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Abstract: In this paper, we present a rotating de Rham–Gabadadze–Tolley black hole with a positive
cosmological constant under massive gravity, achieved by applying a modified Newman–Janis
algorithm. The black hole exhibited stable orbits of constant radii, prompting a numerical study of
the behavior of the solutions to a nonic equation governing the radii of planar orbits around the
black hole. Additionally, we investigated the stability of orbits near the event horizon and provide a
comprehensive analytical examination of the solutions to the angular equations of motion. This was
followed by a simulation of some spherical particle orbits around the black hole.
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1. Introduction and Motivation

The significance of investigating stationary black-hole spacetimes derived from gen-
eral relativity is undeniable. Kerr-like black holes have garnered significant attention,
particularly following the groundbreaking detection of gravitational waves from a merger
by the Laser Interferometer Gravitational-Wave Observatory (LIGO) [1] and the remarkable
imaging of black holes M87* and Sgr A* by the Event Horizon Telescope (EHT) [2,3]. Sub-
sequently, there has been a surge in the study of geodesics involving massless and massive
particles in the vicinity of Kerr-like black holes, as evidenced by recent publications (see, for
example, refs. [4–9]). However, the study of particle motion around Kerr black holes dates
back to 1968 and the introduction of Carter’s method for separating the Hamilton–Jacobi
equation [10]. This method allows orbits to be classified as either planar or non-planar
based on variations in their polar component. While the resulting first-order differential
equations of motion can be easily solved numerically, finding exact analytical solutions
for the coordinate evolution is challenging due to their nonlinear nature. Extensive re-
search has been conducted to address this issue. For example, Mino demonstrated that,
by introducing a new time parameter, two of the four equations of motion can be decou-
pled [11], leading to solutions expressed in terms of elliptic integrals [12] (also discussed in
the review article [13] and the references therein). Moreover, when the radial coordinate is
held constant, the resulting orbits are either circular on the equatorial plane or completely
non-planar, forming spherical orbits. In fact, the study of such orbits is valuable in astro-
physical research as they help determine the specific domains where light and particles are
captured by a black hole from different polar angles. Numerous studies have focused on
determining spherical particle orbits characterized by time-like constant-radius geodesics,
following the pioneering work by Wilkins [14]. Since then, extensive investigations have ex-
plored various aspects of these orbits, providing insights into their properties and behavior
(see, for example, refs. [4,7,8,15–26]). In these studies, one often encounters algebraically
complex equations, such as the polynomial equations that govern the radii of spherical
orbits. Consequently, both rigorous analytical and numerical approaches are necessary to
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determine reliable ranges for the motion parameters that satisfy the orbital conditions in
general relativistic spacetimes, which are crucial for providing accurate insights into the
behavior and constraints of spherical orbits in the context of general relativity.

However, while general relativity and its black hole solutions have been successful in
numerous observational tests, there are still unanswered questions, particularly regarding
the mysterious dark side of the universe [27], which remains one of the major enigmas in
modern cosmology. In response, some scientists have suggested that extending general
relativity in the right way could provide an alternative approach that may eliminate the
need for dark matter and dark energy, offering new perspectives on and potential solutions
to these intriguing phenomena. Such extensions include the f (R) [28,29] and scalar–tensor
theories of gravity [30,31] in four-dimensional spacetimes. In particular, massive gravity
has received significant attention. It can be traced back to the Lorentz-invariant Fierz–Pauli
massive spin-2 theory from 1939 [? ]. Since then, this theory has been further developed
and generalized by de Rham, Gabadadze, and Tolley (dRGT) [33,34] (see also the review
in [35]). In ref. [36], a spherically symmetric black hole solution using dRGT theory was
presented. By generalizing the Schwarzschild spacetime, this latter solution incorporates
a new parameter γ that can potentially account for the flat galactic rotation curves in the
sense that the massive gravitons constitute a dark matter halo [37]. Furthermore, the afore-
mentioned solution is endowed with a positive cosmological constant, which serves to
compensate for the accelerated expansion of the universe. In fact, the presence of a positive
cosmological constant has been argued to have significant gravitational effects, not only
on black hole dynamics but also on the cosmos as a whole [38]. In a related study [39],
it was demonstrated that the inclusion of a positive cosmological constant enables black
hole spacetimes to exhibit innermost and outermost stable circular orbits (ISCOs and OS-
COs), which have important implications for the behavior and stability of particles around
black holes.

In line with the same research interest, our paper investigates a black hole within
the framework of dRGT massive gravity, specifically considering the form proposed in
ref. [37]. This black hole solution incorporates a positive cosmological constant allowing
for the formation of an ISCO and an OSCO, as recently studied in ref. [40]. However,
as highlighted in the opening of this section, it is worth noting that stable circular orbits
represent only a subset of the broader category of spherical particle orbits, which forms
the primary focus of our investigation. In this regard, we construct a rotating counterpart
of the aforementioned dRGT spacetime and explore various facets of spherical time-like
geodesics within the black hole’s exterior region. Consequently, this paper centers on
two key objectives: examining the radii of spherical orbits and their corresponding orbit
stability and presenting analytical solutions to the angular equations of motion for a
comprehensive analysis. To achieve these objectives, the paper is organized as follows. In
Section 2, we provide a concise introduction to the dRGT massive gravity theory and its
static black hole solution. Subsequently, we present the rotating counterpart of this black
hole spacetime and analyze its causal structure. Moving on to Section 3, we initiate the
investigation of spherical orbits using Carter’s method of separation of the Hamilton–Jacobi
equation. By applying the general criteria for the formation of spherical orbits, we obtain a
polynomial equation of order 14. However, for the purpose of this investigation, we focus
specifically on planar orbits and numerically analyze the solutions to the corresponding
characteristic equation. In Section 4, we tackle the problem by solving the first-order
nonlinear differential equations governing the polar and azimuth angles. This allows
us to derive exact analytical solutions for the constant-radius equations of motion that
describe spherical orbits. These solutions are expressed in terms of Weierstrassian elliptic
functions, which are then employed to showcase illustrative examples of orbits around
the black hole. Finally, in Section 5, we summarize our findings. Throughout this study,
we adopt geometrized units where G = c = 1, employ the sign convention (−+++) for
the spacetime line element, and denote differentiations with respect to r or x-coordinates
using primes.
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2. Massive Theory of Gravity and Its Static Black Hole Solution in the
Cosmological Background

Considering the Riemannian manifold (M, gµν), the gravitational action of the dRGT
massive theory of gravity [33,34] can be re-expressed as [37]

S =
M2

Pl
2

∫
dx4√−g

[
R + m2

g U (g, f )
]
+ Sm, (1)

in which Sm is the matter action, MPl represents the reduced Planck mass, mg is the
graviton’s mass, and U is the gravitons’ potential, which, to avoid the Boulware–Deser
ghost, must obey the following self-interaction

U = U2 + α3U3 + α4U4, (2)

where

U2 = [K]2 − [K2], (3a)

U3 = [K]3 − 3[K][K2] + 2[K3], (3b)

U4 = [K]4 − 6[K]2[K2] + 3[K2]2 + 8[K][K3]− 6[K4], (3c)

in which [K] = Kµ
µ and (Ki)

µ
ν = Kµ

ρ1K
ρ1
ρ2 · · · K

ρi
ν , considering the definition

Kµ
ν = δ

µ
ν −

√
gµλ∂λ ϕa∂ν ϕb fab . (4)

In the above expression, it is important to distinguish between the physical metric g
and the reference metric f , both of which act on the Stückelberg field ϕ. If the unitary gauge
ϕ = x · δ is taken into account, then one can recast

√
g · ∂ϕ · ∂ϕ · f =

√
g · f in Equation (4).

Consequently, the field equations are obtained as

Gµ
ν + m2

gXµ
ν = 8πGTµ(m)

ν , (5)

in which G is the Einstein tensor, T(m) is the matter energy–momentum tensor, and [36,41,42]

Xµ
ν = Kµ

ν − [K]δµ
ν − α

[
(K2)

µ
ν − [K]Kµ

ν +
1
2

δ
µ
ν

(
[K]2 − [K2]

)]
+ 3β

[
(K3)

µ
ν − [K](K2)

µ
ν +

1
2
Kµ

ν

(
[K]2 − [K2]

)
− 1

6
δ

µ
ν

(
[K]3 − 3[K][K2] + 2[K3]

)]
, (6)

is the massive graviton tensor. Now, by assuming the ansatz fµν = diag
(
0, 0, C2, C2 sin2 θ

)
with C > 0, the terms of order O(K4) can be eliminated, and the static spherically symmet-
ric vacuum solution with dRGT massive gravity will be characterized by the line element

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (7)

in the usual Schwarzschild coordinates, where the lapse function is given by [37]

B(r) = 1− 2M
r
− 1

3
Λr2 + γr + ζ, (8)

in which Λ performs the role of the cosmological constant, as in the common Schwarzschild–
de Sitter spacetime, and the parameters γ and ζ stem from the massive theory of gravity.
The three terms {Λ, γ, ζ} obey the relationships [37]
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Λ = −3m2
g(1 + α + β), (9a)

γ = −m2
gC(1 + 2α + 3β), (9b)

ζ = m2
gC2(α + 3β). (9c)

The flat space with ζ = 0 is obtained in terms of the conditions α = −3β and
β = 1/2 + ε, with 0 < ε � 1 [37], which is respected in this study to guarantee the
positiveness of Λ and γ.

Now, to obtain the rotating counterpart of this black hole spacetime, a modified
version of the Newman–Janis algorithm [43] proposed by Azreg-Aïnou [44] is applied.
This method employs a non-complexification procedure to generate stationary spacetimes
from their static counterparts. In order to accomplish this, it is necessary to express the line
element (7) using the Eddington–Finkelstein coordinates (U, r, θ, φ). This can be achieved
by introducing the transformation dU = dt− dr/B(r), which produces

ds2 = −B(r)dU2 − 2dUdr + r2
(

dθ2 + sin2 θdφ2
)

. (10)

By introducing the null tetrad set Z
µ
A = (lµ, nµ, mµ, m̄µ), in which m̄ is the com-

plex conjugate of m, and considering lµ = δ
µ
r , nµ = δ

µ
U −

1
2 B(r)δµ

r , and mµ =
(
δ

µ
θ +

iδµ
φ/ sin θ

)
/(
√

2r), one can express the inverse of the metric as gµν = −lµnν − lνnµ +
mµm̄ν + mνm̄µ. Note that the tetrad vector fields obey the conditions l · l = n · n = m ·m =
l ·m = n ·m = 0, and l · n = −m · m̄ = −1. Now, to incorporate the spin parameter a of the
stationary counterpart, we apply the transformation δ

µ
θ → δ

µ
r + ia sin θ(δ

µ
U − δ

µ
r ) while all

the other parameters remain unchanged [44]. This procedure leads to the transformations
B(r)→ B(r, a, θ) and r2 → H(r, a, θ). Consequently, the null tetrad assumes the form

l′µ = δ
µ
r , (11a)

n′µ = δ
µ
U −

B(r, a, θ)

2
δ

µ
r , (11b)

m′µ =
1√

2H(r, a, θ)

[
ia sin θ

(
δ

µ
U − δ

µ
r

)
+ δ

µ
θ +

i
sin θ

δ
µ
φ

]
, (11c)

and the new inverse metric becomes gµν = −l′µn′ν − l′νn′µ + m′µm̄′ν + m′νm̄′µ in the
Eddington–Finkelstein coordinates. To transition to the desired Boyer–Lindquist coordi-
nates, we adopt the transformations dU = dt′ + ω(r)dr and dφ = dφ′ + χ(r)dr, and we
choose [44]

ω(r) = − r2 + a2

r2B(r) + a2 , (12a)

χ(r) = − a
r2B(r) + a2 . (12b)

The remaining steps involve setting B(r, a, θ) = H(r, a, θ)−2[r2B(r) + a2 cos2 θ] in
order to eliminate the cross term dtdr in the line element. Additionally, we select H(r, a, θ) =
r2 + a2 cos2 θ to satisfy Grθ = 0. Finally, this algorithm generates the stationary spacetime
of the rotating dRGT (termed RdRGT) black hole in the form

ds2 = −∆− a2 sin2 θ

Σ
dt2 +

Σ
∆

dr2 − 2a sin2 θ

(
1− ∆− a2 sin2 θ

Σ

)
dtdφ + Σdθ2

+ sin2 θ

[
Σ + a2 sin2 θ

(
2− ∆− a2 sin2 θ

Σ

)]
dφ2, (13)
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in which the spin parameter is given by a = J/M, with J being the black hole’s angular
momentum. We also define

∆(r) = a2 + r2B(r) = γr3 + r2 + a2 − 2Mr− Λ
3

r4, (14a)

Σ(r, θ) = r2 + a2 cos2 θ. (14b)

The stationary black holes are surrounded by several hyper-surfaces that configure
their exterior spacetime. First of all, the horizons of the RdRGT black hole are located by
the roots of ∆(r) = 0, which results in the quartic equation

Λr4 − 3r2(1 + γr) + 6Mr− 3a2 = 0, (15)

admitting the discriminant

δ∆ =
1
27

(
−256a6Λ3 − 729a4γ4 − 1296a4γ2Λ− 384a4Λ2 + 1152a4γΛ2 M− 108a2γ2

−144a2Λ + 216a2γ2ΛM2 + 1728a2Λ2 M2 − 972a2γ3 M− 1440a2γΛM− 1296Λ2 M4

+864γ3 M3 + 1296γΛM3 + 108γ2 M2 + 144ΛM2
)

. (16)

Since Λ � 1, the above discriminant can be positive within a certain range for the
values of γ and, hence, the above quartic can possess four real roots, one negative and three
positive. In Figure 1, the region inside which δ∆ > 0 is presented when the black hole’s
spin parameter varies from zero to one. Accordingly, for γmin < γ < γmax, the positivity
of the discriminant is guaranteed for each value of a, and the cases of γ = γmin and
γ = γmax correspond to extremal black holes. The figure shows that the width of this
domain decreases with the increase in the spin parameter. Therefore, the condition δ∆ = 0
is satisfied for both fast- and slow-rotating black holes if we choose |γ| � 1. Note that
the extremal limits γmin

max
correspond to a vanishing discriminant for which the equation

∆(r) = 0 has one negative and three positive roots, two of which are degenerate (coinciding
horizons). On the other hand, the equation δ∆ = 0 has one positive, one negative, and two
complex conjugate roots and, hence, one can recast the discriminant in Equation (16) as
δ∆ = 27a4(γmax − γ)(γ− γmin)(γ

2 − |γ1|2), in which γ1 ∈ C. This quartic equation can be
solved explicitly for γmin

max
, but we find it unnecessary to present their analytical expressions.

On the other hand, the suppressed quartic (15) has the four analytical roots r1, r2, r3, and r4,
and they are presented in Appendix A. It can be verified that, for the aforementioned
domain of γ, the solutions (A1)–(A4) admit r4 < 0 and r1 > r2 > r3 > 0. This way,
the black hole will possess three horizons; namely, from smaller to larger, the Cauchy
horizon r− = r3, the event horizon r+ = r2, and the cosmological horizon r++ = r1. Once
γ = γmax, the extremal black hole is obtained as the Cauchy and event horizons coincide,
whereas, for the case of γ = γmin, extremality corresponds to the unification of the event
and cosmological horizons. In Figure 2, the behavior of ∆(r) is plotted for different values
of the γ-parameter, and the solutions to ∆ = 0 and the extremal limit are indicated. The
other hypersurfaces that characterize the stationary spacetimes are those that correspond to
the static limits and, together, they form the black holes’ ergoregions. These regions, inside
which no static observer can exist, are identified by the equation gtt = 0, in accordance with
the line element (13). For the RdRGT black hole, this results in another quartic, the solutions
of which are exactly the same positive solutions, rst++ = r1, rst+ = r2, and rst− = r3, as those
given in Equations (A1)–(A4), with the same form for the included parameters, the only
replacement being a2 → a2 cos2 θ in Equation (A6c). Hence, it is straightforward to see that,
for θ = 0, the static limits and the black hole horizons coincide. Also, as expected, these
radii satisfy the conditions 0 < rst− < r− and r+ < rst+ < rst++ < r++ and comprise the
three boundaries of the interior and exterior ergoregions. In Figure 3, the radial profile of
the function gtt is plotted for the same parameters as in Figure 2. To focus on the motion
of particles in the exterior geometry of the RdRGT black hole, we limit our analysis to
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the region defined by r+ < r < r++. Within this domain, we utilize Carter’s geodesic
equations of motion to study the behavior of particles in orbits with constant radii.

0.0 0.2 0.4 0.6 0.8 1.0
-1

0

1

2

3

4

5

a (M)

γ
(M

-
1
) δΔ > 0

γmax = 0.3023

γmin = -0.1419
0.9

Figure 1. The region plot of δ∆ > 0 for Λ = 10−6 M−2 and 0 < a < 1 is shown. According to the
diagrams, for each value of a, the positivity of the discriminant is guaranteed inside a particular
domain γmin < γ < γmax. In this case, the shaded region represents the domain corresponding to
a = 0.9M. For all values of a, it holds that γmin < 0, and the width of the region δ∆ > 0 significantly
increases as the spin parameter decreases. It is worth noting that, for the exact values of γmin and
γmax, δ∆ = 0, and possessing these values results in extremal black holes.

0 1 2 3 4 5
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15
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25
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Δ
(r
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a = 0.3M

γ = γmin

γ = γmax

γ = ∓ 0.08

γ = ∓ 0.04

γ = ∓ 0.004

(a)
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20
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a = 0.9M

γ = γmin

γ = γmax

γ = ∓ 0.08

γ = ∓ 0.04

γ = ∓ 0.004

(b)

Figure 2. The behavior of ∆(r) for (a) a slow- and (b) a fast-rotating black hole plotted for different
values of the γ-parameter. The thick and thin solid curves represent, respectively, the negative and
positive values, and the dashed curves correspond to the extremal cases.
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γ = ∓ 0.04
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t(
r)
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γ = γmin

γ = ∓ 0.04

γ = γmax
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γ = ∓ 0.004

(b)

Figure 3. The radial profile of gtt plotted for θ = π/4 for the two cases of (a) a = 0.3M and
(b) a = 0.9M, for the same values of the γ-parameter as in Figure 2. The first two roots of gtt = 0 are
shown for all of the cases, and for the extremal black holes, only two static limits are available.

3. Spherical Particle Orbits

Black holes with a non-zero spin parameter can form several spherical particle trajec-
tories around them, each of which stays on a sphere with r = const. when the θ-coordinate
oscillates between two turning points (for the case of Kerr black holes, see, for example,
refs. [45–47]). These spherical orbits exist in a certain interval and only a subclass of them,
such as the stable circular orbits that are confined by the ISCO and OSCO, are on the
equatorial plane, while all the other orbits are non-planar. In this section, we employ the
standard geodesic equations for massive particles to investigate the planar and non-planar
r-constant particle orbits around the RdRGT black hole.

Applying Carter’s method of separation of the Hamilton–Jacobi equation [10], we can
determine the time-like geodesic equations in the exterior geometry of the RdRGT black
hole, which are given as

M
dr
dλ

= ±
√
R(r), (17)

M
dθ

dλ
= ±

√
Θ(θ), (18)

M
dφ

dλ
=

a
∆

[
E
(

r2 + a2
)
− aL

]
−
(

aE− L
sin2 θ

)
, (19)

M
dt
dλ

=
r2 + a2

∆

[
E
(

r2 + a2
)
− aL

]
− a
(

aE sin2 θ − L
)

, (20)

where we use the dimensionless Mino time, λ, defined as Σdλ = Mdτ [11], in which τ is
the geodesics’ affine parameter. In Equations (17)–(20), E and L are the constants of motion
related to the Killing symmetries of the spacetime, which are termed, respectively, the
energy and angular momentum of the particles. Furthermore,

R(r) =
[

E
(

r2 + a2
)
− aL

]2
− ∆

[
ε2r2 + (L− aE)2 +Q

]
, (21a)

Θ(θ) = Q− cos2 θ

[
a2
(

ε2 − E2
)
+

L2

sin2 θ

]
, (21b)
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defining Carter’s constant Q as the third constant of motion. Since we are interested in
the motion of massive particles, we set ε = 1. Note that, from Equations (17) and (18), one
can infer that the particles’ motion takes place under the mutual conditionsR(r) ≥ 0 and
Θ(θ) ≥ 0. Also, for the sake of convenience, the positive segments of these equations are
adopted. It is important to accentuate the role of Q in the classification of the orbits; orbits
on the equatorial plane (planar orbits that correspond to θ = π/2) are obtained for Q = 0.
These orbits can be regarded as the boundaries of the spherical orbits in their general case,
for which Q ≥ 0. In fact, circular orbits satisfy the conditions R(r) = 0 = R′(r), which
provides the critical quantities

Lc(r) =
1

3a
[
6M + r(4Λr2 − 9γr− 6)

]{3E
[

a2
(

6M + r2(4Λr− 9γ)

)
− 6Mr2 + r4(2Λr− 3γ)

]

−
[

Λr4 − 3
(

a2 + r
(

r− 2M + γr2
))]√

6r
[

6M + r(4Λr2 − 9γr− 6) + 6E2r
]}

, (22)

Qc(r) =
r2

3a3
[
6M + r(4Λr2 − 9γr− 6)

]2

{
ar

[
27E2r

[
20M2 − 4Mr(3γr + 4) + r2

(
γr(5γr + 8) + 4

)]

+ 6Λ2r6
[
18M− r(11γr + 10) + 4E2r

]
+ 36Λr3

[
E2r
(

2M− r(3γr + 2)
)
+
(

2M− r(γr + 1)
)

×
(

6M− r(5γr + 4)
)]

+ 54
(

r− 2M + γr2
)2(

2M− r(3γr + 2)
)
+ 8Λ3r9

]
+ 3a3

(
6M + r2(3γ− 2Λr)

)(
6M + r

(
4Λr2 − 9γr− 6

)
+ 12E2r

)
+ 2
√

6E
(

6M + r2(3γ− 2Λr)
)

×
[

3a3 + ar
(

r
(

3−Λr2 + 3γr
)
− 6M

)]√
r
(

6M + r(4Λr2 − 9γr− 6) + 6E2r
)}

. (23)

Furthermore, the effective inclination angle can be defined by means of the relation [25]

cos i =
L√

L2 +Q
. (24)

Using this relation, and by eliminating L between the equationsR(r) = 0 andR′(r) =
0, we get the single equation

p14(x) =
14

∑
j=0

mjxj = 0, (25)

as the general characteristic equation for the radii of spherical particle orbits in the RdRGT
spacetime, where
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m0 = 36k2ν2u4, (26a)

m1 = 72(k− 1)kν2u4, (26b)

m2 = 36νu3
(
−4k2ν + k2νu + 10kν− 2kνu− 2k + νu

)
, (26c)

m3 = 72νu2
(

2k2νu− 2k2u− 8kν + kνu + 3ku + 4k− 3νu− u
)

, (26d)

m4 = 36u2
(
−5hkν2u− 12k2ν2 + 10k2ν + 4k2ν2u + 12kν2 − 28kν− 8kν2u + 9ν2 + 14ν + 4ν2u + 1

)
, (26e)

m5 = −36u
(

5hkν2u2 − 16hkν2u + 8hkνu− 5hν2u2 + 12k2νu− 2klν2u2 − 16kν− 12kν2u− 24kνu + 24ν

+12ν2u + 12νu + 8
)

, (26f)

m6 = 12
(

45hkνu2 − 45hν2u2 − 39hνu2 + 12k2ν2u2 + 6k2νu2 + 36k2νu + 6klν2u3 − 20klν2u2 + 10klνu2

−24kν2u2 − 12kνu2 − 138kνu− 30ku− 6lν2u3 + 12ν2u2 + 6νu2 + 120νu + 24u + 48
)

, (26g)

m7 = −12
(

30hkν2u2 + 9hkνu2 + 48hkνu− 30hν2u2 − 9hνu2 − 132hνu− 24hu + 36k2νu + 12k2u

+18klνu2 − 102kνu− 18ku− 72k− 18lν2u2 − 16lνu2 + 66νu + 6u + 96
)

, (26h)

m8 = 3
(

75h2ν2u2 + 372hkνu + 72hku− 540hνu− 36hu− 384h + 48k2νu + 108k2 + 48klν2u2 + 16klνu2

+80klνu− 96kνu− 384k− 48lν2u2 − 16lνu2 − 216lνu− 40lu + 48νu + 288
)

, (26i)

m9 = −12
(

60h2νu + 33hkνu + 72hk + 15hlν2u2 − 33hνu− 132h + 18k2 + 38klνu + 8klu− 42k− 56lνu

− 4lu− 40l + 24
)

, (26j)

m10 = 6
(

45h2νu + 96h2 + 102hk + 98hlνu− 120h + 6k2 + 28klνu + 60kl − 12k + 6l2ν2u2 − 28lνu− 112l

+ 6
)

, (26k)

m11 = −12
(

36h2 + 9hk + 19hlνu + 40hl − 9h + 22kl + 10l2νu− 26l
)

, (26l)

m12 = 81h2 + 372hl + 48kl + 48l2νu + 100l2 − 48l, (26m)

m13 = −8l(9h + 10l), (26n)

m14 = 16l2, (26o)

in which we have used the dimensionless quantities

x =
r
M

, (27a)

u =
a2

M2 , (27b)

k = E2, (27c)

l =
1
3

ΛM2, (27d)

h = γM, (27e)

and the definition ν = sin2 i, for which Carter’s constant takes the form [25]

Q =
νL2

1− ν
. (28)
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In general, the polynomial Equation (25) has 14 solutions of the form x(u, ν, k, h, l),
among which those real roots that reside in the domain x+ < x < x++ are of our interest.
On the other hand, and in accordance with the Abel–Ruffini theorem, this equation cannot
be solved analytically in terms of finite radicals. We, therefore, consider some specific cases
in what follows in the rest of this section. Note that, for the case of a Kerr black hole with
h = l = 0, the above equation reduces to a polynomial equation of order 10, the analytical
solutions of which for the radii of spherical time-like orbits have been investigated in
ref. [25].

One can also make a primary classification of orbits based on the value of the
k-parameter. In this regard, for 0 ≤ k < 1, the test particles travel on bound orbits and, ac-
cordingly, the case where k = 1 corresponds to marginally bound orbits. On the other hand,
k > 1 provides unbound orbits. For unbound spherical orbits, the particles travel on unstable
trajectories that are deflected from the black hole upon small radial perturbations, while for
the bound orbits, the particle trajectories can still be stable or unstable. In the latter case,
the mentioned perturbations will generate eccentric orbits that oscillate between two finite
radial distances [24].

To proceed with our discussion, we restrict ourselves to the case of planar orbits at the
vicinity of the black hole’s event horizon.

3.1. Radii of Planar Orbits

Planar orbits correspond to trajectories that occur in the equatorial plane, for which
Q = 0 (i.e., i = 0 or π or ν = 0). These orbits are of great importance in black hole
astrophysics since they can also characterize the orbit of particles within the accretion disk,
which are confined within the boundaries composed by the ISCO and OSCO. The above
condition reduces the order of the polynomial Equation (25) down to 10. Further reduction
relies on the smallness of h and l and their negligible impacts at the vicinity of the black
hole event horizon. In this sense, we can only take these parameters into account up to the
first order for our purpose. Hence, the characteristic polynomial equation reduces to the
nonic equation.

p9(x) = x9 +
8

∑
j=0

m̄jxj = 0, (29)

in which

m̄0 = − u2

2hl
, (30a)

m̄1 =
4u
hl

, (30b)

m̄2 =
(5k− 4)u− 8

hl
, (30c)

m̄3 =
16− u

(
4h− 2k2 + 3k− 1

)
− 12k

hl
, (30d)

m̄4 =
3
(
32h− 9k2 + 32k− 24

)
+ u(10l − 18hk + 9h)

6hl
, (30e)

m̄5 =

(
36hk− 66h + 9k2 − 21k− 20l + 12

)
+ 2(2k− 1)lu

3hl
, (30f)

m̄6 =
−51hk + 60h− 3k2 − 30kl + 6k + 56l − 3

6hl
, (30g)

m̄7 =
9hk + 40hl − 9h + 22kl − 26l

6hl
, (30h)

m̄8 =
−31h− 4k + 4

6h
. (30i)

To study the roots of this equation, x(u, k, h, l), let us first fix u = u0, h = h0, and l = l0.
This way, the solutions will be of the form xi(k) (i = 1, 9), and we present some examples
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in the following. In Figure 4, the k-profiles of the solutions within the domains where
xi ∈ R are plotted for a slowly rotating black hole with u0 = 0.3, h0 = 0.08, and l0 = 10−6,
for which x+ = 1.607. In these diagrams, we used ki→j to notate the values of k at which
the solutions xi and xj (i ≤ j) coincide. As can be seen in the left panel of the figure,
x3, x4 < x+ for 0 < k < k5→3. After this point, we have real values only for x3, x4 > x+.
Both of these radii connect to x5, respectively, after k5→3 = 1.838 and k5→4 = 2.388 and at
x = 2.512 and x = 4.934. Furthermore, x1 and x2 are real-valued only inside the event
horizon. x5 has two significant branches in the domains k6→5 = 0.894 < k < k5→3
and k > k5→4 that respect the condition x5 > x+. At its upper limit, x5 connects x6 at
x = 6.318. Note that these radii correspond to unbound orbits. In fact, bound orbits
can occur inside the event horizon for the case where x5, x6 < x+ within the domain
0 < k < k6→5 = 0.144. These two branches coincide at x = 1.502. The other possibility
corresponds to the solutions x7 and x8, which are shown separately in the right panel
of Figure 4. These radii are located outside the event horizon and are real-valued in the
domain 0 < k < k8→7 = 0.008, for which they coincide at x = 2.45. Since this latter case
corresponds to bound orbits outside the event horizon, it is worth discussing the stability
of the orbits in these radii, which will be referred to further in this section. However, before
that, let us consider the k-profile of the solutions for a fast-rotating black hole with u = 0.9
and the same values for the other parameters, for which x+ = 1.603. In Figure 5, the regions
where xi ∈ R are shown for this particular case. As before, the real parts of x8 and x9
coincide. According to the figure, x3, x4 < x+ for k4→3 = 0.0003 < k < k5→3 = 1.615.
Beyond this domain, x3 and x4 switch, respectively, to x1 and x2 inside the event horizon,
and outside it, they have real values after k5→3 and k5→4 = 2.546. The solution x5 has
three branches, which are ramified as follows. For k4→3 < k < k6→5 = 0.250, it is x5 < x+,
whereas for k6→5 = 0.731 < k < k5→4, it holds that x5 > x+. A particular domain for
this case corresponds to 0.731 < k < k8 = 0.901, within which bound orbits can form
outside the event horizon. In this domain, the lower limit of x8 ∈ R occurs at x = 6.840.
Beyond this point, x5 > x+ is real-valued only in the region k > k5→4. The solution x6 is
divided into two branches outside the event horizon, which correspond to the domains
k4→3 < k < k6→5 = 0.250 and k6→5 = 0.731 < k < k6 = 1.137, within which the upper
limit of x6 ∈ R occurs at x = 3.40. Again, bound orbits can form inside the domain
0.731 < k < k8. Note that the real part of the solution x7 coincides with that of x6.

0 1 2 3 4 5
0

2

4

6

8

k

x

u = 0.3, h = 0.08

x+
x5 = x6

k53k65 k54

x3 = x5

x5 = x6

x4 = x5

x1

x2

x3

x4

x5

x6

x7

x8

(a)

0.000 0.002 0.004 0.006 0.008 0.010
2.30

2.35

2.40
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2.50

2.55

2.60

k

x

u = 0.3, h = 0.08

k87

x7 = x8

x7

x8

(b)

Figure 4. The x− k diagrams for the real parts of the solutions xi of Equation (29) plotted for h = 0.08,
l = 10−6, and u = 0.3. In panel (a), the whole range of k is shown, whereas the range at which x7 and
x8 are real is magnified in panel (b). The color coding of the solutions xi used here is also applied in
all of the forthcoming diagrams within the paper.
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Figure 5. The x − k diagram for the real parts of the solutions xi plotted for h = 0.08, l = 10−6,
and u = 0.9.

To proceed further, it is also important to distinguish between the directions of planar
orbits outside the event horizon within the energy domains discussed above. For this
reason, we construct the set of solutions xi(u) ≡ x(u, k0, h0, l0) so that the u-profiles of the
roots of the nonic equation can be checked. Considering the previous values for h0 and l0,
the critical value of the spin parameter is uext = 0.923, for which x+ = x− = xext = 0.902,
giving the extremal black hole horizon where the event and Cauchy horizons coincide. We
first consider k0 = 0.003, which lies in the energy domain of Figure 4b and corresponds
to the evolution of x7 and x8. The u-profiles of the solutions are shown in the left panel of
Figure 6. Like before, we now let ui→j to notate the values of the spin parameter, for which
xi = xj. As expected from the x− k diagrams, x1 and x2 are totally complex-valued for
this particular case, so they are absent from the profiles. Furthermore, the real parts of x8
and x9 coincide. In this diagram, we also show how the event and Cauchy horizons evolve
until they reach the extremal radius. The solutions x3, x4, x5, and x6 are inside the event
horizon for this energy, but they are real-valued up to u = u5→4 = 1.06 > uext, so this will
also be available around a naked singularity. At this point, the solutions x4 and x5 meet at
x = 0.574. The two other solutions x7 and x8 exist outside the event horizon and, when
the spin parameter is increased up to u8→7 = 0.463, they finally coincide at x = 2.505.
Note that x7 and x8 correspond, respectively, to the retrograde and prograde planar orbits for
this choice of energy and are confined in the range 1.972 < x < 2.505 within the domain
u7→6 = 0.013 < u < u8→7 = 0.463.

Let us now consider another example by choosing k0 = 3.2, which corresponds to the
unbound orbits in Figure 4a. In this case, x6, x7, x8, x9 ∈ C, and the real-valued parts of x4
and x5 coincide. The solutions x1, x2, x3 < x+ are extended beyond uext up to u3→2 = 0.980,
where x2 = x3 = 0.984. Hence, they are available around the naked singularity. The other
two solutions x3, x4 > x+ coincide at x = 3.367 for u2→1 = 0.004, the spin parameter value
at which we also find that x1 = x2 = 0.001. Note that x3 and x4 correspond, respectively,
to prograde and retrograde planar orbits.

Now that we have established that bound orbits outside the event horizon can be
present on x7 and x8 for the above examples, we can inspect their stability. In fact, the sta-
bility condition for spherical particle orbits respects the additional condition R′′(x) ≥ 0.
From Equation (21a) and the changes in the variables in Equation (27), one can infer that

R′′(x) = 30lx4 − 20hx3 + 12
[
klu− (1− k)

]
x2 + 6(2− hku)x− 2u(1− k). (31)
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Figure 6. The x− u diagrams for the real parts of the solutions xi plotted for h = 0.08 and l = 10−6:
(a) k = 0.003 and (b) k = 3.2.

In Figure 7, the u-profile of the above function is plotted for the two radii x7(u) and
x8(u), in agreement with the parameter values considered in Figure 6a. As expected,
the values of R′′(x) for these two solutions are restricted to the range u7→6 < u < u8→7,
and in both cases, R′′(x) > 0. Hence, the values of x7 and x8 correspond to stable circular
orbits located outside the event horizon. These orbits can, therefore, serve as generators
of the ISCO for the RdRGT black hole when k = 0.003 and u = 0.3. On the other hand,
to obtain the OSCO for this spin parameter, we can choose either x5 or x6 while ensuring
that the energy range satisfies k6→5 = 0.894 ≤ 1.
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2.4

2.6

2.8

u

R
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(x
)

k = 0.003, h = 0.08

u87u76

prograde

retrograde

Figure 7. The u-profile of R′′(x) plotted for x7 and x8 in accordance with Figure 6a.

Non-Monotonic Behavior of the Solutions

The above examples provide numerical solutions for determining the radii of prograde
and retrograde circular orbits. Table 1 presents additional examples obtained by solving the
nonic Equation (29) for the cases where k = 0, 1, and 2, in accordance with the parameter
values shown in Figures 4–6. This table offers a clearer understanding of the variations in
these radii outside the event horizon for the aforementioned cases. It should be noted that,
under certain circumstances, prograde or retrograde trajectories with nonzero energies
will only be possible inside the event horizon, which is why they are not included in the
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table. Here, we argue that these radii can also be calibrated by finding the critical values of
the spacetime parameters. To fulfill this task, let us calculate the discriminant of the nonic
Equation (29) with respect to the u-parameter, which is obtained as

δ∆9 = h
[
− 432k3x4 + 4k2x

(
−72lx5 + 216x3 − 414x2

)
− 4k

(
−72lx6 + 186lx5 + 108x4 − 414x3 + 360x2

)]
+ 144k4x3 + 48k3x2

(
4lx3 − 9x + 15

)
+ 4k2x

(
16l2x6 − 96lx4 + 180lx3 + 108x2 − 360x + 288

)
− 4k

[
16l2x7 − 40l2x6 − 48lx5 + 180lx4 − 6(26l − 6)x3 − 180x2 + 288x− 144

]
+ 4l2(5− 2x)2x5, (32)

up to the first order of h, which provides the critical value

hcrit =
1

6kx2
[
12(k− 1)lx4 + 18(k− 1)2x2 + 69(k− 1)x + 31lx3 + 60

][36k4x3 + 12k3x2
(

4lx3 − 9x + 15
)

+ 4k2x
(

4l2x6 − 24lx4 + 45lx3 + 27x2 − 90x + 72
)
− 4k

(
4l2x7 − 10l2x6 − 12lx5 + 45lx4

+ (9− 39l)x3 − 45x2 + 72x− 36
)
+ l2(5− 2x)2x5

]
, (33)

for which δ∆9 = 0. By means of this critical value, one can determine the turning points of
the polynomial (29). For the zero-energy particles with k = 0, we get

h0
crit =

2
[
4l2x7 − 10l2x6 − 12lx5 + 45lx4 + (9− 39l)x3 − 45x2 + 72x− 36

]
3x2(12lx4 − 31lx3 − 18x2 + 69x− 60)

. (34)

Furthermore, for k = 1 and k = 2, we obtain

h1
crit =

l2(2x + 5)2x5 + 156lx3 + 144
6x2(31lx3 + 60)

, (35)

h2
crit =

36l2x7 + 60l2x6 + l(25l + 96)x5 + 360lx4 + 24(13l + 3)x3 + 360x2 + 576x + 288
12x2(12lx4 + 31lx3 + 18x2 + 69x + 60)

. (36)

Table 1. The radii of prograde and retrograde orbits outside the event horizon for different energies
and spin parameters obtained by assuming h = 0.08 and l = 10−6.

k u xprograde xretrograde k u xprograde xretrograde k u xprograde xretrograde

0 0.1 1.762 2.213, 2.517 1 0.1 – 4.047 2 0.1 2.918 –
0 0.2 1.652 2.295, 2.533 1 0.2 – 4.096 2 0.2 2.677 –
0 0.3 1.562 2.357, 2.549 1 0.3 – 4.144 2 0.3 2.473 –
0 0.4 1.480 2.408, 2.564 1 0.4 – 4.193 2 0.4 2.289 –
0 0.5 1.403 2.452, 2.578 1 0.5 – 4.242 2 0.5 2.115 –
0 0.6 1.328 2.491, 2.593 1 0.6 – 4.290 2 0.6 1.944 –
0 0.7 1.252 2.526, 2.606 1 0.7 – 4.338 2 0.7 1.769 –
0 0.8 1.175 2.559, 2.619 1 0.8 1.730 2.269, 4.386 2 0.8 1.578 –
0 0.9 1.092 2.590, 2.632 1 0.9 1.335 2.437, 4.432 2 0.9 1.345 –
0 1.0 1.0 2.618, 2.644 1 1.0 – 2.529, 4.478 2 1.0 – –

Now, to find the desired radii, we first consider examples of h0 and make them equal to
hi

crit (i = 0, 1, 2). Using Equations (34)–(36), the values of x0 can be obtained for each of the
energy cases where k = 0, 1, and 2. The nonic equation p9(x0, u, {k0 = 0, 1, 2}, h0, l0) = 0 is
then solved for u to find the corresponding u0 for each of the cases. This spin parameter
is again substituted in the nonic equation p9(x, u0, {k0 = 0, 1, 2}, h0, l0) = 0 to find the
x-solutions. For example, for k0 = 0, h0 = 0.08, and l0 = 10−6, the prograde and retrograde
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radii are obtained as xprograde = 1.542 and xretrograde = 2.367, corresponding to u0 = 0.319,
which are in conformity with the data given in Table 1.

In this section, we have examined the characteristic equations governing the radii of
planar orbits around the RdRGT black hole. These orbits correspond to the case where
ν = 0 in the main Equation (25). For the investigation of polar orbits, characterized by
ν = 1 in Equation (25), a polynomial equation of the 14th order is once again obtained.
However, instead of directly analyzing this equation, we can exploit the fact that, for polar
orbits, Lc = 0. By utilizing Equation (22) and performing some algebraic manipulations,
we arrive at the octic equation

4lx8 − (3h + 14l)x7 + (11h + 4k + 6lu + 10l − 2)x6

− (5hu + 8h + 8k + 6lu− 10)x5 + (5hu + 4ku + 6k− 8u− 16)x4

+ 4(2− 2ku + 3u)x3 + 2
(

ku2 + 2ku− u2 − 4u
)

x2 + 2u2x− 2ku2 = 0. (37)

Indeed, the methods employed to analyze the behavior of the solutions of the afore-
mentioned equation are quite similar to those discussed earlier for the nonic Equation (29).
Consequently, we can close this section at this point and proceed with our study by cal-
culating the analytical solutions for the orbits. With these solutions available, it becomes
feasible to perform simulations of spherical orbits around an RdRGT black hole.

However, before proceeding to the next section, it is crucial to highlight some impor-
tant features of stable circular orbits. In particular, solutions such as x7 and x8 correspond
to extremums in the radial effective potential experienced by particles as they approach the
black hole. These radii give rise to circular orbits within the equatorial plane. When these
extremums represent minima in the effective potential (as in the cases of x7 and x8), the sta-
bility of these orbits implies that deviations from these minima result in unstable orbits.
In such cases, particles exhibit Keplerian motion, oscillating between two points known as
the periapsis and apoapsis of their trajectories. It is important to note that, unlike circular
orbits, these Keplerian trajectories are non-planar and correspond to planetary bound orbits.
However, when deviations from the potential minima become significant and the turning
points approach the maximum of the effective potential, marginally bound orbits occur.
At this point, particles have the opportunity to escape the black hole. The maximum of
the effective potential exhibits a certain degree of stability, allowing for the existence of
spherical orbits. Nevertheless, these orbits are highly sensitive to radial perturbations,
which can cause the transition from bound to unbound motion. Hence, particles can deflect
and escape from the black hole when approaching the maximum of the effective potential.
In summary, the bound and marginally bound circular orbits encompass two additional
motion possibilities: particles can either remain confined to the black hole or escape from
its gravitational field.

Now that we have discussed the classifications of particle motion in black hole space-
times, we can continue with the derivation of the analytical solutions for the equations of
motion governing spherical orbits.

4. Analytical Solutions for the Spherical Particle Orbits

In this section, we derive the analytical solutions for the evolution equations governing
the polar and azimuth angles of spherical orbits, as described in Section 3. As discussed
previously, the classification of geodesics is based on the energy values, which determine
whether the particle motion is bound or unbound. The solutions encompass both planar
and non-planar orbits corresponding to the cases where ν = 0 and ν 6= 0, respectively.

4.1. The Latitudinal Motion

Considering the definitions in Equations (27) and (28), one can re-write the evolution
Equation (18) as

−dZ
dλ

=
√

ΘZ, (38)
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in which Z = cos θ. For bound orbits of massive particles (i.e., k ≤ 1), we specify

ΘZ = (1− k)uZ4 −
[
(1− k)u− L2

1− ν

]
Z2 +

L2ν

1− ν
. (39)

Naturally, for planar orbits with ν = 0, the above expression reduces to ΘZ =
(1 − k)uZ4 − (L2 + u − uk)Z2, whereas for polar orbits with L = 0, it becomes ΘZ =
(1− k)uZ2(Z2 − 1). Note that Equation (39) can help us determine the maximum and
minimum latitudes reachable by particles, which are the angular values where ΘZ = 0.
This equation provides the values

Z2
max
min

=
1

2Z0

[
L2 + Z0 ±

√
(L2 + Z0)

2 − 4L2νZ0

]
, (40)

with Z0 = (1− k)(1− ν)u, which confine the Z-parameter. In this way, the polar angle
θ oscillates in the domain θ ∈ [θmin, θmax], in which θmin = arccos(Zmax) and θmax =
arccos(Zmin). Note that there is a sign change for the azimuth angle φ, where dφ/dλ = 0,
and this can be determined by means of Equation (19). After the substitutions, this angular
turning point is obtained as

Z2
t =

(√
ku− L

)(
lx4 − hx3 + 2x

)
+ Lx2

√
ku
(

lx4 − hx3 + 2x
)
− lu

. (41)

Hence, one can infer that the physically acceptable polar segments are where |Zt| <
|Zmax|. Now, to obtain the exact analytical solution to the evolution of the polar angle, we
directly integrate Equation (38), which, after proper substitutions, results in

θ(λ) = arccos
(

Zmax −
3

ψ2 − 12℘(
√

ψ λ)

)
, (42)

in which ℘(· · · ) ≡ ℘(· · · ; ḡ2, ḡ3) is the Weierstrassian ℘ elliptic function with the invariants

ḡ2 = −1
4

(
ψ1 −

ψ2
2

3

)
, (43a)

ḡ3 = − 1
16

(
2ψ3

2
27
− ψ1ψ2

3
− ψ0

)
, (43b)

where

ψ0 =
(1− k)u

ψ
, (44a)

ψ1 =
4Zmax(1− k)u

ψ
, (44b)

ψ2 = − 1
ψ

[
(1− k)u− L2

1− ν
− 6Z2

max(1− k)u
]

, (44c)

ψ = Zmax

[
(1− k)uZ2

max + (1− k)u− L2

1− ν

]
− Zmax

[
L2

1− ν
− (1− k)u

]
+ 3(1− k)uZ3

max. (44d)

The above solution can also be used to determine the Mino time at which the θ-
profile periodically traverses the equatorial plane and generates nodes. Thus, for each full
oscillation of the θ-coordinate, the profile encounters two nodes. According to Equation (42),
we get
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λnod =
1√
ψ
℘−1

(
ψ2

12
− 1

4Zmax

)
, (45)

for θ = π/2, where ℘−1(· · · ) ≡ ℘−1(· · · ; ḡ2, ḡ3). Note that, for unbound orbits with
k > 1, the form of the analytical solution in Equation (42) remains the same; however,
the Weierstrass invariants in Equation (43) are affected through the exchange (1− k) →
(k− 1) in the quantities in Equation (44).

4.2. The Azimuth Motion

The solution to the evolution equation (19) can be written as

φ(λ) = C(xi)Φθ1(λ) + Φθ2(λ), (46)

for spherical particle orbits on the radii xi, where

C(xi) =

√
uk

∆(xi)

[
x2

i + u− u ξc(xi)− ∆(xi)
]
, (47a)

Φθ1(λ) =
∫ θ(λ) dθ√

Θ(θ)
, (47b)

Φθ2(λ) = ξc

∫ θ(λ) dθ

sin2 θ
√

Θ(θ)
, (47c)

in which ξc(x) = Lc(x)/
√

k, is the impact parameter of particles. The integral in Equation (47b)
can be directly calculated from the solution in Equation (42), which provides

Φθ1(λ) =
1√
ψ
℘−1

(
ψ2

4
−Uθ

)
, (48)

where
Uθ =

ψ2

6
+

1
4[Zmax − cos θ]

. (49)

In addition, the integral in Equation (47c) can be solved by the same methods, yielding
the following:

Φθ2(λ) = K0

[
K1F1(Uθ)−K2F2(Uθ)−

√
ψλ
]
, (50)

where

K0 =
ξ2

c

u(1− Zmax)(1 + Zmax)
√

2Zmax
(
Z2

max + Z2
0
) , (51a)

K1 =
1 + Zmax

8(1− Zmax)
, (51b)

K2 =
1− Zmax

8(1 + Zmax)
, (51c)

and

Fj(Uθ) =
1

℘′(υj)

[
ln

(
σ
(
(Uθ)− υj

)
σ
(
(Uθ) + υj

))+ 2(Uθ)ζ(υj)

]
, j = 1, 2, (52)

in which ℘′(υ) = d℘(υ)/dυ. Furthermore, σ(· · · ) and ζ(· · · ) are the sigma and zeta
Weierstrassian elliptic functions, and the Weierstrass invariants are the same as those given
in Equation (43). In Equation (52), we defined
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υ1 = ℘−1
(

ψ2

12
− 1

4|1− Zmax|

)
, (53a)

υ2 = ℘−1
(

ψ2

12
− 1

4|1 + Zmax|

)
. (53b)

In order to simulate the orbits, it is convenient to choose φ(Zmax) = 0. Then, by
interpolating θ → θ(λ) in Equation (48), the evolution of the φ-coordinate can be ob-
tained explicitly.

4.3. Explicit Examples of Non-Planar Orbits

We can now apply the analytical solutions obtained above to provide some illustrative
examples of spherical particle orbits around an RdRGT black hole. To proceed with this, we
first have to consider some specific initial conditions for the black hole parameters. We then
span the analytical solutions in Equations (42) and (46) onto a Cartesian system defined as

X = x sin θ cos φ, (54a)

Y = x sin θ sin φ, (54b)

Z = x cos θ. (54c)

In Figure 8, we use the data given in Table 2 to simulate some exemplary bound
and unbound spherical orbits for slow- and fast-rotating RdRGT black holes. The radii
of the orbits are obtained by numerically solving the general Equation (25) for different
inclinations. Referring to the table, case (a) is related to the solution x7 in Figure 4b but here
corresponds to a retrograde bound orbit above the equatorial plane. In the same sense,
case (b) is related to the solution x6, which, for the selected energy value, corresponds to
a bound orbit above the equatorial plane. The other non-planar orbits are assumed as
follows. Case (c) considers a retrograde bound orbit for a fast-rotating black hole. In case
(d), a prograde unbound orbit is assumed. Case (e) once again assumes a retrograde bound
orbit, which is here derived for low energies. Case (f) corresponds to a retrograde unbound
orbit for a fast-rotating black hole. In case (g), we present an example of a prograde bound
orbit around an extremal black hole, and finally, in case (h), a polar bound orbit around
a fast-rotating black hole is considered. As expected, increasing the inclination leads to
orbits that span broader regions of the spherical surface accompanied by an increase in the
frequency of polar angle oscillations. This behavior persists until the orbits become entirely
polar when ν = 1. Additionally, we observe that, for the same inclination, an increase in
the spin parameter reduces the difference between consecutive values of λnod, as the orbits
more frequently intersect the equatorial plane. Furthermore, we discover that a lower
massive gravity parameter results in more uniform orbits.

Table 2. The information for the exemplary cases outside the event horizon considered for l = 10−6.

Name u ν h k xi ξc(xi)

(a) 0.3 0.1 0.08 0.003 2.342 7.093
(b) 0.9 0.1 0.08 0.890 1.921 2.208
(c) 0.85 0.3 0.04 0.91 5.038 6.590
(d) 0.5 0.4 0.004 1.1 2.533 3.938
(e) 0.6 0.6 0.0004 0.93 5.803 7.916
(f) 0.8 0.7 0.01 1.3 4.109 2.711
(g) uext = 0.990 0.9 0.001 0.9 2.922 1.067
(h) 0.85 1 (polar) 0.0001 1 3.497 0.0045
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8. Some examples of spherical particle orbits in accordance with the data presented in Table 2.
The sphere indicates the closure of points swept by the radii xi, which is cut into halves by a circle on
the θ = π/2 surface.

Given that the solutions are fully analytic, the aforementioned findings can be repli-
cated with different examples, allowing for simulations of various types of orbits. Conse-
quently, we leave the discussion at this point and proceed to summarize our results in the
following section.

5. Summary and Conclusions

In this paper, we presented a comprehensive analysis of the spherical orbits of massive
particles around an RdRGT black hole. Our investigation encompassed both analytical
and numerical approaches, with a focus on providing exact analytical solutions whenever
feasible. Commencing our investigation, we provided a concise overview of the dRGT
massive theory of gravity and its static black hole solution. Employing a modified version of
the Newman–Janis algorithm, we proceeded to construct a rotating analog of the spacetime
specifically termed the RdRGT solution. We then examined the causal structure of this
spacetime by studying the fourth-order polynomial equation ∆(r) = 0. We found that,
under certain conditions, the equation’s discriminant is positive, implying the presence
of three horizons for the black hole. By considering particular parameter cases, we were
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able to determine specific ranges for the massive gravity parameter for the RdRGT black
hole with three horizons. We obtained the analytical expressions for the radial positions
of the horizons and complemented our findings with a numerical investigation. This
numerical study aimed to illustrate the radial evolution of the black hole horizons and
the static-limit hypersurfaces for various values of the massive gravity parameter. We
continued our investigation by presenting the nonlinear differential equations of motion
for massive particles and derived the conditions for the motion invariants that lead to
spherical orbits. Subsequently, we derived the complete characteristic polynomial equation
governing the radii of spherical particle orbits in the RdRGT spacetime. This equation
is of the 14th order and encompasses all possible inclinations. To focus our analysis, we
specifically examined planar orbits confined to the equatorial plane, resulting in a nonic
equation. A numerical analysis of the solutions to this nonic equation was conducted
that considered various aspects, such as their evolution in terms of the energy and spin
parameter for specific cases. We observed certain discontinuities in the energy profiles;
however, we found that the bound and unbound solutions remain connected under specific
criteria. By calculating the connecting energies, we argued that there exist potentially bound
and stable solutions beyond the event horizon. Additionally, we conducted a detailed
numerical examination of the solutions’ evolution in relation to variations in the spin
parameter, distinguishing between prograde and retrograde particle orbits. Interestingly,
we discovered that the solutions remain valid even in the presence of naked singularities.
In all cases, we numerically calculated the intersection points for the energy and spin
parameter, accompanied by their corresponding radial distances. Furthermore, through
a comprehensive stability analysis, we established the existence of at least two stable
solutions outside the event horizon, which could potentially serve as candidates for the
ISCO around the RdRGT black hole. We terminated our study on the radii of spherical
orbits by examining the critical values of the massive gravity parameter at which the nonic
equation becomes degenerate. We demonstrated that, by utilizing these critical values, we
can obtain the solutions effectively by regenerating the desired spin parameters associated
with each of the roots. The obtained results were consistent with the previously determined
radii of prograde and retrograde orbits for each specific case. In the final section of the
paper, we focused on obtaining analytical solutions for the angular equations of motion.
This involved solving the evolution equations for both the polar and azimuth angles in
their most general forms. By directly integrating the original differential equations, we
expressed the solutions in terms of the Weierstrassian elliptic functions, which covered
both the bound and unbound orbits at constant radii. To further explore their practical
implications, we considered specific cases involving definite values for the black hole
parameters and the initial energy of the test particles. Utilizing the derived analytical
solutions, we simulated the motion of the test particles on spherical orbits. This approach
included a gradual increase in the inclination while the overall massive gravity parameter
decreased. We considered different spin parameters and energies to encompass both bound
and unbound orbits around regular and extremal states of the RdRGT black hole. Our
investigations revealed a variety of behaviors ranging from nearly planar orbits to polar
orbits. In this paper, we conducted numerical investigations into the solutions to a nonic
equation and performed analytical studies of the equations of motion. Since the black hole
spacetime of the RdRGT black hole extends that of the Kerr black hole, the results and
methods presented in this study can be applied to different types of stationary spacetimes
derived from other extended theories of gravity that involve different matter properties.

For example, one intriguing aspect that can be studied is the redshift and blueshift
of particles trapped by the gravitational pull of an RdRGT black hole, for which a similar
approach as in ref. [48] can be used. Furthermore, it is possible to investigate the shape
of RdRGT black holes by examining the distribution of accreting material along orbits of
constant radius. This can lead to predictions regarding the observed shapes of astrophysical
black holes, such as M87* and Sgr A* [49]. The methods used in this paper can also be
applied to study the evolution of the ISCOs in dynamical spacetimes [50]. Additionally,
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the reflection symmetry of the RdRGT black hole can be explored, which may provide in-
sights into the existence of curved accretion disks [51]. Moreover, numerical analyses of the
radii of planar orbits can be conducted for various axially symmetric spacetimes, serving
as tests for the analytical solutions [52]. These methods can also be extended to investigate
spherical particle orbits and accretion in stationary black holes with quintessential parame-
ters or minimally coupled scalar fields [53,54]. In addition, the study of gravitomagnetic
phenomena, such as the Lense–Thirring effect, can be carried out for orbits of constant
radius in stationary spacetimes [55]. All of these investigations can be further extended to
explore regular rotating black holes and solitons [56]. Recently, a new concept for particle
surfaces was defined in ref. [57]. These surfaces represent the collection of points swept
by particles on spherical orbits. This notion can be generalized to other types of stationary
spacetimes using the methods provided in our paper and can be used to delimit the regions
of particles around black holes. These are just a few examples of potentially interesting
subjects that can be investigated in future work utilizing the numerical and analytical
methods discussed in this paper.
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Appendix A. The Roots of the Polynomial Equation ∆(r) = 0

By employing the method outlined in Appendix B of ref. [58], the solutions to the
suppressed quartic Equation (15) can be derived as follows:

r1 =
1
Λ

[
Ã+

√
Ã2 − B̃

]
+

3γ

4Λ
, (A1)

r2 =
1
Λ

[
Ã −

√
Ã2 − B̃

]
+

3γ

4Λ
, (A2)

r3 =
1
Λ

[
−Ã+

√
Ã2 − C̃

]
+

3γ

4Λ
, (A3)

r4 =
1
Λ

[
−Ã −

√
Ã2 − C̃

]
+

3γ

4Λ
, (A4)

in which

Ã =

√
Ũ − A

6
, (A5a)

B̃ = 2Ã2 +
A
2
+
B

4Ã
, (A5b)

C̃ = 2Ã2 +
A
2
− B

4Ã
, (A5c)
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where

A = −
(

27γ2

8Λ3 +
3

Λ2

)
Λ3, (A6a)

B =

(
6M
Λ
− 27γ3

8Λ3 −
9γ

2Λ2

)
Λ3, (A6b)

C =
(

2Mγ

2Λ
− 27γ2

16Λ2 −
243γ4

256Λ3 − 3a2
)

Λ3, (A6c)

and

Ũ =

√
g2

3
cosh

(
1
3

arccosh

(
3g3

√
3
g3

2

))
, (A7)

with

g2 =
A2

48
+
C
4

, (A8a)

g3 =
A3

864
− AC

24
+
B2

64
. (A8b)
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