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Abstract: Under axial and azimuthal magnetic inductions, the similarity solutions for a cylindrical
shock wave in a weakly conducting ideal gas are determined using the Lie group invariance method.
The axial and azimuthal magnetic inductions and density are presumed to vary in an ambient
medium. This study determines the form of expression for axial and azimuthal magnetic inductions
in the ambient medium. The ambient density is considered to be varying according to the power
law of the shock radius. The weakly conducting medium causes inadequate magnetic freezing. We
have numerically solved the system of ordinary differential equations that resulted from applying
the Lie group invariance method to the system of partial differential equations. The impact of the
variation in the ambient density exponent, the ratio of specific heats, magnetic Reynolds number, or
the inverse square of axial and azimuthal Alfven Mach numbers on the shock strength and the flow
variables behind the shock front is discussed. It is found that the shock strength decreases with an
increase in the ratio of specific heats, magnetic Reynolds number, or the inverse square of axial and
azimuthal Alfven Mach numbers.

Keywords: Lie group analysis; weakly conducting gases; axial and azimuthal magnetic inductions;
cylindrical shock wave

1. Introduction

Shock waves are powerful disturbances propagating through a medium, resulting in a
sudden and significant change in flow variables such as pressure, temperature, density, etc.
Shock wave generation can be achieved through different mechanisms, including explosive
detonation, high-velocity projectiles, or focused energy sources like lasers. These methods
induce a sudden release of energy, leading to the formation of shock waves that propagate
outward from the source. Shock waves offer unique opportunities to investigate extreme
conditions that are otherwise difficult to reproduce in a laboratory setting. They provide a
means to explore phenomena such as high-temperature and high-pressure states, phase
transitions, and chemical reactions under extreme conditions.

Understanding the fundamental physics of shock wave propagation under the influ-
ence of magnetic fields has implications in various fields. In astrophysics, the interaction
of shock waves with magnetic fields is crucial for understanding the formation of stars,
the dynamics of supernova remnants, and the acceleration of cosmic rays. In laboratory
settings, strong magnetic fields in plasma physics and fusion reactions play a critical role
in the confinement and compression of high-temperature plasmas (see [1–3]). The effects
of magnetic fields on blast waves (see Sedov [4]) have been thoroughly addressed by
Lerche [5,6] for both spherical and cylindrical geometries. By using the approach of Sedov
(see Sedov [4]), Nath [7] has obtained self-similar solutions for strong cylindrical shock
waves with isothermal flow conditions and investigated the effect of rotational parameters
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and the azimuthal magnetic field on the shock dynamics. Some of the important research
on shock waves in magnetogasdynamic can be seen in (see [8,9]).

The behavior of shock waves in magnetic fields varies significantly between gases
with high electrical conductivity, known as perfectly conducting gases, and those with
low electrical conductivity, known as weakly conducting gases. In perfectly conducting
gases, the magnetic field becomes closely intertwined with the fluid flow, resulting in
magnetic freezing. This phenomenon occurs when the magnetic field lines attach to the
fluid components, causing any changes in the compression or expansion of the fluid to
impact the configuration of the magnetic field directly. Conversely, in weakly conducting
gases with limited electrical conductivity, the interaction between shock waves, magnetic
fields, and the gas itself is influenced by a combination of thermodynamic, hydrodynamic,
and electromagnetic effects. Unlike perfectly conducting gases, weakly conducting gases do
not exhibit complete magnetic freezing; instead, the magnetic field can partially penetrate
the fluid, leading to a more intricate behavior of shock waves (see [10,11]).

The method of self-similarity (see Sedov [4]) was used by Vishwakarma and Patel [12]
to describe cylindrical shock waves moving through a low-conducting gas medium while
being influenced by the axial and azimuthal components of magnetic induction. By using
the Chester–Chisnell–Whitham (CCW) approach, Vishwakarma and Srivastava [13] have
investigated cylindrical detonation waves propagating in weakly ionized, strongly ionized,
and non-ionized non-ideal gases under the influence of an azimuthal magnetic field. Under
the influence of axial magnetic induction, Vishwakarma et al. [14] have investigated the
similarity solutions in a weakly conducting dusty gas (a mixture of perfect gas and small
solid particles).

Shock waves are frequently described using nonlinear partial differential equations
(PDEs). To gain insight into the mathematical aspects and analyze these shock waves, we
have employed the Lie group invariance method (LGIM). This method is known for its
effectiveness and provides a structured approach to examining shock wave characteristics
by converting the governing nonlinear PDEs into a set of ordinary differential equations
(ODEs) using symmetries of differential equations (see [15–20]). Golovin [21] has discussed
the bases of differential invariants for infinite-dimensional Lie groups. The possibilities
of bases applications to construct differentially invariant solutions for the Navier–Stokes
and gas dynamics equations are also discussed in [21]. Golovin [22] has examined the
incompressible and stationary flows of an ideal plasma with constant total pressure by
employing a curvilinear coordinate system in which streamlines and magnetic force lines
collectively establish a set of coordinate surfaces, and the partial integral of the MHD
equations are obtained and reformulated into a more convenient expression. The classes of
solutions with constant total pressure in the case of non-stationary flows have been investi-
gated by Golovin [23]. Dorodnitsyn and Kaptsov [24] have studied the one-dimensional
shallow-water equations in Eulerian and Lagrangian coordinates. They have derived
the relationship between symmetries and conservation laws in Lagrangian coordinates.
Furthermore, the Lie group classification of the two-dimensional shallow-water equations
with variable bottom topography in Lagrangian coordinates is discussed by Dorodnitsyn
et al. [25]. Many mathematicians and physicists have used the Lie group analysis method
to study differential equations that describe a wide range of physical phenomena and
problems (see [26–28]).

As known to us, no one has used the Lie group invariance technique to investigate the
similarity solution for a cylindrical shock wave propagating through a weakly conducting,
ideal gas medium subjected to axial and azimuthal magnetic inductions. In this study,
by utilizing the Lie group theoretical method, we have obtained the similarity solutions
for shock waves propagating in a weakly conducting perfect gas under the influence of
azimuthal and axial magnetic inductions. The effects of the adiabatic index, the ambi-
ent density variation exponent, magnetic Reynolds number, and the inverse square of
azimuthal and axial Alfven Mach numbers on the shock strength and the flow variables
behind the shock front are discussed. It is found that the shock waves decay with an
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increase in the value of the ratio of the specific heat. Furthermore, the parameter ratio of
specific heats, magnetic Reynolds number, and the inverse square of axial and azimuthal
Alfven Mach numbers have similar effects on the shock strength.

2. Governing Equations

In the presence of axial and azimuthal magnetic inductions, the fundamental equations
describing the unsteady, cylindrically symmetric motion of a weakly conducting gas are
(Taylor [29], Sakurai [11], Vishwakarma and Patel [12])

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u
∂r

+
uρ

r
= 0, (1)

∂u
∂t

+ u
∂u
∂r

+
1
ρ

∂p
∂r

+
1
ρ

σu(B2
z0
+ B2

θ0
) = 0, (2)

∂p
∂t

+ u
∂p
∂r
− a2

(
∂ρ

∂t
+ u

∂ρ

∂r

)
− (γ− 1)σu2(B2

z0
+ B2

θ0
) = 0, (3)

∂Bz

∂r
− µσuBz0 = 0, (4)

1
r

∂

∂r
(rBθ)− µσuBθ0 = 0. (5)

where σ is the electrical conductivity, γ is the ratio of specific heats, µ is the magnetic
permeability, and Bθ0 and Bz0 are the azimuthal and axial magnetic inductions in the
medium ahead of the shock front, respectively. Bθ , Bz, p, u, and ρ are the azimuthal
magnetic induction, axial magnetic induction, pressure, velocity, and density, respectively;
t and r represent the time and space coordinates.

The internal energy per unit mass of the gas Ie and the speed of sound a in the gas are
given by

a2 =
γp
ρ

, Ie =
p

ρ(γ− 1)
. (6)

The azimuthal and axial magnetic inductions immediately ahead of the shock front
are functions of time t only and are given by

Bz0 = f (t), Bθ0 = g(t). (7)

The cylindrical shock wave is generated by an explosion along the axis of symmetry,
and it travels through a weakly conducting gas subjected to azimuthal and axial magnetic
inductions, i.e., Bθ0 and Bz0 . Across the shock front, the magnetic induction can be con-
tinuous, as σ is considered small. The shock jump conditions across a strong shock were
obtained by (Sakurai [11], Vishwakarma and Srivastava [13], Vishawakarma et al. [14],
Vishwakarma and Patel [12]),

u1 =
2

γ + 1
D, ρ1 =

γ + 1
γ− 1

ρ0, p1 =
2

γ + 1
ρ0D2, Bz1 = Bz0, Bθ1 = Bθ0. (8)

where D is the shock front’s velocity, and 0 and 1 refer to the conditions immediately ahead
and behind of the shock front, respectively. An azimuthal Alfven Mach number Maθ

, axial
Alfven Mach number Maz , magnetic Reynolds number Rm, and velocity of shock front are
defined by

Maθ
=

(
µρ0D2

B2
θ0

)−1/2

, Maz =

(
µρ0D2

B2
z0

)−1/2

, Rm = µσRD, D =
dR
dt

, (9)

where R is the shock radius.
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3. Similarity Analysis by Using Invariance Group

To develop the similarity solution, we take a one-parameter Lie group of infinitesimal
transformations as

t∗ = t + εψ(t, r, ρ, u, Bz, Bθ , p), r∗ = r + εχ(t, r, ρ, u, Bz, Bθ , p), ρ∗ = ρ + εS(t, r, ρ, u, Bz, Bθ , p),
u∗ = u + εU(t, r, ρ, u, Bz, Bθ , p), B∗z = Bz + εF(t, r, ρ, u, Bz, Bθ , p), B∗θ = Bθ + εG(t, r, ρ, u, Bz, Bθ , p),
p∗ = p + εP(t, r, ρ, u, Bz, Bθ , p),

(10)

where the infinitesimal generators ψ, χ, S, U, F, G, and P are to be calculated so that the
set of Equations (1) to (5), along with the jump conditions (8), are invariant with respect to
the transformations in Equation (10) (see [15–20]). The quantity ε is so small that its square
and higher powers can be neglected.

To carry out the analysis, we introduce more convenient notations. Let x1 = t, x2 = r,

v1 = ρ, v2 = u, v3 = Bz, v4 = Bθ , v5 = p, and pζ
i =

∂vζ

∂xi
, where ζ = 1, 2, 3, 4, 5 and i = 1, 2.

By using these notations, the system of Equations (1) to (5) can be represented as

Zk(xi, vζ , pζ
i ) = 0, k = (1, 2, . . . , 5). (11)

The above system is said to be constantly conformally invariant under the infinitesimal
group of transformations in Equation (10), if there exist constants αks∗(k, s∗ = 1, 2, . . . , 5),
such that

∆Zk = αks∗Zs∗ , (k = 1, 2, . . . , 5), (12)

where ∆ is the Lie derivative in the direction of the extended vector field, and it is defined by

∆ = φi
∂

∂xi
+ Ωζ

∂

∂vζ
+ Aζ

i
∂

∂pζ
i

, (13)

where

Aζ
i =

∂Ωζ

∂xi
+

∂Ωζ

∂vτ
pτ

i −
∂φj

∂xi
pζ

j −
∂φj

∂vτ
pζ

j pτ
i , (14)

where i, j = 1, 2; ζ, τ = 1, 2, 3, 4, 5; and φ1 = ψ, φ2 = χ, Ω1 = S, Ω2 = U, Ω3 = F, Ω4 = G,
Ω5 = P.

The following determining equations can be derived from Equations (1) and (12):

Sρ − ψt − uψr = α11 − γp
ρ α15, Su − ρψr = α12, SBz = SBθ = 0, Sp = α15, uSBz + ρUBz = α13,

uSρ + ρUρ − χt − uχr + U = α11u− γpu
ρ α15, uSu + ρUu − ρχr + S = α11ρ + α12u,

uSBθ + ρUBθ = α14, uSp + ρUp = 1
ρ α12 + α15u,

St + uSr + ρUr − χρu
r2 + u

r S + ρ
r U = α11

ρu
r + α12

σu
r ( f 2(t) + g2(t))− α13µσ f (t)u

+α14(−µuσg(t) + Bθ
r )− α15(γ− 1)σu2( f 2(t) + g2(t)).

(15)

The following determining equations can be derived from Equations (2) and (12):

Uρ = α21 − γp
ρ α25, Uu − ψt − uψr = α22, UBz = 0, UBθ = 0, Up − 1

ρ ψr = α25,
uUρ +

1
ρ Pρ = α21u− γpu

ρ α25, uUu +
1
ρ Pu − χt − uχr + U = α21ρ + α22u, uUBz +

1
ρ PBz = α23,

uUBθ +
1
ρ PBθ = α24, uUp +

1
ρ Pp − 1

ρ χr − 1
ρ2 S = α22

1
ρ + α25u,

Ut + uUr +
2uσψ

ρ (g′(t)g(t) + f ′(t) f (t))− σuS
ρ2 (g2(t) + f 2(t)) + σU

ρ (g2(t) + f 2(t)) = α21
1
r ρu

+α22
σu
ρ (g2(t) + f 2(t))− α23µσu f (t) + α24(−µσug(t) + 1

r Bθ)− α25(γ− 1)σu2( f 2(t) + g2(t)).

(16)

The following determining equations can be derived from Equations (3) and (12):

Fr − ψµσu f ′(t)− µσU f (t) = α31
ρu
r + α32

σu
r ( f 2(t) + g2(t)) + α34(−µσug(t) + 1

r Bθ)
−α33µσu f (t)− α35(γ− 1)σu2( f 2(t) + g2(t)), α31 = α32 = α35 = 0, ψr = 0, , Fu = α31ρ + uα32,
Fρ = uα31 − γpu

ρ α35, FBz − χr = α33, FBθ = α34, Fp = α35u + 1
ρ α32.

(17)

The following determining equations can be derived from Equations (4) and (12):
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Gr − µσuψg′(t)− µσg(t)U + 1
r G− χBθ

r2 = α41
ρu
r + α42

σu
r ( f 2(t) + g2(t))− α43µσu f (t)

+α44(−µσug(t) + 1
r Bθ)− α45(γ− 1)σu2( f 2(t) + g2(t)), α41 = α42 = α45 = 0, ψr = 0,

Gρ = α41u− γpu
ρ α45, Gu = α41ρ + α42u, GBz = α43, GBθ − χr = α44, Gp = 1

ρ α42 + uα45.
(18)

The following determining equations can be derived from Equations (5) and (12):

Pt + uPr − γp
ρ St − γpu

ρ Sr − 2(γ− 1)σuU( f 2(t) + g2(t))− 2(γ− 1)σu2ψ(g′(t)g(t) + f ′(t) f (t))
= α51

ρu
r + α52

σu
r (g2(t) + f 2(t))− α53µσu f (t) + α54(−µσug(t) + 1

r Bθ)
−α55(γ− 1)σu2( f 2(t) + g2(t)), Pρ − γp

ρ Sρ +
γp
ρ ψt +

γp
ρ ψr +

γp
ρ2 S− γ

ρ P = α51 − γp
ρ α55,

Pu − γp
ρ Su = α52, PBz −

γp
ρ SBz = 0, PBθ −

γp
ρ SBθ = 0, Pp − γp

ρ Sp − ψt − uψr = α55,
uPu − γpu

ρ Su = α51ρ + α52u, uPBθ −
γpu

ρ SBθ = α54, uPp − γpu
ρ Sp − χt − uχr + U = α52

1
ρ + α55u,

uPρ − γpu
ρ Sρ +

γp
ρ χt +

γpu
ρ χr +

γpu
ρ2 S− γp

ρ U − γu
ρ P = α51u− γpu

ρ α55, uPBz −
γpu

ρ SBz = α53.

(19)

Together with Equations (15)–(19) mentioned above, the partial derivative of ψ and χ
with respect to ρ, u, Bz, Bθ , and p also vanishes, i.e., we have the relation

χ = χ(r, t), ψ = ψ(r, t). (20)

Solving the above system of over-determining Equations (15)–(19), with the use of
Equation (20), we obtain the infinitesimal generators as follows

ψ = at + c, χ = (α22 + 2a)r, S = (α11 + a)ρ U = (α22 + a)u, F = (α33 + α22 + 2a)Bz,
G = (α44 + α22 + 2a)Bθ , P = (α11 + 2α22 + 3a)p,

(21)

where a, c, α11, α22, α33, and α44 are constants and satisfy the relations

f (t) = e(α33−α22−a)
∫ dt

at+c , g(t) = e(α44−α22−a)
∫ dt

at+c , and
2(at + c)( f ′(t) f (t) + g′(t)g(t))− α11(g2(t) + f 2(t)) = 0.

(22)

4. Similarity Solution

The expression for the infinitesimal generators has arbitrary constants, the values of
which lead to different cases of possible solutions.

Case I: Let a 6= 0, c = 0; then, from Equation (21), we have the infinitesimal genera-
tors as

ψ = at, χ = (α22 + 2a)r, S = (α11 + a)ρ U = (α22 + a)u, F = (α33 + α22 + 2a)Bz,
G = (α44 + α22 + 2a)Bθ , P = (α11 + 2α22 + 3a)p.

(23)

The similarity variable and the similarity transformations are obtained by using the
invariant surface condition. In this case, invariant surface conditions for u, ρ, Bz, Bθ , and p
lead to

ψut + χur = U, ψρt + χρr = S, ψBzt + χBzr = F, ψBθ t + χBθr = G, ψpt + χpr = P. (24)

Integrating Equation (24) with the use of Equation (23), we obtain the expression for
the flow variables in the following form

u = Û(η)tθ1−1, ρ = Ŝ(η)tθ2 , Bz = F̂(η)t(
α33

a +θ1), Bθ = Ĝ(η)t(
α44

a +θ1), p = P̂(η)t(θ2+2(θ1−1)), (25)

where θ1 = ( α22
a + 2), and θ2 = ( α11

a + 1). The functions Ŝ, Û, F̂, Ĝ, and P̂ are totally
dependent on the similarity variable η, calculated as

η =
r

Atθ1
, (26)
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where A is a constant with dimension. Furthermore, we have

R = Atθ1 , D =
dR
dt

=
θ1R

t
. (27)

From Equation (25), the values of Ŝ, Û, F̂, Ĝ, and P̂ at η = 1 are obtained as follows

u
∣∣
η=1 = Û(1)tθ1−1, ρ

∣∣
η=1 = Ŝ(1)tθ2 , Bz

∣∣
η=1 = F̂(1)t(

α33
a +θ1), Bθ

∣∣
η=1 = Ĝ(1)t(

α44
a +θ1),

p
∣∣
η=1 = P̂(1)t(θ2+2(θ1−1)).

(28)

The conditions given by Equation (22) determine the expression for the variation in
the initial azimuthal and axial magnetic inductions, i.e., Bθ0 and Bz0 , respectively, in the
medium ahead of the shock front. Thus, the expressions for Bθ0 and Bz0 are obtained as

Bz0 = f (t) = Bzk t(α33/a)−θ1+1, Bθ0 = g(t) = Bθk t(α44/a)−θ1+1, (29)

where Bzk and Bθk are reference constants. In the ambient medium, the flow-variable initial
density ρ0 is assumed to be varying according to

ρ0 = ρkRλ1 , (30)

where ρk is the reference constant.
From Equations (22) and (29), we have

2at
(( α33

a − θ1 + 1
)

B2
zk

t2((α33/a)−θ1+1)−1 +
( α44

a − θ1 + 1
)

B2
θk

t2((α44/a)−θ1+1)−1
)

−α11

(
B2

zk
t2((α33/a)−θ1+1) + B2

zθk
t2((α44/a)−θ1+1)

)
= 0.

(31)

From Equations (9), (27), (29), and (30), we obtain

M2
a z =

µρ0D2

B2
z 0

=
µρk A2+λ1 θ2

1
B2

zk
tλ1θ1+2(θ1−1)−2((α33/a)−θ1+1),

M2
a θ = µρ0D2

B2
θ0

=
µρk A2+λ1 θ2

1
B2

θk

tλ1θ1+2(θ1−1)−2((α44/a)−θ1+1).
(32)

For the existence of the similarity solution, the axial and azimuthal Alfven Mach numbers
must be constant; thus, we obtain

λ1θ1 + 2(θ1 − 1)− 2((α33/a)− θ1 + 1) = 0, λ1θ1 + 2(θ1 − 1)− 2((α44/a)− θ1 + 1) = 0. (33)

From Equations (8), (28), (29), and (30), the values of the functions Ŝ, Û, F̂, Ĝ, and P̂ at
η = 1 are determined as

Ŝ(1) =
(γ + 1)
(γ− 1)

ρk Aλ1 , Û(1) =
2

(γ + 1)
Aθ1, F̂(1) = Bzk , Ĝ(1) = Bθk , P̂(1) =

2
(γ− 1)

ρkθ2
1 A2+λ1 , (34)

where λ1θ1 − θ2 = 0, and θ1 = 1/2.
Equation (31), after using the values from Equations (33) and (25), becomes

2((α33/a)− θ1 + 1)− θ2 + 1 = 0. (35)

By using Equations (26), (27), (29), (30), (33), and (35), we obtain the similarity trans-
formations as

ρ = ρ0S̄(η), u = DŪ(η), Bz =
√

µρ0DF̄(η), Bθ =
√

µρ0DḠ(η), p = ρ0D2P̄(η), (36)

where
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Ū(η) = Û(η)
Aθ1

, S̄(η) = Ŝ(η)
ρk Aλ1

, F̄(η) = F̂(η)
√

µρkθ1 A
λ1
2 +1

, Ḡ(η) = Ĝ(η)

√
µρkθ1 A

λ1
2 +1

, P̄(η) = P̂(η)
ρk Aλ1+2θ1

2 ,

α33
a −

λ1θ1
2 + 1 = 0, α44

a −
λ1θ1

2 + 1 = 0.
(37)

Using Equation (36) into the system of Equations (1) to (5), on suppressing the bar
sign and solving for S′, U′, F′, G′, and P′, we have

(U − η)S′ + λ1S + SU′ +
SU
η

= 0, (38)

(U − η)U′ +
(

θ1 − 1
θ1

)
U +

P′

S
+

URm

S

(
M−2

az + M−2
aθ

)
= 0, (39)

F′ − RmU
Maz

= 0, (40)

G′ +
G
η
− RmU

Maθ

= 0, (41)

(U − η)P′ + (λ1 +
2(θ1 − 1)

θ1
)P− γP

S
((U − η)S′ + λ1S)− (γ− 1)Rm

(
M−2

az + M−2
aθ

)
U2 = 0, (42)

where Rm = σµRD is the magnetic Reynolds number. By using Equations (34) and (37),
the shock jump conditions for S, U, F, G, and P at η = 1 can be written as (after suppressing
the bar sign)

U(1) =
2

γ + 1
, S(1) =

γ + 1
γ− 1

, F(1) =
1

Maz

, G(1) =
1

Maθ

, P(1) =
2

γ + 1
. (43)

At the inner expanding surface (IES) of the flow field, the normal velocity of the fluid on
the surface is equal to the velocity of the surface, which is the kinematic condition behind
the shock front. Using Equation (36), we can determine this kinematic condition, which is

U(ηp) = ηp, (44)

where ηp is the value of η at the inner expanding surface (IES). The flow variables ρ, u, Bz,
Bθ , and p are normalized with their values at the shock front (i.e., at η = 1) as

ρ

ρ1
=

S(η)
S(1)

,
u
u1

=
U(η)

U(1)
,

Bz

Bz1

=
F(η)
F(1)

,
Bθ

Bθ1

=
G(η)

G(1)
,

p
p1

=
P(η)
P(1)

. (45)

5. Results and Discussion

Through numerical integration of Equations (38)–(42) with the boundary conditions
(43) and (44), using the fourth-order Runge–Kutta technique, we obtain the variation
in the flow variables behind the shock front. For numerical integration, the physical
parameters are taken as (see [13,14]) λ1 = −1.5,−1, 0, 1, 1.5; γ = 4/3, 5/3; Rm = 0.01, 0.1;
M−2

az = 0.01, 0.5; and M−2
aθ

= 0.01, 0.1.
The location of the inner expanding surface ηp for different values of γ and λ1 with

M−2
az = 0.01, M−2

aθ
= 0.01, and Rm = 0.1 in the power law case is shown in Table 1.

Table 2 represents the location of the inner expanding surface (IES) ηp for γ = 5/3 and
λ1 = −0.25 at several values of M−2

az , M−2
aθ

, and Rm. Figure 1 represents the variation
in the flow variables behind the shock front for several values of γ and λ1 when taking
M−2

az = 0.01, M−2
aθ

= 0.01, and Rm = 0.1. Figure 2 represents the variation in the flow
variables behind the shock front for several values of M−2

az , M−2
aθ

, and Rm when taking
γ = 5/3 and λ1 = −0.25.
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Table 1. Position of inner expanding surface ηp at different values of γ and λ1 when M−2
az

= 0.01,
M−2

aθ
= 0.01, and Rm = 0.1 for power law shock path case.

γ λ1 ηp
Inner Expanding Surface (IES)

4/3 −1.5 0.928305
4/3 −1.0 0.895738
4/3 0.0 0.000012
4/3 1.0 0.843549
4/3 1.5 0.889101
5/3 −1.5 0.923135
5/3 −1.0 0.893536
5/3 0.0 0.00001
5/3 1.0 0.754601
5/3 1.5 0.813806

Table 2. Position of inner expanding surface ηp at different values of Rm, M−2
az

, and M−2
aθ

when
γ = 5/3 and λ1 = −0.25 for power law shock path case.

Rm M−2
az M−2

aθ
ηp

Inner Expanding Surface (IES)

0.01 0.01 0.01 0.586147
0.01 0.01 0.50 0.584657
0.01 0.50 0.01 0.584657
0.01 0.50 0.50 0.583242
0.1 0.01 0.01 0.585625
0.1 0.01 0.50 0.571565
0.1 0.50 0.01 0.571565
0.1 0.50 0.50 0.558567

(a) (b)

Figure 1. Cont.
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(c) (d)

(e)
Figure 1. Distribution of the flow variables in the region behind the shock front for different values
of γ and λ1 when Rm = 0.1, M−2

az
= 0.01, and M−2

aθ
= 0.01 for power law shock path case: (a) density

ρ
ρ1

, (b) pressure p
p1

, (c) axial magnetic induction Bz
Bz1

, (d) azimuthal magnetic induction Bθ
Bθ1

, (e) radial

velocity u
u1

, 1. γ = 4/3, λ1 = −1.5; 2. γ = 4/3, λ1 = −1; 3. γ = 4/3, λ1 = 0; 4. γ = 4/3, λ1 = 1; 5.
γ = 4/3, λ1 = 1.5; 6. γ = 5/3, λ1 = −1.5; 7. γ = 5/3, λ1 = −1; 8. γ = 5/3, λ1 = 0; 9. γ = 5/3,
λ1 = 1; 10. γ = 5/3, λ1 = 1.5.
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(a) (b)

(c) (d)

(e)
Figure 2. Distribution of the flow variables in the region behind the shock front for different values
of Rm, M−2

az
, and M−2

aθ
when γ = 5/3 and λ1 = −0.25 for power law shock path case. (a) Density

ρ
ρ1

, (b) pressure p
p1

, (c) axial magnetic induction Bz
Bz1

, (d) azimuthal magnetic induction Bθ
Bθ1

, (e) radial

velocity u
u1

, 1. Rm = 0.01, M−2
az

= 0.5, M−2
aθ

= 0.5; 2. Rm = 0.1, M−2
az

= 0.01, M−2
aθ

= 0.01; 3. Rm = 0.1,
M−2

az
= 0.01, M−2

aθ
= 0.5; 4. Rm = 0.1, M−2

az
= 0.5, M−2

aθ
= 0.01; 5. Rm = 0.1, M−2

az
= 0.5, M−2

aθ
= 0.5.
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5.1. The Implications of a Rise in the Exponent of Ambient Density λ1

For λ1 < 0, ηp decreases, i.e., the distance between the shock front and the IES
increases, which demonstrates that shock waves decay with an increase in λ1, whereas
for λ1 > 0, ηp increases, i.e., the distance between the shock front and the IES decreases,
which shows that shock becomes stronger with an increase in λ1 (see Table 1). For λ1 < 0
or λ1 > 0, the pressure p/p1 and fluid velocity u/u1 increase, but the axial magnetic
induction Bz/Bz1 decreases with an increase in λ1 and the azimuthal magnetic induction
Bθ/Bθ1 remains unchanged with λ1 (see Figure 1b–e). The density ρ/ρ1 increases near the
IES, and it decreases near the shock front with λ1 (see Figure 1a).

5.2. The Implications of a Rise in the Ratio of Specific Heats γ

The distance between the shock front and the IES increases with an increase in γ (see
Table 1), demonstrating that the shock strength decreases when the adiabatic exponent
increases. The flow variables ρ/ρ1, p/p1, and Bz/Bz1 increase, and Bθ/Bθ1 is almost
unaffected with γ (see Figure 1a–d). For λ1 < 0, the fluid velocity u/u1 increases, and for
λ1 > 0 or λ1 = 0, it decreases with an increase in γ (see Figure 1e).

5.3. The Implications of a Rise in the Magnetic Reynolds Number Rm

The value of IES ηp decreases with an increase in the magnetic Reynolds number Rm,
demonstrating that the shock strength decreases with Rm (see Table 2). The density ρ/ρ1,
pressure p/p1, and fluid velocity u/u1 increase, but Bz/Bz1 and Bθ/Bθ1 decrease with an
increase in Rm (see Figure 1a–e).

5.4. The Implications of a Rise in the Parameters M−2
az or M−2

aθ

The value of IES ηp decreases with an increase in the value of M−2
az or M−2

aθ
, demon-

strating that the shock strength decreases with M−2
az or M−2

aθ
(see Table 2). The density ρ/ρ1,

pressure p/p1, and fluid velocity u/u1 increase, but the axial magnetic induction Bz/Bz1

decreases with an increase in M−2
az or M−2

aθ
, and almost no effect of these parameters on the

azimuthal magnetic induction Bθ/Bθ1 is obtained (see Figure 1a–e).

6. Conclusions

In this work, we employ the Lie group invariance approach to explore the similarity
solution for a cylindrical shock wave in a weakly conducting perfect gas subjected to
azimuthal and axial magnetic inductions. Based on values of arbitrary constants in the
expression for infinitesimal, we have determined the similarity solutions for the power
law shock path. From Tables 1 and 2, and Figures 1 and 2, we have drawn the following
conclusions:

1. The adiabatic exponent γ of the gas has decaying effects on the shock strength. The
parameters γ, Rm, M−2

az , or M−2
aθ

have similar effects on the shock strength.
2. With an increase in magnetic Reynolds number Rm, pressure p/p1, the density ρ/ρ1

and fluid velocity u/u1 increase, but the axial magnetic induction Bz/Bz1 decreases.
The parameters M−2

az , M−2
aθ

, and magnetic Reynolds number Rm have similar effects
on ρ/ρ1, p/p1, u/u1, and Bz/Bz1 .

3. The ambient density exponent λ1 has a decaying impact on shock strength for λ1 < 0,
whereas shock strength increases for λ1 > 0.

4. The change in ambient density exponent from negative to positive, the shock strength,
density ρ/ρ1, and axial magnetic induction Bz/Bz1 decrease, but the pressure p/p1
and fluid velocity u/u1 increase, and the azimuthal magnetic induction Bθ/Bθ1 re-
mains unchanged.
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