],
especially in networked applications [19–23]. From the perspective of modulation format,
CV–QKD can be divided into discrete modulation and Gaussian modulation CV–QKD.
Among them, Gaussian modulation CV–QKD has a more comprehensive security proof
and has received widespread attention.

In practical environments, the Gaussian modulation CV–QKD experimental system
will generate security loopholes due to the non–ideality of the device [24,25]. Eve can attack
these security loopholes, such as local oscillator fluctuation attacks, detector saturation
attacks, etc. [26–29], making the system no longer secure. In order to resist these attacks,
many new protocols, such as continuous–variable one–sided device–independent (CV–
1SDI) and continuous–variable measurement device–independent (CV–MDI QKD), have
been proposed [30–32]. But these new protocols are often more complex to implement.
A more direct and effective method is to eliminate errors by adding feedback control or
real–time monitoring, such as analyzing the preparation of imperfect Gaussian states or
analyzing measurement angle errors [33–39].
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In the entanglement–based (EB) model of Gaussian-modulated CV–QKD, the Gaussian
state is obtained by performing Gaussian operations on the quadrature components of
the light field. In the corresponding prepare–and–measure (PM) model, it is difficult to
directly modulate the quadrature components, so it is usually indirect to modulate the
amplitude and phase to prepare Gaussian states. In experiments, amplitude and phase
modulation are usually achieved using a lithium niobate–based amplitude modulator (AM)
and phase modulator. However, the input and output of the AM are not linear. So, we need
to generate Gaussian data by fitting a modulation curve. A too–low fitting order will cause
errors in the Gaussian data. The non–ideal Gaussian state can lead to security loopholes
in CV–QKD. So, analyzing the impact of the non–linearity of the AM on the security of
Gaussian-modulated CV–QKD systems is worthy of in–depth research.

In this article, we analyze the impact of non–ideal Gaussian modulation on the per-
formance of the CV–QKD system from multiple perspectives. This non–ideal Gaussian
modulation is caused by the fitting error of the AM modulation curve. Specifically, we
analyze the changes in excess noise and transmittance under different fitting orders from
the perspective of parameter estimation. Furthermore, we analyze the changes in the secret
key rate under different fitting orders. Our research results indicate that in the case of
low–order fitting (first and second orders), the excess noise (transmittance) is 0.19 (0.019),
which is significantly different from the ideal excess noise (transmittance) of 0.01 (0.1). In
addition, during first–order fitting, there is no secret key rate, and during second–order
fitting, the secret key rate will also be greatly reduced. So, only when third–order fitting is
above, the performance of the CV–QKD system can approach ideal performance.

This paper is organized as follows. In Section 2, we give expressions for the quadrature
components under ideal and non–ideal Gaussian modulation. In Section 3, we conduct
security analysis, mainly including parameter estimation and secret key rate. In Section 4,
we simulate and analyze the transmittance, excess noise, and secret key rate under different
fitting orders. In Section 5, we give the conclusions of this paper.

2. Non–Ideal Gaussian Modulation in CV–QKD System

In this section, we present the ideal Gaussian modulation implementation in the
PM scheme. Next, we show that in practical systems, non–ideality in the modulation
curve fitting of the AM can cause defects in the Gaussian modulation. In addition, we
also give the quadrature components expression sent by Alice with or without non–ideal
Gaussian modulation.

2.1. The Realization Process of Gaussian Modulation

In this section, we illustrate how to realize the preparation of the Alice Gaussian state
in EB in the PM scheme of CV–QKD; that is, the quadrature components are realized by
modulating the amplitude and phase. In Gaussian modulation coherent–state (GMCS)
CV–QKD, Alice needs to prepare the Gaussian state |αA〉, αA = |αA|eiθ = x + ip, where x
and p are independent quadrature components that conform to the Gaussian distribution

p(x) =
1√

2πσ2
exp(− x2

2σ2 ) p(p) =
1√

2πσ2
exp(− p2

2σ2 ). (1)

Since x and p are independent of each other, their joint density distribution is

p(x, p) = p(x)p(p) =
1

2πσ2 exp(− x2 + p2

2σ2 ). (2)
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In practical systems, it is difficult to directly modulate the quadrature components x
and p of the light field state. So, let x = A cos θ and p = A sin θ, where A is the amplitude,
and θ is the phase. By transforming the probability density matrix

|J| =
∣∣∣∣∣ ∂x

∂A
∂p
∂A

∂x
∂θ

∂p
∂θ

∣∣∣∣∣, (3)

we can further obtain

P(A, θ) = P(x, p)|J| = A
2πσ2 exp

(
− A2

2σ2

)
. (4)

We can regard Equation (4) as the joint probability density of p(A) satisfying the Rayleigh
distribution and p(θ) satisfying the uniform distribution:

p(A) =
A
σ2 exp

(
− A2

2σ2

)
p(θ) =

1
2π

. (5)

At this point, we will correspond the modulation of x and p to the modulation of A and θ.
So, in practical systems, we can achieve Gaussian modulation through amplitude and phase
modulators. According to the Box–Muller method [40], the amplitude and phase can be
obtained from two independent U1 and U2 uniformly distributed within the [0, 1] interval:

A =
√
−2VA ln U1 θ = 2πU2. (6)

x and p can be expressed as:

x = A cos θ =
√
−2VA ln U1 cos(2πU2), (7)

p = A sin θ =
√
−2VA ln U1 sin(2πU2). (8)

2.2. Non–Ideal Gaussian Modulation Caused by Amplitude Modulator Curve

In this section, we point out that during the Gaussian modulation process, the non–
ideal fitting of the modulation curve of the AM can cause defects in Gaussian modulation.
As mentioned in Section 2.1, in practical systems, Gaussian modulation is achieved through
AM and phase modulation. For the phase modulator, its modulation principle can be
described as

αout = αinexp
(

j
VPM

Vπ
π

)
, (9)

where VPM is the modulation voltage of the phase modulator, Vπ is the half–wave voltage
value of the phase modulator, and αin and αout are the input and output of the optical field.
According to Equation (9), the angle change of the phase modulator is linearly related to
the modulation voltage. So, after knowing the half–wave voltage, we can directly adjust
the modulation voltage VPM = 2πU2Vπ/π to achieve the ideal phase modulation. For AM,
their modulation principle can be described as

αout = αin[1− cos(πVAM/Vπ)]/2. (10)

According to Equation (10), the equation of the modulation curve is

ηt =
αout

αin
= [1− cos(πVAM/Vπ)]/2. (11)
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According to Equation (11), the input and output of the AM are non–linear, as shown
in Figure 1. Under ideal amplitude modulation, we make αout =

√
−2VA ln U1, and the

modulation voltage value VAM is

VAM =
Vπ

π
arccos

(
1− 2

√
−2VA ln U1

αin

)
. (12)

By loading VPM, VAM can achieve ideal Gaussian modulation, and the output ideal Gaussian
state is

αideal = αinexp
(

j
VPM

Vπ
π

)
[1− cos(πVAM/Vπ)]/2. (13)

Its quadrature components are expressed as

xideal = αin cos
(

VPM

Vπ
π

)
[1− cos(πVAM/Vπ)]/2, (14)

pideal = αin sin
(

VPM

Vπ
π

)
[1− cos(πVAM/Vπ)]/2. (15)

Figure 1. Modulation curve of amplitude modulator.

However, in practical Gaussian modulation, we do not know the ideal modulation
curve of the AM. In order to obtain the modulation curve of the desired AM, we need to
provide a stepped signal to the AM, record its input and output (xi, yi), and then obtain
the modulation curve by fitting (xi, yi)

yi =
N

∑
n=1

anxi
n. (16)

During the fitting process, there may be some errors that cannot be completely consis-
tent with the ideal curve. This leads to an error between the modulation voltages V

′
AM and

VAM calculated based on Equation (16),

V
′
AM = VAM + ∆V. (17)
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where ∆V is the modulation voltage error caused by curve fitting. At this point, the actual
modulated quadrature components are

xfact = αin cos
(

VPM

Vπ
π

)
[1− cos(πV

′
AM/Vπ)]/2, (18)

pfact = αin sin
(

VPM

Vπ
π

)
[1− cos(πV

′
AM/Vπ)]/2. (19)

By combining formulas Equations (13)–(19), it can be concluded that the modulation
curve of the AM is non–linear, which leads to a larger ∆V in lower order fitting, resulting
in a larger error between (xfact, pfact) and (xidea, pidea), which seriously affects the safety of
the system.

3. Practical Security Analysis of Non–ideal Gaussian Modulation

In this section, we investigate the impact of non–ideal Gaussian modulation caused by
the AM on system security in actual CV–QKD systems. Our research includes the impact
of transmittance and excess noise on the parameter estimation process. In addition, we
further provide a calculation method for the secret key rate.

3.1. Parameter Estimation under Non–ideal Gaussian Modulation

In the GMCS CV–QKD system, we generally regard the quantum channel as a linear
channel. Under the assumption of this linear channel, the relationship between Alice and
Bob’s data is

y = tx + z, (20)

where x is the data at Alice, y is the data received at Bob, t is the equivalent transmittance,
and z is the noise item, mainly including shot noise, electrical noise, and excess noise.
According to the relationship described in Equation (20), we can obtain that the data
received by Bob are

xB =
√

ηT(xA + xε) + xele + N0, (21)

xB represents the data after balance homodyne detection at the Bob, η and xele is the
detection efficiency and electrical noise of the detector, xA is the Gaussian data prepared by
Alice, xε is the excess noise introduced by the system, T is the transmission of the channel,
and N0 is the shot noise.

After the above derivation, we learn the specific expression of xA and xB. Next, we
need to use the variance and covariance of xA and xB to estimate T and ε,〈

x2
A

〉
= VA, (22)

〈
x2

B

〉
= ηT(VA + ε) + 1 + vele, (23)

〈xAxB〉 =
√

ηTVA, (24)

where VA is the modulation variance, ε is the excess noise, and vele is the electrical noise
variance. The units of these values are shot noise units. According to Equations (22)–(24),
we can derive the expressions for T and ε as follows:

T =
〈xAxB〉2

η
〈

x2
A
〉2 , (25)

ε =

〈
x2

B − 1− vele
〉

(〈xAxB〉/
〈

x2
A
〉
)

2 −
〈

x2
A

〉
. (26)



Symmetry 2023, 15, 1452 6 of 13

When there is an error in the modulation curve fitted by the AM, Gaussian modulation
will have defects. At this point, xA and xB become x

′
A and x

′
B, which are brought into

Equations (25) and (26) as follows:

T
′
=

〈
xAx

′
A

〉2

〈
x2

A
〉2 T, (27)

ε
′
=

〈
x
′2
A

〉
+ ε

(
〈

xAx′A
〉
/
〈

x2
A
〉
)

2 −
〈

x2
A

〉
. (28)

From Equations (27) and (28), it can be seen that when there is non–ideal Gaussian
modulation, T

′
, ε
′

and T, ε are not the same. This difference will lead to parameter estima-
tion error and further lead to a decrease in secret key rate, resulting in security loopholes.

3.2. Calculation of Secret Key Rate

In this section, we derive the secret key rate of the GMCS CV–QKD protocol. We
select the most widely used GG02 protocol for analysis. In the GG02 protocol, we consider
reverse reconciliation collective attacks, whose secret key rate can be expressed as

k = βIAB − χBE, (29)

where β is the reverse reconciliation efficiency, IAB is the mutual information between Alice
and Bob, and χBE is the information stolen by Eve according to Bob’s information. IAB and
χBE can be obtained through the covariance matrix rAB of the system,

rAB =

(
VII2

√
ηT(V2 − 1)σz√

ηT(V2 − 1)σz (ηT(V − 1 + ε) + 1 + vele)II2

)
, (30)

where V = VA + 1, II2 is the unit variance of 2× 2, and σz =

(
1 0
0 −1

)
.

Mutual information IAB can be solved through the variance and conditional variance
of Bob’s data:

IAB =
1
2

log

(
VB

VB|A

)
, (31)

where VB = ηT(V − 1 + ε) + 1 + vele and VB|A = ηTε + 1 + vele. In addition,

χBE = S(E)− S(E|xB), (32)

where S(E) represents the von Neumann entropy for Eve to master the quantum state, and
S(E|xB) is the conditional entropy for mastering the quantum state after knowing Bob’s
measurement results. Due to Eve’s purification effect, χBE can be rewritten as

χBE = S(ρAB)− S(ρAB|xB). (33)

In this way, both S(ρAB) and S(ρAB|xB) can be solved based on the covariance matrix
rAB. Since it has been proven that Gaussian state attacks are optimal collective attacks,
considering Gaussian attacks, χBE can be further simplified as

χBE =
2

∑
i=1

G
(

λi − 1
2

)
−

5

∑
i=3

G
(

λi − 1
2

)
, (34)
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where G(x) = (x + 1)log2(x + 1)− xlog2x, λ1,2 is the symplectic eigenvalue of the covari-
ance matrix of quantum state ρAB, and λ3,4,5 is the symplectic eigenvalue of the covariance
matrix of quantum state ρAB|xB

. The solution for λ1,2 is as follows:

λ1,2 =
1
2
(A±

√
A2 − 4B), (35)

where A = V2(1− 2T) + 2T + T2(V + 1/T − 1 + ε)2, and B = T2[V(1/T − 1 + ε)− 1]2.
Next, λ3,4,5 can be solved by the covariance matrix rA|xB

,

rA|xB
= rA − rAB(XrBX)MPrAB

T , (36)

where X = diag(1, 0, 1, 0, ...), MP is the Moore–Penrose inverse of the matrix. At this point,
we can obtain

λ3,4 =
1
2
(C±

√
C2 − 4D), (37)

where

C =
A[(1− η + vele)/η] + V

√
B + T(V + 1/T − 1 + ε)

T{V + [ηT(ε− 1) + 1 + vele]/ηT} , (38)

D =
√

B
V +
√

B[(1− η + vele)/η]

T{V + [ηT(ε− 1) + 1 + vele]/ηT} . (39)

Finally, the data of λ5 in different scenarios are all 1. Through the derivation of
Equations (29)–(39), we obtain the final secret key rate k.

4. Simulation and Analysis

This section simulates and analyzes the impact of non–ideal Gaussian on the CV–QKD
system. Firstly, we provide the impact of different fitting orders on the generated Gaussian
data. Then, we analyze the changes in transmittance and excess noise under different fitting
orders. Finally, we analyze the changes in the secret key rate under different fitting orders.

In the Gaussian coherent-state protocol, Alice needs to prepare data that conform
to the Gaussian distribution. However, due to the non–ideality of the AM modulation
curve fitting, there is a certain error between the prepared data and the ideal Gaussian
distribution. So, we conducted simulation research on the Gaussian distribution under
different fitting orders. In the simulation, we set VA = 4, and the results are shown in
Figure 2.

Figure 2a shows the ideal Gaussian distribution, while Figure 2b–d show the Gaussian
distribution under first–order, second–order, and third–order fitting, respectively. The rea-
son why we only reach the third–order is because we found that the Gaussian distribution
produced by third–order fitting and higher–order fitting is almost identical. From Figure 2,
it is evident that compared to the ideal Gaussian distribution, when the fitting order is
lower (first–order, second–order), the non–ideal Gaussian modulation is greater. It is not
until after the third order that a more ideal Gaussian distribution can be obtained. This
indicates that in practical systems, we should use at least third–order or higher fitting to
generate Gaussian data.

Through Equations (18) and (19) in Section 2.2, we can know that when there is an
error in Gaussian modulation, it will have an impact on the transmittance and excess noise
of the actual system. Therefore, we simulated and analyzed the changes in transmittance
and excess noise under different fitting orders, and the results are shown in Figure 3.

In the simulation, we set the ideal excess noise to 0.01 and the transmittance to 0.1.
From Figure 3, we can clearly see that during the first–order and second–order fitting, there
will be errors in parameter estimation, and it will not be consistent with the theoretical
value until after the third order. In particular, in the first order, the transmittance is 0.019,
and the excess noise is 0.19. In this case, there is no secret key generation, which has a
serious impact on the performance of the system. This further indicates that in practical
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systems, we should pay attention to the impact of the AM modulation curve on the system
and use high–order fitting for modulation.

Figure 2. The Gaussian distribution under different fitting orders, including (a) ideal Gaussian
distribution, (b) first–order fitting, (c) second–order fitting, and (d) third–order fitting.

Figure 3. The changes in excess noise and transmittance under different fitting orders. The red
dotted line represents excess noise, and the blue dotted line represents transmittance. The ideal
transmittance is 0.1 and the ideal excess noise is 0.01.
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For the CV–QKD system, the size of excess noise has a significant impact on the secret
key rate. According to Equation (26) in Section 3, the magnitude of excess noise is correlated
with the variance of the modulation data. So, we conducted simulation research on its
specific relationship, and the results are shown in Figure 4.

In the simulation, the ideal excess noise is set to 0.01. We can clearly conclude from the
simulation that the size of excess noise is directly proportional to the modulation variance
during the first–order and second–order fitting. In first–order fitting, for every 1 change in
variance, the excess noise increases by 0.1853. In second–order fitting, for every 1 change
in variance, the excess noise increases by 0.0271. It does not change with the modulation
variance during the third–order fitting. In summary, when the fitting order is less than three,
excess noise will significantly increase with modulation variance, leading to a decrease in
system performance.

Figure 4. The relationship between excess noise and modulation variance under different fitting
orders. The blue line represents first–order fitting, the red line represents second–order fitting, and
the yellow line represents third–order fitting. The ideal excess noise is set to 0.01.

In the process of parameter estimation, transmittance is also important. We also
analyzed the relationship between transmittance and modulation variance. The results are
shown in Figure 5. The ideal transmittance is set to 0.1. From Figure 5, we can clearly see
that under the first–order, second–order, and third–order fitting, the transmittance does not
change with the magnitude of modulation variance. The magnitude of transmittance is
only related to the order of fitting. During first–order fitting, the estimated transmittance is
0.017. During second–order fitting, the estimated transmittance is 0.067. When fitting in
the third order, it is the same as the ideal transmittance. Therefore, when we use too–low
order fitting of the modulation curve of the AM, it will lead to severe inaccuracy in the
estimation of transmittance, especially when the first–order is used.

The performance of the CV–QKD system is mainly evaluated through secret key
rate and transmission distance. So, we simulated the changes in the secret key rate and
transmission distance under different fitting orders, as shown in Figure 6. In Figure 6, we
set the VA as 4, the η as 0.613, the vele as 0.01, and the β as 0.95. The blue solid line represents
second–order fitting, the black solid line represents ideal fitting, and the red dashed line
represents third–order fitting. Due to the severe non–ideal Gaussian modulation during
first–order fitting, when the modulation variance is 4, which cannot generate a secret key
rate. So, the first–order fitting situation is not shown in Figure 6. In Figure 6, we can observe
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that compared to ideal Gaussian modulation, the transmission distance and secret key rate
reduce by half during second–order fitting. When fitting in the third–order, the secret key
rate and transmission distance are almost consistent with ideal Gaussian modulation.

Figure 5. The relationship between transmittance and modulation variance under different fitting
orders. The blue line represents first–order fitting, the red line represents second–order fitting, and
the yellow line represents third–order fitting. The ideal transmittance is set to 0.1.

Figure 6. Under different fitting orders, the security key rate of CV–QKD. The blue solid line
represents second–order fitting, the red dashed line represents third–order fitting, and the black solid
line represents the ideal Gaussian distribution. VA = 4, Vele = 0.01, η = 0.613, and β = 0.95.
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5. Conclusions

In a word, we analyzed the impact of non–ideal Gaussian modulation on the CV–QKD
system. The non–ideality of Gaussian modulation is mainly caused by defects in the fitting
of AM modulation curves. In addition, the parameter estimation error is related to the order
of fitting and modulation variance. When the fitting order is low (first–order and second–
order), the parameter estimation error is relatively large, while when the fitting order is
high (above third–order), the parameter estimation error is relatively small (ignored). We
further found that during the first–order and second–order fitting, excess noise linearly
increases with VA. During the first– order, the slope of change is 0.1853, and during the
second–order, the slope of change is 0.0271. In addition, the transmittance does not vary
with VA. When fitting above the third–order, the transmittance and excess noise do not
vary with VA. Finally, during first–order fitting, the CV–QKD system cannot generate a
secret key, and during second–order fitting, its transmission distance will decrease by half.
The third–order or higher is consistent with the ideal transmission distance. Therefore, in
practical applications, we need to use at least third–order fitting to achieve a CV–QKD
system. Our work thoroughly analyzed the impact of non–ideal modulation curve fitting
on the performance of CV–QKD systems from multiple perspectives, providing theoretical
guidance for the practical application of CV–QKD. However, our work did not take into
account other non–ideal factors, such as the bias point of the intensity modulator.
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