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Abstract: This paper introduces an evolutionary algorithm for n-dimensional single objective opti-
mization problems: One-Dimensional Subspaces Optimization Algorithm (1D-SOA). The algorithm
starts with an initial population in randomly selected positions. For each individual, a percentage
of the total number of dimensions is selected, each dimension corresponding to a one-dimensional
subspace. Later, it performs a symmetric search for the nearest local optima in all the selected
one-dimensional subspaces (1D-S), for each individual at a time. The search stops if the new position
does not improve the value of the objective function over all the selected 1D-S. The performance
of the algorithm was compared against 11 algorithms and tested with 30 benchmark functions in
2 dimensions (D) and 30D. The proposed algorithm showed a better performance than all other
studied algorithms for large dimensions.

Keywords: single-objective optimization; evolutive algorithms; metaheuristics

1. Introduction

Everyday life requires finding optimal solutions in a faster way to reduce costs and
computational times, and to increase productivity or revenues. Finding the best or less
costly route, setting up an optimal schedule, reducing production times, and controlling
engineering systems are some examples of optimization problems. Therefore, optimization
techniques are relevant in broad areas of life, which makes the continuous research and
improvement in existing algorithms necessary [1–4].

Global optimization is concerned with finding the global solution for which the
objective function obtains its smallest value. Formally, global optimization seeks a global
solution of a constrained optimization model.

When only one function is optimized, the problem is referred to as a single objective
optimization problem, while if two or more fitness functions are optimized, it is called a
multiobjective problem.

The fitness function is regarded as a mapping ~x → f (~x), where ~x ∈ Rn is a multi-
dimensional decision variable, and f (~x) ∈ R is part of the objective space Ω. Thus, we
have a mapping Rn → R. Given a function f (~x) ∈ R, the solution to the optimization
problem is a vector ~x∗, such that the fitness function is close to its optimum value, i.e., it
satisfies | f (~x∗)− f (~xmin/max)| < ε, where ~xmin/max is the vector that gives the minimum or
maximum value of the objective function, that is, the vector that minimizes or maximizes
the objective function.

Among others, metaheuristic methods are efficient techniques to solve optimiza-
tion problems [5]. These methods use an iterative process to improve an initial solution
up to a selected termination criterion, within a reasonable time and with low computa-
tional costs. There are several classifications for metaheuristics; Beheshti et al. [6] classify
them as nature [1,7–17] and non-nature inspired [2,18–20], population-based, single point
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search, dynamic and static objective function, single and various neighborhood structures,
and memory usage and memory-less methods, among others.

Population-based metaheuristic algorithms have been broadly studied for global
searches, as they can handle high-dimensional optimization problems. They present
exploration and exploitation capabilities where exploration is related to the generation of
new individuals in unexplored regions of the search space, while exploitation focuses the
search in the neighborhood of known solutions [21]. Too much of the former can lead to an
inefficient search, and too much of the latter can lead to a propensity to focus the search too
quickly, losing many possible solutions [22].

A good balance between exploration and exploitation is required to avoid the trapping
of the particles into local optima (premature convergence), and to find a good optimal solu-
tion in a few iterations [23]. Recent works try to incorporate local search with exploration to
achieve the better performance of the algorithms. The most popular heuristic algorithms are
the particle swarm optimization algorithm (PSO) [18,24,25] and the Differential Evolution
Algorithm [26,27], which have been modified numerous times to improve their local and
global search capabilities [28–30]. In a study by Sun et al. [31], the Whale Optimization
Algorithm (WOA) is modified to perform a more detailed local search. The Butterfly Opti-
mization Algorithm (BOA) is also improved by Li et al. [1] to achieve a balance between
exploration and exploitation. The Polar Bear Optimization Algorithm (PBO) [9] was pro-
posed, taking into account an efficient birth and death mechanism to improve global and
local search.

In recent years, new algorithms have been proposed with new local and global search
models, some examples of these are: Artificial ecosystem-based optimization (AEO) [32],
Jellyfish-inspired metaheuristic (JF) [33], Chaos Game Oprimizer (CGO) [34], Zebra Opti-
mization Algorithm (ZOA), [35], Chameleon Swarm Algorithm (CSA) [36], Serval Optimiza-
tion Algorithm (SOA) [37], optimization problems based on walruses behavior (OWB) [38],
LSHADE-SPACMA Algorithm [39], Coronavirus Optimization Algorithm (COA) [40],
Gaining-Sharing Knowledge Based Algorithm With Adaptive Parameters (APKBS) [41],
and Improving Multi-Objective Differential Evolution Algorithm (IMODE) [42], etc.

Some of the most efficient metaheuristics are the Evolutionary Algorithms (EAs),
which are flexible enough to solve different types of problems due to their exploration
and exploitation capabilities. They are distinguished from Genetic Algorithms (GA) in
the way they combine information through evolutionary operators that evolve the pop-
ulation, obtaining a set of new solutions [43]. These methods can solve problems of high
computational complexity or high dimensional problems.

This work proposes a novel optimization method of the evolutionary type: the One-
Dimensional Subspaces Optimization Algorithm (1D-SOA). This algorithm performs an
exhaustive local search or exploitation, by updating the position of each individual of a
randomly generated population, over a selected direction. This search generates a large
number of optimal local sets. The search neighborhood is changed randomly, increasing,
in this way, the local search space. Nevertheless, this is not the only characteristic of the
algorithm. During the whole process, it also performs exploration, by generating diversity
via the recombination of the initial population, which favors a convergence towards the
global optimum. The algorithm is tested for single-objective optimization problems. More
details of the algorithm are presented in Section 3.

This work is structured as follows, in Section 2, the theory related to single objective
optimization problems is presented. Later, in Section 3, 1D-SOA is introduced, together
with details about its implementation and some EAs used for comparison. After that,
the results and discussion are presented in Section 4. Finally, the conclusions and references
are given in Section 5.

2. Optimization

In this section, the theory of unconstrained optimization is presented. Additionally,
some concepts related to metaheuristic optimization are introduced.
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2.1. Unconstrained Single Objective Optimization

Unconstrained single-objective optimization problems are defined in terms of the
decision variables, the objective function to be optimized, and the set of feasible solutions.
The set of all feasible solutions is called the feasible region or search space, and it is
commonly denoted by Ω. The decision variables are numerical quantities related to the
optimization problem. These quantities are denoted as xd with d = 1, 2, ..., D [44,45].
The vector ~x ∈ Ω composed of D decision variables is represented by the following:

~x =
[
x1, x2, · · · , xD

]T . (1)

The objective function, which is a function of the decision variables, is minimized or
maximized according to the problem’s criteria. The restrictions are related to the limits of
the variables, that is, they restrict each decision variable xd in the decision space, within a
lower range x(L)

d and an upper range x(U)
d . The formal definition is presented below.

The unconstrained single-objective optimization problem is defined as follows:

Min/Max f (~x),

x(L)
d ≤ xd ≤ x(U)

d .
(2)

If the objective function is linear, it is considered a linear problem, otherwise, it is
non-linear [46]. This work addresses unconstrained non-linear optimization problems;
in particular, the optimization of a set of benchmark functions is studied.

2.2. Metaheuristics

Metaheuristics are optimization methods that combine local improvement procedures
and high-level strategies to escape from local optima, performing a robust search in the
solution space. These algorithms have stochastic behavior and mimic biological or physical
processes. The fundamental phases of the metaheuristics are as follows [47]:

1. Initialize population;
2. Define stop condition;
3. Evaluate fitness function;
4. Update and move agents;
5. Return the global best solution.

Each metaheuristic defines a particular movement of the population according to the
process they want to mimic. Depending on the part of the search space that the method
covers, the algorithm can find local or global optima. Next, some concepts related to the
search methodology performed by some metaheuristics, in particular used by 1D-SOA,
are presented.

2.2.1. Local Search

Local search algorithms explore the neighborhood of the current point to find a better
solution, i.e., the local optimum. The search starts with a random feasible point, then,
a generation or movement mechanism is successively applied to optimize the fitness
function. If a better solution is found, it becomes the current solution. This procedure
is repeated up to a stopping criterion. Local search heuristics select one or, at most, two
neighborhoods for improving the current solution (i.e., kmax ≤ 2), and they converge to
local optima [3].

2.2.2. Exploration

EAs usually converge to local optima. However, the search space may contain much
better solutions in other regions. Additionally, the optima can be duplicated, leading to
uniformity. Therefore, to find an optimal solution, the EAs should keep moving to unex-
plored regions trying to reach a better solution. This can be done by mutating duplicates,
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via the use of a recombination operation to replace part of the population [23]. The process
of moving to distant or unexplored regions is commonly known as exploration.

2.2.3. Variable Neighborhood Search

Variable neighborhood search (VNS) is a metaheuristic for solving global optimization
problems, based on a systematic change of neighborhood. This method continues the
search after finding the first local minimum by selecting a new neighborhood to escape the
local valley.

The neighborhoods search is based on the empirical idea that a local optimum can
be related to the global one, for example by sharing some components of the position.
Therefore, a study of the neighborhoods of a local optimum can lead to the discovery of
a better one. The neighborhoods are denoted as Nk, k = 1, ..., kmax, where the selection
of a neighborhood depends on the framework, which can be stochastic, deterministic,
or a combination of both [3]. Reaching the global optimum is more likely if the search is
performed in various neighborhoods rather than a single structure.

2.2.4. Swarm Intelligence

Swarm Intelligence (SI) is a branch of Computational Intelligence (CI) that origi-
nated from the study of the social behavior of insects, animals, and human societies
(individuals) [3,47,48]. A SI system consists of a population of individuals or agents that
controls their behavior autonomously, and each individual represents a possible solution.

For the swarm, there is no central coordination and it can consist of a few to up to
thousands of agents interacting among themselves and with the environment, without a
change of control architecture. Therefore, SI systems are robust and scalable. Further-
more, no single agent is essential for the swarm, which gives the swarm its characteristic
flexibility [3,23,47]. SI algorithms evolve a population of possible problem solutions which
improve with each iteration, therefore, they are considered to be an EA [23]. The method
introduced in this work is a population-based evolutionary algorithm that performs a
search for better solutions on a randomly selected dimension d. The particles present
communication among themselves, which makes it a Swarm Intelligence system, details
about the algorithm are presented in the next section.

3. Methodology

In this section, the basic ideas behind 1D-SOA, together with the implementation of
the algorithm, are presented.

1D-SOA:

1. Initialization: 1D-SOA starts by randomly generating an initial D-dimensional popu-
lation within the given search space. The fitness value of each individual or particle
~xi ∈ RD is computed, and the best particle is spotted ~x∗.
The initial population is a set of N individuals, denoted by P(0) = {~x1,~x2, ...,~xN}, with

~xi = [xi,1, xi,2, · · · , xi,d, · · · , xi,D]
T ∈ Ω, (3)

where the subscript i, d, where d ∈ [1, D] in xi,d represents the d-th component of the
i-th particle ~xi.

2. Symmetric selection of search direction do f f : Once the initial population is constructed,
a dimension do f f is chosen, and the position of the particles is updated a step ∆ over
the selected 1D-S. To select the dimension, Dtest directions are randomly generated
and tested by moving the particle steps times symmetrically. The direction with the
best value of the objective function is selected as the search direction (do f f ). The values
Dtest and steps can be selected by the user.

3. Step ∆: 1D-SOA includes a Variable Neighborhood Search (VNS) with two neighbor-
hoods (N1 and N2). The size of N1 depends on a parameter Cneigh. The step in this
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neighborhood is chosen randomly according to Gaussian distribution with mean 0
and variance Cneigh.

∆ = |rand[0, Cneigh]| ∈ N1.

For N2, a smaller random parameter Cneighl
, is used with mean 0 and variance Cneighl

.

∆ = |rand[0, Cneighl
]) ∈ N2.

This second neighborhood performs a more local search. The neighborhood is selected
for each particle, depending on a random criterion denoted as Pns, referred to as
the probability of neighborhood search. For the selection, a random number from
a uniform distribution from 0 to 1 is obtained; if the number is smaller than Pns,
the search is performed in N1, otherwise it is performed in N2. This criterion is
presented in Equation (4):

∆ =

{
∆ ∈ N1, if rand[0, 1] < Pns,
∆ ∈ N2, otherwise.

(4)

Once the neighborhood is selected, the value of the delta is updated as follows:

∆ = ∆ ∗ |rand[0, 1]|.

4. Asymmetric movement operator: The position of the particle varies asymmetrically
during the iteration process. That is, it moves only in the direction where the objective
function improves. For a particle ~xi at the t-th iteration, it is denoted by

~xi(t) = xi,1(t)ê1 + xi,2(t)ê2 + · · ·+ xi,d(t)êd + · · ·+ xi,D(t)êD, (5)

where êd is the canonical normal vector in the d-th dimension. Similarly, the position
of the same particle at time t + 1 is

~xi(t + 1) = xi,1(t)ê1 + xi,2(t)ê2 + · · ·+ xi,d(t + 1)êd + · · ·+ xi,D(t)êD. (6)

The position of each individual ~xi is updated over the selected dimension
(see Equation (6)). That is, for a dimension do f f , with 1 < do f f < D, there is a
change on the current do f f component of the position vector of the individuals
xi,do f f

(t)→ xi,do f f
(t + 1) as follows:

xi,do f f
(t + 1) = xi,do f f

(t)± ∆. (7)

The sign (+) or (−) of the update corresponds to the direction where the objective
function improves. Combining Equations (6) and (7), the updated position at the
(t + 1)-th iteration is given by

~x(t + 1) = x1(t)ê1 + x2(t)ê2 + · · ·+ (xd(t)± ∆)êd + · · ·+ xD(t)êD. (8)

If the particle does not improve its objective function after two consecutive movements
by a value ε, that is

( f (~x(t + 1))− f (~x(t))) < ε, (9)

the value of the delta is updated as

∆ = ∆/2. (10)

5. Semi cross: The probability of semi-cross is denoted by Psx; if this criterion is satisfied,
the worst Nparx particles are selected. Later, the do f f -th component of the i-th particle,
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xi,do f f
, i ∈ {1, ..., Nparx}, is substituted by the do f f -th component of the best particle

x∗do f f
, as presented in Equation (11)

xi,do f f
=

x∗do f f
if rand[0, 1] < Psx

xi,do f f
otherwise

, i ∈ {1, ..., Nparx}. (11)

6. Recombination: The worst Nrec = Nr ∗ D particles of the new population P(i + 1),
where Nr is the percentage of the initial population to recombine, is replaced by a
set of recombined elements if the new elements lead to a better solution. The new
population becomes

P(i + 1) = {x1(i + 1), x2(i + 1), ..., xr(i + 1), ..., xt(i + 1)},

where xr(i + 1), ..., xt(i + 1) are recombined elements.
Recombination operator: Each selected element xα ∈ P is recombined as follows,

R(~xα) = ~xα − r1(~x∗ −~xα),

where r1 is a random number between 0 and 1.
7. Stopping criterion: The stopping criterion is a selected number of generations.
8. Solutions: After the optimization cycle, a set S of optimal solutions of the problem is obtained

S = {xsol
1 , xsol

2 , ..., xsol
N−1, xsol

N }.

The implementation of 1D-SOA is presented in Algorithm 1 and in Figure 1. The defini-
tion of the variables presented in this section and in Algorithm 1 are presented in Table 1. It
is worth mentioning that, for the variables required for the 1D-SOA algorithm, only two of
them change with the problem, the rest can be taken as fixed in any optimization problem.

Figure 1. Basic algorithmic structure of 1D-SOA.
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Algorithm 1 One-Dimensional Search Optimization Algorithm (1D-SOA)
Input: N, D, MaxG , Pns, Ndims, Maxε, Psx, Nparx, Nr for the definitions see Table 1.
Output: A set of optimal solutions S.

1: P(0)→ P % Create a random initial population P(0) of N individuals (~xi ∈ RD).
2: for generation = 1 to G do
3: for particle =1 to N do
4: if Uni f ormRand[0, 1] < Pns then
5: ∆ ∈ N1
6: else
7: ∆ ∈ N2 % Select the search neighborhood
8: end if
9: for d = 1 to Ndims do

10: Symmetric selection of the search dimension do f f
11: ∆ = ∆ ∗ abs(GaussRand[0, 1]). % Update the step ∆
12: Asymmetric movement of the particles on dimension do f f in direction ±∆.
13: while ( f (~xi(t + 1))− f (~xi(t)) < ε||Itepsilon < Maxε) do
14: xi,do f f

(t + 1) = xi,do f f
(t)± ∆

15: end while
16: if Uni f ormRand[0, 1] < Psx then
17: for particle in Nparx do
18: xi,do f f

(t + 1) = x∗,do f f
(t + 1) % Perform semi cross

19: end for
20: end if
21: for particle in Nr*D do
22: ~xα = ~xα − r1(~x∗ −~xα) % Perform recombination
23: end for
24: end for
25: end for
26: % Save the set S of solutions.
27: end for

Table 1. Definitions of variables.

Variable Meaning Value

Variables required for all the algorithms

D Dimension 2, 30, 60
N Number of individuals 10 for 2, 5, and 10, D for the rest
MaxG Maximum number of generations 100
x(L)

d Lower bound of ~x in the dimension d Depends on the function (Tables A8–A10)
x(U)

d Upper bound of ~x in the dimension d Depends on the function (Tables A8–A10)
~xmin ∈ RN Vector that minimizes the objective function, optimal solution for a minimization

problem
Depends on the function (Tables A8–A10)

~xi ∈ RN Particle

Variables of 1D-SOA that depend on the problem

Cneigh Neighborhood parameter Depends on the function (Tables A8–A10)
Cneighl

Local neighborhood parameter Depends on the function (Tables A8–A10)

Variables of 1D-SOA that do not change

Dtest Random test directions to select the direction with the largest improvement 20% D
steps Number of steps given in each test direction 5
Maxε Maximum allowed difference between previous and actual point 1e−2

MaxNI Maximum allowed number of not improvements of the solution 20
Npx Percentage of particles to perform semi cross on 50%
Psx Probability of semi cross 20%
Pns Probability of neighborhood search 10%
Pdim Number of search dimensions 50% D
Nr Percentage of particles to recombine 20% D
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4. Results and Discussion

This section contains the results of the experiments performed to study the behavior of
the 1D-SOA algorithm introduced in this work. The performance of 1D-SOA was compared
against the heuristic algorithms from the python library SwarmPackagePy [49]; in par-
ticular, the studied algorithms from this library are Artificial Bee Algorithm (ABA) [50],
Bat Algorithm (BA) [51], Bacterial Foraging Optimization (BFO) [52], Cat Swarm Optimiza-
tion (CA) [17], Chicken Swarm Optimization (CHSO) [10], Cuckoo Search Optimization
(CU) [13], Firefly algorithm (FA) [15], Fireworks Algorithm (FWA) [20], Gravitational Search
Algorithm (GSA) [19], Grey Wolf Optimizer (GWO) [19], Particle Swarm Optimization
(PSO) [18], and Social Spider Algorithm (SSA) [14]. Additionally, we include in the com-
parison some state-of-the-art algorithms: Mean particle Swarm Optimisation (MPSO) [53],
Artificial ecosystem-based optimization (AEO) [32], Jellyfish inspired metaheuristic (JF) [33],
Chaos Game Optimizer (CGO) [34], and Zebra Optimization Algorithm (ZOA) [35].

All algorithms require a basic number of input parameters: the number of individuals
(N), dimension (D), number of maximum iterations (NIts), and lower (x(L)) and upper (x(U))
limits in the search space. Additionally, some algorithms need a specific set of extra control
parameters. Table 2 shows the specific parameters, together with the most common values
used in the literature and this work. A brief discussion of the selection of parameters used
for the MPSO, FWA, and CHSO is presented in Appendix A. For the 1D-SOA Algorithm,
besides the parameters presented in the above-mentioned table, it is required to define the
following fixed variables, Npx = 0.5, Psx = 0.2, Pns = 0.1, Pdim = 0.5, and Nr = 0.2 that
we recommend not to change, as they work for all the studied problems. The 30 studied
benchmark functions are presented in the Appendix C, Tables A8–A10. This table contains
the search space, the optimal solution vector ~x∗ = [x∗1 , x∗2 , · · · , x∗D], and the function eval-
uated at this vector f (~x∗), i.e., the optimum. Additionally, for the 1D-SOA method, it is
required to select two parameters, Cneigh and Cneighl

; the values of these parameters are
presented in the same tables.

Table 2. Evolutionary algorithms used in this work, together with the extra parameters required.

Algorithm Parameters

Bat Algorithm (BA) [51] r0 = 0.9, V0 = 0.5, fmin = 0, fmax = 0.02, alpha = 0.9, csi = 0.9

Bacterial Foraging Optimization (BFO) [52] Nc = 2, Ns = 12, C = 0.2, Ped = 1.15

Cat Swarm Optimization (CA) [17] Mr = 10, smp = 2, spc = False, cdc = 1, srd = 0.1, w = 0.1, c = 1.05, csi = 0.6

Chicken Swarm Optimization (CHSO) [10] G = 5, FL = 0.5

Cuckoo Search Optimization (CU) [13] pa = 0.25, nest = 100

Firefly algorithm (FA) [15] csi = 1, psi = 1, alpha0 = 1, alpha11 = 0.1, norm0 = 0, norm1 = 0.1

Fireworks Algorithm (FWA) [20] m1 = 7, m2 = 7, eps = 0.001, amp = 2, a = 0.3, b = 3

Gravitational Search Algorithm (GSA) [19] G0 = 3

Mean particle Swarm Optimisation (MPSO) [53] w = 0.7, c1 = 1, c2 = 1.

Particle Swarm Optimization (PSO) [18] w = 0.7, c1 = 1, c2 = 1.

Social Spider Algorithm (SSA) [14] p f = 0.4

One-Dimensional Search Algorithm (1D-SOA) Cneigh, Cneighl
, see Tables A8–A10

The comparison was made for different dimensions, in particular D = {2, 30}.
For the experiments, a statistical analysis of the performance of the algorithms was

performed and the algorithms were compared from 100 runs for each function. From the
100 runs, the best solution and the mean of the 100 runs were obtained for the statistic at an
approximated value of 1e−8; for the functions that do not reach this value, the 100 iterations
were taken.

The initial population varied for each dimension; for dimensions less or equal to 10 the
initial population was 10, while for larger dimensions the initial population corresponds to
the dimension. Next, we present the results for dimensions 2 and 30.
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In Figure 2, all the algorithms are presented for 30 D for the ackley, ackley_2, rastrigin,
and schwefel 2.20 functions. It can be noticed that the algorithms with slightly better per-
formance are: 1D-SOA, FWA, ZOA, AEO, MPSO, and CHSO. For the rest of the algorithms,
most of the time they do not converge in the required number of iterations. Therefore,
to have more clarity in the plots and tables, only the algorithms mentioned above are
presented. In Figures 3 and 4, the convergence for different steps for six search directions,
and for various search directions and five steps, are presented. It is worth noticing from
the plots that the convergence slightly improves with more search steps and more search
directions. However, the computational work increases, therefore the parameters selected
were five steps and 20% of the dimensions as search dimensions, as these parameters have
a good balance between work and performance (see Table 1).

Figure 2. Cont.
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Figure 2. Convergence of the ackley, ackley_2, rastrigin, and schwefel 2.20 functions for all the
algorithms in 30 D.

100 101 102

Iteration

10 10

10 7

10 4

10 1

102

f 0
(x

)

best

100 101 102

Iteration

average D: 6, steps: 1
D: 6, steps: 5
D: 6, steps: 10
D: 6, steps: 15
D: 6, steps: 20
D: 6, steps: 25

f0(x) :  ackley

Figure 3. Convergence of the ackley function for various number of steps, 1D-SOA algorithm.
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100 101 102

Iteration

10 9

10 7

10 5

10 3

10 1

101

103

f 0
(x

)

best

100 101 102

Iteration

average D: 1, steps: 5
D: 6, steps: 5
D: 12, steps: 5
D: 18, steps: 5
D: 24, steps: 5
D: 30, steps: 5

f0(x) :  ackley

Figure 4. Convergence of the ackley function for various search directions, 1D-SOA algorithm.

4.1. Results for 2D Experiments

The complete results of this section are presented in the Appendix B, Tables A1–A3, that
show the value that reaches the best solution out of the 100 runs, the averaged value
reached, and the standard deviation for all the algorithms. The algorithm with the best
performance has the darker corresponding value. If two algorithms have the same value,
the one with faster convergence in the plots is selected. Additionally, two statistical tests
were performed and included in these tables, the t-test [23], and the alternative to the
Mann–Witney U Test, suggested by Mark Wineberg and Steffen Christensen, that is a non-
parametric test based on the ranking of the results [54]. According to the non-parametric
tests performed, most of the freedom degrees are close to 100, and the t statistic ranges
from 3.3 to 49, which, from the Tables given in [54], indicates that the probability that
the null hypotheses is wrong is over 99.8%; this implies that our results can be trusted. A
summary of the results obtained for dimension 2 is presented in Table 3. In this table, we
can observe that the best performance for the best solution was obtained for the 1D-SOA,
while for the mean of the solutions, the best performance was achieved by the FWA. The
convergence of the algorithms 1D-SOA, FWA, ZOA, AEO, MPSO, and CHSO for some
functions is shown in Figure 5.

Table 3. Performance of the algorithms 2D.

1D-SOA FWA ZOA AEO MPSO CHSO

No. of best values 13 (43.3%) 8 (26.6%) 0 3 (10%) 0 6 (20%)

No. of mean values 10 (33.3%) 16 (53.3%) 0 4 (13.3%) 0 0

From the figures, it was observed that there exist two different behaviors of the
algorithms depending on the function. For the first kind, all the algorithms converge at a
similar rate, this behavior is observed for most of the functions, in particular, the functions:
f0, f1, f3, f4, f5, f9, f10, f14, f15, f16, f17, f18, f20, f21, f22, f23, f24, f25, f26, f26, f27, and f29.
For the second kind, the convergence is very slow for all the algorithms, except for one or
two algorithms; this happens for functions f2, f6, f7, f8, f11, f12, f13, f19, and f28.
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Figure 5. Convergence of the FWA, ZOA, AEO, MPSO, CHSO, and 1D-SOA algorithms for various
functions in 2D.

4.2. Results for 30D

The complete results of this section are presented in the Appendix B,
Tables A4–A6, that show the value that reaches the best solution out of the 100 runs,
the averaged value reached, and the standard deviation for all the algorithms. As in the
previous case (2D), the two statistical tests were performed and included in the tables.
According to the non-parametric tests performed, most of the freedom degrees are close to
or larger than 100, and the t statistic ranges from 3.7 to 52, which, from Tables [54], indicates
that the probability that the null hypothesis is wrong is over 99.8%; this implies that our
results can be trusted. A summary of the results obtained for dimension 30 is presented
in Table 4. This table shows that the best performance for the best and mean solution
was obtained for the 1D-SOA, followed by the FWA. The convergence of the algorithms
1D-SOA, FWA, ZOA, AEO, MPSO, and CHSO for some functions is shown in Figure 6.

Table 4. Performance of the algorithms 30D.

1D-SOA FWA ZOA AEO MPSO CHSO

No. of best values 21 (70%) 5 (16.6%) 1 (3.33%) 2 (6.66%) 0 1 (3.33%)

No. of mean values 19 (63.3%) 10 (33.3%) 0 1 (3.33%) 0 0

For 30D, the CHSO algorithm shows a general performance that is worse than the
2D case. As in the previous case, different behaviors of the algorithms depending on the
function are observed. For most of the functions, the convergence is similar for all the
algorithms, in particular, for the functions: f3, f6, f9, f10, f12, f20, f21, f22, f23, f25, and
f26. There is also a case where the 1D-SOA, FWA, ZOA, AEO, and MPSO present similar
performances, but the CHSO fails to converge, the functions with this behavior are: f0,
f1, f2, f4, f5, f14, f15, f16, f17, f24, and f26. Finally, there is a case where only one or two
functions converge or converge faster than the rest, this happens for functions: f7, f8, f11,
f13, f18, f19, and f27. For functions f28 and f29, 1D-SOA does not converge. However,
for functions f7, f8, f11, and f13 only 1D-SOA converges.
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Figure 6. Convergence of the FWA, ZOA, AEO, MPSO, CHSO, and 1D-SOA algorithms for various
functions in 30D.

4.3. Experiments with Functions with the Optimal Solution Not in Zero

The minimal value of the functions studied in the previous sections have a minimum
f (~x) = 0 located in ~x = [0, ..., 0]. However, some of them have the optimum in a different
position. In this section, the functions with a non-zero optimum are studied; they are
presented in Table A11, together with their optimal value. The functions f7 and f8 can be
generalized to D dimensions and they are studied in the previous section; only the minimum
value was shifted to zero, therefore we only show their convergence plots if they are not shifted
towards zero in Figure 7. The rest of the functions are only defined in 2D. The results are
presented in Table A7. For some of the functions studied in this section, the CHSO algorithm
showed problems computing the solution, therefore, the studied algorithms are 1D-SOA, FWA,
ZOA, AEO, and MPSO. The convergence plots are presented in Figure 8.

Figure 7. Convergence of the 1D-SOA algorithms for functions with a non-zero optimum for functions
f7 and f8.

Regarding the best value, for these functions, most of the results are similar for all
the algorithms, except for f32 and f36, where FWA for f32 and 1D-SOA for f36 converge
slightly faster than the rest to the optimum. For the Mean value, FWA reaches values closer
to the optimum.
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Figure 8. Convergence of the FWA, ZOA, AEO, MPSO, and 1D-SOA algorithms for various functions
with a non-zero optimum in 2D.

5. Conclusions

This work introduces the one-dimensional search optimization algorithm (1D-SOA)
for solving optimization problems. This algorithm optimizes an initial population over a
randomly selected dimension. It selects the search direction by moving symmetrically in
the one-dimensional subspace (1D-S) created by the selected dimension. After the direction
of the search is selected, the individuals move asymmetrically to find the local optima in
the 1D-S. The algorithm includes exploitation by diminishing the size of the step to perform
a local search. It also performs exploration by recombining the particles. To study the
performance and efficiency of the proposed algorithm, it was compared against another
11 algorithms for 30 benchmark functions for various dimensions.

The comparison was made for two cases: (1) the best values reached by the algorithms,
and (2) the mean performance out of 100 runs. For the best value, the best performance
was observed for the 1D-SOA, for which 43.3% of the functions were in 2D, 70% in 30D;
followed by the FWA with 26.6% in 2D, 16.6% in 30D; the CHSO with 20% in 2D; and the
AEO with 6.6% in 30D. For the mean convergence, FWA showed a better performance
with 53.3%, followed by the 1D-SOA with 33.3% of the functions in 2D. In 30D, the best
performance was observed by the 1D-SOA algorithm with 63.3%, followed by the FWA
with 33.3%. A t-test and a non-parametric test were performed to check the validity of
the results.

The functions with non-zero optimum were studied for 2D, and the results were
similar for the best solution except for the f32 and f36 functions, where the best performance
was obtained with the FWA and the 1D-SOA algorithms. The FWA showed the best
performance for the mean solutions.

From the results, it can be concluded that the best performance was achieved with the
proposed algorithm (1D-SOA) in 30D, followed by the fireworks algorithm (FWA). For most
of the functions, the convergence was similar for 2D. However, for larger dimensions,
the chicken swarm optimization (CHSO) algorithm worsens its performance, while 1D-
SOA showed a better performance. Furthermore, for some functions, 1D-SOA was the only
algorithm that converged in large dimensions.

A fixed set of parameters was chosen for 1D-SOA to compare it against the other
algorithms. However, these parameters can be adapted for diverse optimization problems.
It is suggested to carry out an analysis of the parameters to find the most adequate ones for
a given problem.
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Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
1D-SOA One-Dimensional Search Algorithm
ABA Artificial Bee Algorithm
BA Bat Algorithm
BFO Bacterial Foraging Optimization
CA Cat Swarm Optimization
CHSO Chicken Swarm Optimization
CU Cuckoo Search Optimization
FA Firefly algorithm
FWA Fireworks Algorithm
GSA Gravitational Search Algorithm
SSA Social Spider Algorithm
PSO Particle Swarm Optimization
MPSO Mean Particle Swarm Optimization
AEO Artificial ecosystem-based optimization
JF Jellyfish-inspired metaheuristic
CGO Chaos Game Optimizer (CGO)
ZOA Zebra Optimization Algorithm (ZOA)
CSA Chameleon Swarm Algorithm
SOA Serval Optimization Algorithm
OWB Optimization based on walrus behavior
COA Coronavirus Optimization Algorithm
EA4EIG Eigen Crossover in Cooperative Model of Evolutionary Algorithms

APGSK
Gaining–Sharing Knowledge-Based Algorithm With Adaptive
Parameters

IMODE Improving Multi-Objective Differential Evolution Algorithm
D Dimension
N Number of individuals
G Generation
MaxG Maximum number of generations
ε Difference between previous and actual point
Itepsilon Maximum allowed difference between previous and actual point
Maxε Maximum allowed difference between previous and actual point
itNI Counter for non improvement of the solution
MaxNI Maximum allowed number of non improvements of the solution
xmin Minimum allowed value of the function
xmax Maximum allowed value of the function
Cneigh Neighborhood parameter
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Cneighl
Local neighborhood parameter

∆ Search step

Dtest Random test directions to select the direction with the largest

improvement

steps Number of steps given in each test direction

Npx Percentage of particles on which to perform semi cross

Psx Probability of semi cross

Pns Probability of neighborhood search

Pdim Number of search dimensions

Nr Percentage of particles to recombine

Appendix A. Experiments with Diverse Parameters for the Studied Algorithms

A subset of functions and diverse parameters were selected in order to test and find the
best internal parameters for the MPSO, CHOA, and FWA. For MPSO, the studied parame-
ters are values in the range proposed by the authors of references [49,53]. The parameters
varied are the c1 and c2, which are the ratios between the cognitive and social components.
The results are presented in Figure A1 for 30D. It is observed that the best values are c1 = 2
and c2 = 2, presented in Table 2 and used in this work.

Figure A1. Convergence of the MPSO algorithm for diverse parameters 30D.

For the CHSO algorithm, the studied parameters are G, the time to upgrade the
relationships, and FL, which shows that, whether a chicken follows the mother or not,
in the range proposed by the authors of reference [49] and reference [55] , the results are
presented in Figure A2. It is observed that, for the mean, there is not large variation when
the parameters are changed. Therefore, the parameters used are, again, the default of the
SwarmPackagePy [49], as shown in Table 2.
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Figure A2. Convergence of the CHSO algorithm for diverse parameters for 30D.

Figure A3. Convergence of the FWA algorithm for diverse parameters for 30D.

For the FWA algorithm, the m1 and m2 parameters were varied in the ranges given by
the authors of references [49,55]. The results are shown in Figure A3 for 30D, where it can
be observed that there is no large difference for different parameters, therefore the default
of the SwarmPackagePy 1.0.0a5 is used; they are presented in Table 2.
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Appendix B. Results for the Selected Algorithms

Table A1. Experimental results of various algorithms and benchmark functions for 2D.

Best Mean Std d t dnp tnp

f0 1D-SOA 0.0 4.9e−12 1.4e−11

FWA 4.4e−16 5.2e−16 5.0e−16 99 3.5 101 8.2
ZOA 1.1e−11 7.8e−9 1.8e−8 99 4.2 101 8.2
AEO 9.1e−8 2.2e−4 6.3e−4 99 3.4 101 8.2
MPSO 5.2e−6 9.4e−4 1.4e−3 99 6.9 101 8.2
CHSO 4.4e−16 6.6e−3 1.7e−2 99 3.8 101 8.2

f1 1D-SOA 5.1e−11 7.4e−6 6.7e−5

FWA 2.2e−10 5.0e−6 1.3e−5 106 3.6e−1 197 8.1
ZOA 7.5e−6 5.8e−3 1.0e−2 99 5.7 197 8.1
AEO 1.0e−3 1.5e−1 2.4e−1 99 6.2 197 8.1
MPSO 5.4e−3 5.3e−1 5.9e−1 99 9.0 197 8.1
CHSO 2.7e−3 3.5 4.4 99 7.9 197 8.1

f2 1D-SOA 2.8e−13 5.5e−10 1.4e−9

FWA 7.5e−16 8.0e−8 3.7e−7 99 2.1 184 8.8
ZOA 7.5e−7 2.2e−3 6.5e−3 99 3.3 184 8.8
AEO 3.1e−5 2.5e−2 6.6e−2 99 3.8 184 8.8
MPSO 2.6e−5 6.8e−2 1.3e−1 99 5.2 184 8.8
CHSO 3.3e−9 9.3e−2 2.1e−1 99 4.4 184 8.8

f3 1D-SOA 2.5e−23 2.1e−16 9.4e−16

FWA 7.8e−23 1.3e−12 4.6e−12 99 2.9 153 4.9
ZOA 2.1e−11 9.6e−8 2.8e−7 98 3.4 153 4.9
AEO 3.8e−9 6.7e−5 1.8e−4 99 3.8 153 4.9
MPSO 5.7e−8 3.1e−4 6.2e−4 99 5.0 153 4.9
CHSO 0.0 4.7e−4 3.3e−3 99 1.4 153 4.9

f4 1D-SOA 9.2e−21 2.3e−3 2.1e−2

FWA 1.0e−13 1.6e−3 1.3e−2 168 2.7e−1 196 8.9
ZOA 5.3e−4 7.7 2.1e1 99 3.7 196 8.9
AEO 2.5e−2 5.0e2 1.2e3 99 4.0 196 8.9
MPSO 3.5e−1 6.1e4 3.4e5 99 1.8 196 8.9
CHSO 3.9e−1 1.1e6 5.1e6 99 2.1 196 8.9

f5 1D-SOA 2.2e−26 2.9e−14 2.2e−13

FWA 4.8e−18 1.6e−9 9.8e−9 99 1.6 177 1.5e1

ZOA 4.3e−13 5.9e−6 1.3e−5 99 4.6 177 1.5e1

AEO 2.8e−8 2.2e−3 1.8e−2 99 1.2 177 1.5e1

MPSO 2.8e−6 3.9e−3 1.0e−2 99 3.8 177 1.5e1

CHSO 8.8e−7 2.3e−2 4.9e−2 99 4.6 177 1.5e1

f6 1D-SOA 0.0 5.5e−3 5.9e−3

119 9.0
FWA 0.0 1.5e−4 1.0e−3 105 9.0 119 9.0
ZOA 5.4e−12 1.5e−2 1.4e−2 130 6.2 119 9.0
AEO 1.0e−5 8.5e−2 7.2e−2 100 1.1e1 119 9.0
MPSO 8.2e−8 1.6e−1 1.1e−1 99 1.4e1 119 9.0
CHSO 5.7e−4 2.2e−1 2.3e−1 99 9.6 119 9.0

f7 1D-SOA 3.2e−12 6.6e−3 5.0e−2

FWA 1.3e−5 1.0e−2 1.3e−2 111 6.9e−1 99 1.0
ZOA 0.0 2.9e−1 6.2e−1 100 4.5 99 1.0
AEO 0.0 0.0 0.0 98 1.3 99 1.0
MPSO 1.3e−3 9.9e−2 1.1e−1 139 7.7 99 1.0
CHSO 0.0 1.6e−1 5.2e−1 100 2.9 99 1.0

f8 1D-SOA 2.1e−12 5.4e−9 2.8e−8

FWA 1.6e−3 1.3e−2 9.7e−3 99 1.3e1 99 3.6
ZOA 0.0 5.6e−1 5.0e−1 99 1.1e1 99 3.6
AEO 0.0 0.0 0.0 99 1.9 99 3.6
MPSO 4.3e−2 3.8e−1 2.2e−1 99 1.7e1 99 3.6
CHSO 0.0 1.5e−1 3.6e−1 99 4.3 99 3.6
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Table A2. Experimental results of various algorithms and benchmark functions for 2D.

Best Mean Std d t dnp tnp

f9 1D-SOA 1.9e−48 1.6e−35 1.5e−34

FWA 1.1e−49 2.6e−27 1.6e−26 99 1.6 153 1.4
ZOA 3.4e−26 9.0e−16 7.1e−15 99 1.3 153 1.4
AEO 4.0e−23 3.9e−10 2.4e−9 99 1.6 153 1.4
MPSO 1.5e−18 9.8e−9 3.9e−8 99 2.5 153 1.4
CHSO 1.2e−54 1.4e−7 1.3e−6 99 1.0 153 1.4

f10 1D-SOA 0.0 5.3e−17 3.0e−16

FWA 0.0 1.4e−16 9.9e−16 117 8.5e−1 192 1.3
ZOA 1.5e−12 9.8e−2 3.0e−1 99 3.3 192 1.3
AEO 1.9e−10 5.6e−1 9.1e−1 99 6.2 192 1.3
MPSO 1.2e−6 1.3 1.5 98 8.7 192 1.3
CHSO 3.6e−15 1.4 2.0 99 7.0 192 1.3

f11 1D-SOA 1.7e−6 2.0e−2 2.7e−2

FWA 6.2e−6 7.2e−3 1.2e−2 137 4.4 197 6.4e−1

ZOA 5.2e−8 1.8e−1 2.1e−1 102 7.4 197 6.4e−1

AEO 1.9e−16 4.2e−8 2.8e−7 99 7.5 197 6.4e−1

MPSO 1.6e−3 9.2e−2 8.1e−2 120 8.4 197 6.4e−1

CHSO 2.5e−6 1.0e−1 1.6e−1 104 5.1 197 6.4e−1

f12 1D-SOA 1.0e−1 9.4e−1 5.5e−1

FWA 1.8e−91 1.3e−69 1.3e−68 99 1.7e1 99 1.7e1

ZOA 1.3e−38 5.0e−3 2.2e−2 99 1.7e1 99 1.7e1

AEO 9.5e−24 1.0e−3 9.9e−3 99 1.7e1 99 1.7e1

MPSO 6.6e−21 1.9e−2 3.5e−2 99 1.7e1 99 1.7e1

CHSO 9.5e−17 3.1e−2 4.5e−2 100 1.7e1 99 1.7e1

f13 1D-SOA 2.5e−5 2.4 1.7e1

FWA 5.4e−4 1.2e1 4.2e1 128 2.1 122 8.3
ZOA 9.1e−2 2.0e2 1.2e2 103 1.7e1 122 8.3
AEO 1.2e−1 1.5e2 1.1e2 103 1.4e1 122 8.3
MPSO 4.2 2.5e2 1.2e2 102 2.1e1 122 8.3
CHSO -4.1e2 3.2e2 1.3e2 102 2.4e1 122 8.3

f14 1D-SOA 3.5e−12 7.2e−9 1.2e−8

FWA 4.7e−12 2.7e−6 8.2e−6 99 3.3 175 1.1e1

ZOA 2.9e−5 3.3e−3 3.6e−3 99 9.0 175 1.1e1

AEO 5.5e−5 1.1e−1 1.2e−1 99 9.1 175 1.1e1

MPSO 6.7e−3 4.6e−1 5.3e−1 99 8.7 175 1.1e1

CHSO 4.1e−3 2.3 3.7 98 6.4 175 1.1e1

f15 1D-SOA 1.3e−9 1.0e−6 2.9e−6

FWA 7.3e−20 9.8e−13 5.9e−12 99 3.5 126 3.8
ZOA 1.8e−10 7.3e−7 1.2e−6 131 9.1e−1 126 3.8
AEO 3.5e−6 1.7e−3 6.1e−3 99 2.7 126 3.8
MPSO 1.7e−5 7.8e−3 1.2e−2 99 6.2 126 3.8
CHSO 9.3e−6 2.6e−1 6.7e−1 99 3.9 126 3.8

f16 1D-SOA 2.4e−14 7.3e−11 1.5e−10

FWA 1.4e−21 5.1e−13 2.7e−12 99 4.8 197 1.9e1

ZOA 9.1e−10 7.0e−7 2.0e−6 99 3.5 197 1.9e1

AEO 1.2e−6 1.2e−3 2.5e−3 99 4.9 197 1.9e1

MPSO 4.9e−7 1.8e−2 3.4e−2 99 5.2 197 1.9e1

CHSO 1.7e−6 1.3e−1 3.2e−1 99 4.2 197 1.9e1

f17 1D-SOA 4.8e−100 4.8e−72 4.6e−71

FWA 5.1e−107 1.9e−49 1.9e−48 98 1.0 171 3.6
ZOA 2.2e−53 1.3e−28 8.7e−28 99 1.5 171 3.6
AEO 3.2e−50 8.0e−13 7.9e−12 99 1.0 171 3.6
MPSO 1.8e−33 9.5e−8 6.6e−7 98 1.5 171 3.6
CHSO 4.1e−60 2.6e3 2.2e4 98 1.2 171 3.6

f18 1D-SOA 4.7e−8 1.9 5.2
FWA 8.9e−14 2.5e−4 1.1e−3 99 3.6 144 1.2
ZOA 1.4e−6 1.8e−1 3.6e−1 99 3.2 144 1.2
AEO 4.0e−4 4.1 1.2e1 133 1.7 144 1.2
MPSO 5.9e−3 9.8 2.4e1 107 3.2 144 1.2
CHSO 0.0 7.4e1 1.4e2 99 5.1 144 1.2
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Table A3. Experimental results of various algorithms and benchmark functions for 2D.

Best Mean Std d t dnp tnp

f19 1D-SOA 0.0 1.6e−1 3.2e−1

FWA 5.8e−11 1.6e−2 1.1e−1 122 4.2 176 1.5e1

ZOA 2.4e−12 1.2e−1 2.9e−1 195 9.3e−1 176 1.5e1

AEO 0.0 4.4e−17 4.4e−16 98 5.0 176 1.5e1

MPSO 7.7e−5 5.9e−2 5.8e−2 105 3.1 176 1.5e1

CHSO 3.3e−14 1.3e−1 4.7e−1 174 4.7e−1 176 1.5e1

f20 1D-SOA 4.5e−24 2.3e−10 1.5e−9

FWA 2.6e−24 1.4e−13 5.3e−13 99 1.5 190 6.3
ZOA 3.8e−12 1.8e−7 5.0e−7 99 3.5 190 6.3
AEO 6.3e−12 1.3e−4 3.4e−4 99 3.9 190 6.3
MPSO 4.4e−8 9.9e−4 2.8e−3 99 3.6 190 6.3
CHSO 1.2e−10 1.5e−2 5.7e−2 99 2.6 190 6.3

f21 1D-SOA 4.1e−23 2.9e−17

FWA 4.8e−22 1.4e−12 1.1e−11 99 1.3 176 8.6
ZOA 1.7e−11 7.2e−7 2.1e−6 98 3.5 176 8.6
AEO 2.0e−10 3.9e−4 1.1e−3 99 3.5 176 8.6
MPSO 2.1e−8 5.1e−3 1.1e−2 99 4.5 176 8.6
CHSO 8.0e−17 1.3e−1 4.4e−1 98 3.0 176 8.6

f22 1D-SOA 1.2e−17 3.7e−4 2.1e−3

FWA 2.5e−14 9.0e−8 3.4e−7 99 1.7 192 4.8
ZOA 7.3e−9 2.4e−5 9.1e−5 99 1.6 192 4.8
AEO 3.8e−8 2.3e−4 4.5e−4 107 6.2e−1 192 4.8
MPSO 2.9e−7 7.5e−4 1.3e−3 166 1.5 192 4.8
CHSO 2.4e−13 1.6e−4 9.4e−4 137 8.8e−1 192 4.8

f23 1D-SOA 0.0 0.0 0.0
FWA 0.0 0.0 0.0
ZOA 0.0 0.0 0.0
AEO 0.0 0.0 0.0
MPSO 0.0 0.0 0.0
CHSO 0.0 0.0 0.0

f24 1D-SOA 5.5e−23 2.2e1 1.1e2

FWA 3.7e−23 6.0e−8 5.0e−7 99 2.1 169 4.7
ZOA 8.4e−7 1.5e−2 5.3e−2 99 2.1 169 4.7
AEO 2.6e−5 1.5e1 3.7e1 123 6.9e−1 169 4.7
MPSO 2.0e−3 2.1e2 6.9e2 103 2.7 169 4.7
CHSO 2.2e−5 4.0e3 2.5e4 99 1.6 169 4.7

f25 1D-SOA 0.0 1.8e−3 1.2e−2

FWA 0.0 3.1e−8 1.5e−7 99 1.4 195 7.6
ZOA 7.5e−8 3.2e−2 5.5e−2 109 5.4 195 7.6
AEO 1.3e−5 1.1e−1 1.0e−1 101 1.0e1 195 7.6
MPSO 8.3e−6 1.9e−1 1.4e−1 100 1.3e1 195 7.6
CHSO 0.0 7.6e−2 1.2e−1 101 6.3 195 7.6

f26 1D-SOA 3.9e−14 9.1e−4 5.5e−3

FWA 6.0e−13 1.5e−8 4.8e−8 99 1.7 176 3.5
ZOA 6.0e−8 3.2e−5 9.3e−5 99 1.6 176 3.5
AEO 5.2e−6 1.5e−3 2.3e−3 133 9.7e−1 176 3.5
MPSO 3.6e−5 8.8e−3 1.4e−2 128 5.3 176 3.5
CHSO 6.9e−11 5.2e−2 1.2e−1 99 4.3 176 3.5

f27 1D-SOA 1.1e−8 1.8e−1 1.6e−1

FWA 5.4e−11 1.2e−5 4.3e−5 99 1.1e1 180 6.1
ZOA 4.1e−5 3.8e−2 9.1e−2 154 7.6 180 6.1
AEO 6.8e−4 1.3e−1 1.5e−1 197 2.1 180 6.1
MPSO 1.4e−3 1.4e−1 1.2e−1 184 2.0 180 6.1
CHSO 0.0 1.6e−1 1.6e−1 197 1.0 180 6.1

f28 1D-SOA 7.3e−11 2.4e−1 4.3e−1

FWA 3.1e−11 6.9e−7 2.3e−6 99 5.6 174 2.9
ZOA -1.0 -8.5e−1 3.2e−1 182 2.1e1 174 2.9
AEO -1.0 -6.5e−1 4.2e−1 197 1.5e1 174 2.9
MPSO 6.4e−4 5.6e−1 3.9e−1 196 5.6 174 2.9
CHSO 0.0 4.5e−1 4.3e−1 197 3.5 174 2.9

f29 1D-SOA 1.8e−13 1.8e−1 6.4e−1

FWA 2.2e−22 2.9e−12 1.4e−11 99 2.8 181 8.6
ZOA 3.2e−12 8.3e−7 1.7e−6 99 2.8 181 8.6
AEO 1.2e−8 7.6e−4 2.2e−3 99 2.8 181 8.6
MPSO 3.5e−6 3.0e−3 7.8e−3 99 2.7 181 8.6
CHSO 0.0 4.4e−2 1.2e−1 105 2.1 181 8.6
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Table A4. Experimental results of various algorithms and benchmark functions for 30D.

Best Mean Std d t dnp tnp

f0 1D-SOA 1.7e−12 1.3e−11 2.4e−11

FWA 3.1e−12 2.6e−9 5.9e−9 99 4.4 194 2.0e1

ZOA 8.3e−5 5.3e−4 3.2e−4 99 1.7e1 194 2.0e1

AEO 2.1e−7 6.0e−3 1.0e−2 99 5.9 194 2.0e1

MPSO 7.1e−4 9.2e−3 1.5e−2 98 5.9 194 2.0e1

CHSO 1.0e−1 1.1e1 2.2 99 5.0e1 194 2.0e1

f1 1D-SOA 4.0e−12 2.5e−11 1.9e−11

FWA 2.8e−9 3.3e−6 4.8e−6 99 6.8 197 2.4e1

ZOA 4.0e−3 2.9e−2 1.9e−2 99 1.5e1 197 2.4e1

AEO 5.6e−4 1.9e−1 3.4e−1 98 5.7 197 2.4e1

MPSO 4.2e−2 2.1e−1 1.5e−1 99 1.4e1 197 2.4e1

CHSO 2.8e1 7.4e1 1.7e1 99 4.3e1 197 2.4e1

f2 1D-SOA 1.7e−14 6.7e−14 3.0e−13

FWA 8.7e−56 1.7e−49 6.1e−49 99 2.3 99 2.5e1

ZOA 2.4e−22 2.0e−7 2.0e−6 99 1.0 99 2.5e1

AEO 2.3e−21 1.2e−15 4.2e−15 99 2.2 99 2.5e1

MPSO 7.9e−19 1.1e−16 5.5e−16 99 2.3 99 2.5e1

CHSO 8.1e−277 7.6e−3 1.3e−2 99 6.0 99 2.5e1

f3 1D-SOA 6.9e−17 4.0e−14 7.4e−14

FWA 3.1e−9 2.7e−5 4.4e−5 99 6.1 168 1.7e1

ZOA 1.1e−3 2.2e−2 2.0e−2 98 1.1e1 168 1.7e1

AEO 5.6e−8 4.2e−2 6.8e−2 99 6.1 168 1.7e1

MPSO 1.2e−2 2.1 7.0 98 3.0 168 1.7e1

CHSO 8.5e−4 1.1 1.9 99 5.8 168 1.7e1

f4 1D-SOA 4.2e−17 8.3e−3 3.4e−2

FWA 1.7e1 3.0e5 6.3e5 99 4.8 170 1.7e1

ZOA 3.8e6 4.9e7 4.0e7 99 1.2e1 170 1.7e1

AEO 4.6e5 1.7e8 4.4e8 99 3.8 170 1.7e1

MPSO 2.3e7 2.6e8 3.1e8 99 8.3 170 1.7e1

CHSO 5.1e9 2.2e10 7.1e9 99 3.1e1 170 1.7e1

f5 1D-SOA 3.7e−10 4.1e−3 9.3e−3

FWA 3.1e−13 2.8e−7 1.2e−6 99 4.5 144 8.6
ZOA 4.0e−3 1.2e−1 1.4e−1 99 8.1 144 8.6
AEO 2.7e−5 4.1e−1 3.9e−1 99 1.0e1 144 8.6
MPSO 4.9e−2 6.2e−1 3.9e−1 99 1.6e1 144 8.6
CHSO 9.6 8.4e1 3.8e1 99 2.2e1 144 8.6

f6 1D-SOA 2.0 2.0 0.0
FWA 1.3e10 3.8e20 2.4e21 99 1.6 99 3.6e1

ZOA 1.6e24 1.1e32 6.9e32 99 1.6 99 3.6e1

AEO 0.0 1.3e5 4.9e5 98 2.6 99 3.6e1

MPSO 6.6e−23 2.5e31 1.1e32 99 2.2 99 3.6e1

CHSO 3.2e16 8.3e28 5.3e29 98 1.6 99 3.6e1

f7 1D-SOA 8.4e−15 2.2e−6 1.6e−5

FWA 8.5e11 4.5e18 2.7e19 99 1.7 98 2.5e1

ZOA 1.5e24 1.5e31 6.0e31 99 2.6 98 2.5e1

AEO 0.0 5.5e5 4.3e6 99 1.3 98 2.5e1

MPSO 7.4e22 6.9e30 3.3e31 98 2.1 98 2.5e1

CHSO 1.3e17 4.3e28 4.0e29 99 1.1 98 2.5e1

f8 1D-SOA 1.6e−34 4.8e−29 2.9e−28

FWA 2.5e−18 7.0e−10 3.0e−9 99 2.3 141 1.1e1

ZOA 5.7e−8 1.0e−5 1.6e−5 99 6.2 141 1.1e1

AEO 1.3e−12 1.1e−3 8.4e−3 99 1.3 141 1.1e1

MPSO 2.9e−7 3.8e−3 1.7e−2 99 2.2 141 1.1e1

CHSO 1.4e−13 1.1 9.9 99 1.1 141 1.1e1

f9 1D-SOA 2.8e−14 7.3e−1 8.1e−1

FWA 6.8e−13 1.1e−7 4.5e−7 99 9.0 144 3.4
ZOA 4.4e−2 6.9 1.8e1 99 3.5 144 3.4
AEO 3.5e−5 1.6e1 4.1e1 99 3.6 144 3.4
MPSO 4.1e−2 3.4 9.5 100 2.8 144 3.4
CHSO 2.8e1 1.5e2 4.3e1 99 3.4e1 144 3.4
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Table A5. Experimental results of various algorithms and benchmark functions for 30D.

Best Mean Std d t dnp tnp

f10 1D-SOA 3.4e−4 8.3 7.8
FWA 2.6e1 2.7e1 5.1e−1 99 2.4e1 132 7.6
ZOA 2.8e1 2.9e1 9.6e−2 99 2.6e1 132 7.6
AEO 2.5e1 2.7e1 4.1e−1 99 2.4e1 132 7.6
MPSO 2.8e1 2.9e1 2.2e−1 99 2.6e1 132 7.6
CHSO 2.8e1 2.9e1 2.8e−1 99 2.6e1 132 7.6

f11 1D-SOA 3.4e−4 8.3 7.8 0.0
FWA 2.6e1 2.7e1 5.1e−1 1.0e2 2.4e1 1.3e2 7.6
ZOA 2.8e1 2.9e1 9.6e−2 9.9e1 2.6e1 1.3e2 7.6
AEO 2.5e1 2.7e1 4.1e−1 1.0e2 2.4e1 1.3e2 7.6
MPSO 2.8e1 2.9e1 2.2e−1 9.9e1 2.6e1 1.3e2 7.6
CHSO 2.8e1 2.9e1 2.8e−1 9.9e1 2.6e1 1.3e2 7.6

f12 1D-SOA 2.9 4.0 5.9e−1

FWA 3.9e−51 2.9e−2 4.5e−2 100 6.8e1 98 8.3
ZOA 1.0e−1 1.0e−1 1.9e−9 99 6.7e1 98 8.3
AEO 2.1e−20 1.2e−4 1.1e−3 99 6.8e1 98 8.3
MPSO 1.0e−1 1.6e−1 6.5e−2 101 6.5e1 98 8.3
CHSO 1.5e−1 9.7e−1 4.0e−1 174 4.3e1 98 8.3

f13 1D-SOA 1.4e−6 1.1e−5 1.2e−5

FWA 5.6e−4 5.9e−2 5.3e−2 99 1.1e1 190 2.1e1

ZOA 2.7 9.3 4.5 99 2.1e1 190 2.1e1

AEO 7.6e−3 2.1e1 2.3e1 99 9.2 190 2.1e1

MPSO 7.3 1.9e1 5.5 99 3.4e1 190 2.1e1

CHSO 1.8e2 3.7e2 7.4e1 99 5.0e1 190 2.1e1

f14 1D-SOA 5.2e−1 1.1 3.1e−1

FWA 1.2e−48 1.0e−39 3.9e−39 99 3.6e1 99 1.7e1

ZOA 7.2e−19 1.4e−16 2.3e−16 99 3.6e1 99 1.7e1

AEO 4.9e−19 3.9e−14 1.8e−13 99 3.6e1 99 1.7e1

MPSO 8.9e−17 5.0e−14 1.7e−13 99 3.6e1 99 1.7e1

CHSO 1.1e1 4.9e1 1.7e1 99 2.8e1 99 1.7e1

f15 1D-SOA 1.0e−15 1.8e−12 1.1e−11

FWA 6.5e−9 1.0e−6 1.9e−6 99 5.3 197 2.4e1

ZOA 1.4e−2 8.5e−2 6.6e−2 98 1.3e1 197 2.4e1

AEO 2.6e−3 1.2 2.7 99 4.6 197 2.4e1

MPSO 8.7e−2 4.2e−1 2.5e−1 98 1.7e1 197 2.4e1

CHSO 3.1e1 1.6e2 7.0e1 99 2.3e1 197 2.4e1

f16 1D-SOA 3.9e−156 2.4e−141 1.8e−140

FWA 4.0e−146 1.7e−85 1.7e−84 1.0 197 2.4e1

ZOA 9.0e−54 1.7e−40 9.4e−40 99 1.8 197 2.4e1

AEO 3.6e−78 6.5e−30 6.2e−29 99 1.1 197 2.4e1

MPSO 7.1e−44 2.9e−25 2.1e−24 99 1.3 197 2.4e1

CHSO 2.0e5 2.4e8 2.9e8 99 8.2 197 2.4e1

f17 1D-SOA 3.6e3 8.9e3 1.3e3

FWA 8.9e−5 1.1 3.9 99 7.0e1 99 1.6e1

ZOA 1.6e1 3.1e2 2.2e2 105 6.7e1 99 1.6e1

AEO 1.2e−3 7.4e1 2.2e2 104 6.9e1 99 1.6e1

MPSO 1.5e2 2.3e4 1.1e4 101 1.2e1 99 1.6e1

CHSO 1.3e4 2.6e4 6.4e3 106 2.7e1 99 1.6e1

f18 1D-SOA 1.1e−2 2.3 4.8e−1

FWA 6.1e−4 2.3e−3 1.8e−3 99 4.9e1 120 4.8
ZOA 3.5 3.5 9.4e−3 99 2.4e1 120 4.8
AEO 1.7e−1 1.7 1.1 134 4.8 120 4.8
MPSO 3.5 3.5 1.8e−3 99 2.5e1 120 4.8
CHSO 3.1 3.4 8.0e−2 104 2.3e1 120 4.8

f19 1D-SOA 4.7e−15 5.5e−10 1.9e−9

FWA 7.7e−9 2.5e−5 9.0e−5 99 2.8 174 1.8e1

ZOA 2.8e−3 2.4e−2 2.2e−2 99 1.1e1 174 1.8e1

AEO 9.0e−8 1.1e−1 2.2e−1 99 4.9 174 1.8e1

MPSO 1.9e−2 1.5e−1 1.8e−1 99 8.4 174 1.8e1

CHSO 1.0e1 5.1e1 1.4e1 99 3.5e1 174 1.8e1
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Table A6. Experimental results of various algorithms and benchmark functions for 30D.

Best Mean Std d t dnp tnp

f20 1D-SOA 8.9e−15 1.8e−12 3.7e−12

FWA 8.1e−7 9.9e−4 2.2e−3 98 4.5 185 2.0e1

ZOA 1.4e−1 1.5 1.5 99 1.0e1 185 2.0e1

AEO 1.1e−3 6.2 1.2e1 99 5.1 185 2.0e1

MPSO 5.1e−1 1.3e1 2.3e1 98 5.7 185 2.0e1

CHSO 1.0e3 2.6e3 9.0e2 99 2.9e1 185 2.0e1

f21 1D-SOA 4.1e−16 1.1e−9 5.1e−9

FWA 1.1e−11 4.7e−6 1.1e−5 99 4.3 139 2.4
ZOA 3.0e−7 1.0e−4 1.7e−4 99 6.0 139 2.4
AEO 1.5e−9 5.0e−3 2.7e−2 99 1.9 139 2.4
MPSO 4.1e−6 2.2e−2 4.9e−2 99 4.4 139 2.4
CHSO 2.3e−12 3.0e−2 1.6e−1 99 1.9 139 2.4

f22 1D-SOA 4.0e−14 1.5 5.9
FWA 6.9e−7 8.8e−2 1.9e−1 99 2.3 169 3.1
ZOA 6.0 4.9e1 3.6e1 104 1.3e1 169 3.1
AEO 1.3e−2 4.5e2 9.3e2 99 4.9 169 3.1
MPSO 2.7e1 1.4e3 3.6e3 99 3.9 169 3.1
CHSO 6.9e3 3.2e4 1.0e4 99 3.1e1 169 3.1

f23 1D-SOA 0.0 0.0 0.0
FWA 0.0 0.0 0.0
ZOA 0.0 0.0 0.0
AEO 0.0 0.0 0.0
MPSO 0.0 0.0 0.0
CHSO 0.0 0.0 0.0

f24 1D-SOA 6.8e−9 2.2e−2 1.2e−2

FWA 3.7e−7 2.3e−4 3.2e−4 99 1.8e1 152 1.3e1

ZOA 1.4e−1 5.0e−1 1.2e−1 100 4.0e1 152 1.3e1

AEO 3.1e−4 5.7e−1 2.6e−1 99 2.1e1 152 1.3e1

MPSO 1.5e−1 7.6e−1 1.0e−1 101 7.1e1 152 1.3e1

CHSO 2.7e−1 3.9e−1 6.4e−2 105 5.7e1 152 1.3e1

f25 1D-SOA 2.8e−13 4.8e−8 1.5e−7

FWA 6.1e−12 1.5e−6 6.8e−6 99 2.2 195 6.4
ZOA 9.8e−7 4.9e−4 6.6e−4 99 7.4 195 6.4
AEO 2.2e−5 1.8e−2 5.3e−2 99 3.4 195 6.4
MPSO 1.0e−3 4.7e3 4.5e4 99 1.0 195 6.4
CHSO 6.3e5 4.2e12 2.0e13 99 2.1 195 6.4

f26 1D-SOA 3.5e−12 3.7e−12 2.0e−13

FWA 6.5e−9 7.8e−8 6.4e−8 99 1.2e1 99 1.7e1

ZOA 9.5e−8 2.5e−6 2.8e−6 99 9.0 99 1.7e1

AEO 3.5e−12 2.0e−11 1.1e−11 99 1.6e1 99 1.7e1

MPSO 1.1e−6 2.0e−4 2.9e−4 99 7.0 99 1.7e1

CHSO 0.0 4.7e−9 3.5e−8 99 1.4 99 1.7e1

f27 1D-SOA 1.0 1.0 0.0
FWA 1.0 1.0 3.6e−12 9.9e1 3.3e1 0.0 9.9e1

ZOA 3.8e−11 1.8e−10 1.1e−10 9.9e1 9.1e10 9.1e9 9.9e1

AEO −9.1e−1 −2.8e−2 1.3e−1 9.9e1 7.6e1 7.9 9.9e1

MPSO 1.0 1.0 3.4e−9 9.9e1 1.3e1 0.0 9.9e1

CHSO 1.0 1.0 5.7e−10 9.9e1 1.0e1 0.0 9.9e1

f28 1D-SOA 1.9e2 3.7e2 5.5e1

FWA 1.7e−4 8.9e−1 1.5 99 6.8e1 99 1.6e1

ZOA 9.8e−1 1.5e1 7.9 103 6.5e1 99 1.6e1

AEO 2.7e−3 1.0e1 4.2e1 185 5.3e1 99 1.6e1

MPSO 6.5e−1 1.9e4 1.1e5 99 1.6 99 1.6e1

CHSO 2.0e2 1.1e3 3.0e3 99 2.3 99 1.6e1

f29 1D-SOA 1.9e2 3.7e2 5.5e1

FWA 1.7e−4 8.9e−1 1.5 9.9e1 6.8e1 9.9e1 1.6e1

ZOA 9.8e−1 1.5e1 7.9 1.0e2 6.5e1 9.9e1 1.6e1

AEO 2.7e−3 1.0e1 4.2e1 1.9e2 5.3e1 9.9e1 1.6e1

MPSO 6.5e−1 1.9e4 1.1e5 9.9e1 1.6 9.9e1 1.6e1

CHSO 2.0e2 1.1e3 3.0e3 9.9e1 2.3 9.9e1 1.6e1
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Table A7. Experimental results of various algorithms and benchmark functions for 2D, for functions
with non-zero optimum.

Best Mean Std d t dnp tnp

f30 1D-SOA −1.0 −1.0 1.3e−3

FWA −1.0 −1.0 1.1e−13 99 1.5 158 4.1
ZOA −1.0 −1.0 4.8e−9 99 1.5 158 4.1
AEO −1.0 −1.0 3.1e−6 99 1.5 158 4.1
MPSO −1.0 −1.0 2.2e−5 99 1.4 158 4.1

f31 1D-SOA 3.0 8.6 1.0e1

FWA 3.0 4.6 6.4 168 3.4 176 9.1
ZOA 3.0 1.5e1 1.9e1 149 3.0 176 9.1
AEO 3.0 6.4 1.3e1 187 1.4 176 9.1
MPSO 3.1 1.3e1 1.4e1 180 2.7 176 9.1

f32 1D-SOA 1.1 2.4e3 5.9e3

FWA 1.0 1.4 1.6 99 4.1 185 6.8
ZOA 1.0 4.6e1 1.3e2 99 4.0 185 6.8
AEO 1.5 2.5e2 5.7e2 100 3.7 185 6.8
MPSO 1.2 6.6e2 1.9e3 119 2.8 185 6.8

f33 1D-SOA −1.0 −9.4e−1 2.4e−1

FWA −1.0 −1.0 4.8e−6 99 2.5 98 2.2e1

ZOA −1.0 −9.5e−1 2.2e−1 196 3.1e−1 98 2.2e1

AEO −1.0 −1.0 4.5e−14 99 2.5 98 2.2e1

MPSO −1.0 −9.3e−1 6.7e−2 114 5.8e−1 98 2.2e1

f34 1D-SOA 1.244e2 1.387e2 1.671e1

FWA 1.244e2 1.262e2 2.352 102 7 191 5
ZOA 1.244e2 1.463e2 4.155e1 130 1 191 5
AEO 1.244e2 1.417e2 2.493e1 173 1 191 5
MPSO 1.250e2 1.845e2 4.020e1 132 10 191 5

f35 1D-SOA 9.0e−1 1.0 2.5e−2

FWA 9.0e−1 9.0e−1 2.3e−3 100 3.8e1 193 8.9
ZOA 9.0e−1 9.6e−1 4.9e−2 148 6.7 193 8.9
AEO 9.0e−1 1.0 4.1e−2 165 3.7e−1 193 8.9
MPSO 9.0e−1 1.0 5.6e−2 138 4.1 193 8.9

f36 1D-SOA −3456 −2884
FWA −3455 −3450 19 99 5 165 0
ZOA −3455 −2234 1452 184 3 165 0
AEO −3455 −1520 1555 178 7 165 0
MPSO −3452 −725 3447 119 5 165 0

f37 1D-SOA −7.833e1 −7.830e1 2.513e−1

FWA −7.833e1 −7.832e1 2.713e−2 101 110 7
ZOA −7.833e1 −7.201e1 7.658 99 8 110 7
AEO −7.833e1 −7.657e1 4.304 99 4 110 7
MPSO −7.820e1 −7.256e1 5.408 99 10 110 7

Appendix C. Benchmark Functions

Table A8. Benchmark functions.

Function Search Space, Ω Optimal Solution,~x * Optimum, f (~x *) Cneigh Cneighl

f0(~x) : Ackley [56–58] [-32.768, 32.768] [0, 0]D
∗

0 0.5 0.01

f0(~x) = −20exp
(
−0.2

√
1
D ∑D

i x2
i

)
− exp

(
1
D ∑D

i cos(2πxi)
)
+ 20 + exp(1)

f1(~x): Ackley 2 [58] [−32, 32]D [0, 0]D 0 5 0.1

f1(~x) = 200
(

1− exp
(
−0.02

√
∑D

i x2
i

))
f2(~x): Alpine 1 [58] [−10, 10]D [0, 0]D 0 0.5 0.1

f2(~x) = ∑n
i |xi sin(xi) + 0.1xi |
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Table A8. Cont.

Function Search Space, Ω Optimal Solution,~x * Optimum, f (~x *) Cneigh Cneighl

f3(~x): Brown [58] [−1, 4]D [0, 0]D 0 0.5 0.1

f3(~x) = ∑D−1
i=1

(
(x2

i )
(x2

i+1+1) + (x2
i+1)

(x2
i +1)

)
f4(~x): Cigar [20] [−100, 100]D [0, 0]D 0 0.5 0.0001

f4(~x) = x2
1 + 106 ∑D

i=2 x2
i

f5(~x): Ellipse [20] [−100, 100]D [0, 0]D 0 0.5 0.01

f5(~x) = ∑D
i 104 i−1

D−1 x2
i

f6(~x): Griewank [20] [−600, 600]D [0, 0]D 0 250 15
f6(~x) = 1

4000 ∑D
i x2

i −∏D
i cos( xi√

i
) + 1

f7(~x): Mishra 1 [59] [−1, 1]D [1, 1]D 0 0.5 0.01

f7(~x) =
(

1 + D−∑D−1
i xi

)D−∑D−1
i xi − 2

f8(~x): Mishra 2 [59] [−1, 1]D [1, 1]D 0 0.5 0.01
f8(~x) = (1 + gn)gn − 2, gn = D−∑D−1

i (
xi+xi+1

2 )

f9(~x): Quartic [58] [−1.28, 1.28]D [0, 0]D 0 1.28 0.2
f9(~x) = ∑D

i ix4
i

f10(~x): Rastrigin [56,57] [−5.12, 5.12]D [0, 0]D 0 5 2
f10(~x) = 10D + ∑D

i
(
x2

i − 10cos(2πxi)
)

f11(~x): Rosenbrock [23] [−2.048, 2.048]D [1, 1]D 0 3 0.5
f11(~x) = ∑D−1

i [100(xi+1 − x2
i )

2 + (xi − 1)2]

* The super-index D refers to a D−dimensional vector.

Table A9. Benchmark functions.

Function Search Space, Ω Optimal Solution,~x * Optimum, f (~x *) Cneigh Cneighl

f12(~x): Salomon [58] [−100, 100]D [0, 0]D 0 0.01 0.001

f12(~x) = 1− cos
(

2π
√

∑D
i x2

i

)
+ 0.1

√
∑D

i x2
i

f13(~x): Schwefel [23] [−500, 500]D [420.9687, 420.9687]D 0 500 250

f13(~x) = 418.9829D−∑D
i xisin

(√
|xi|
)

f14(~x): Schwefel 2.20 [58] [−100, 100]D [0, 0]D 0 5 2
f14(~x) = ∑D

i |xi|
f15(~x): Schwefel 2.21 [23,58] [−100, 100]D [0, 0]D 0 0.5 0.01

f15(~x) = max(|xi|)
f16(~x): Schwefel 2.22 [58] [−100, 100]D [0, 0]D 0 50 2

f16(~x) = ∑D
i |xi|+ ∏D

i |xi|
f17(~x): Schwefel 2.23 [58] [−10, 10]D [0, 0]D 0 10 5

f17(~x) = ∑D
i x10

i
f18(~x): Schwefel Double
Sum [23,58]

[−65.536, 65.536]D [0, 0]D 0 5 1

f19(~x): Sinusoidal [59] [0, 180]D [0, 0]D 0 5 0.1

f19(~x) = A + 1−
{

A ∏D
i sin(xi − Z) + ∏D

i sin[B(xi − Z)]
}

, A = 2.5, B = 5, Z = 30

f20(~x): Sphere [56–58] [−5.12, 5.12]D [0, 0]D 0 0.5 0.01
f20(~x) = ∑D

i x2
i

f21(~x): Sum Squares [58] [−10, 10]D [0, 0]D 0 10 5
f21(~x) = ∑D

i ix2
i

f22(~x): Sum of Different [−1, 1]D [0, 0]D 0 0.5 0.01
Powers [29] f22(~x) = |xi|i+1

f23(~x): Step [23] [−5, 5]D [0, 0]D 0 5 1
f23(~x) = ∑D

i f loor(xi + 0.5)2

f24(~x): Tablet [20] [−100, 100]D [0, 0]D 0 0.5 0.001
f24(~x) = 104x2

1 + ∑D
i=2 x2

i

* The super-index D refers to a D−dimensional vector.
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Table A10. Benchmark functions.

Functions Search Space, Ω Optimal Solution,~x * Optimum, f (~x *)

f25(~x): Wavy [58] [−π, π]D [0, 0]D 0 π/2 1
f25(~x) = 1− 1

D ∑D
i cos(10xi)exp

(
x2

i /2
)

f26(~x): XinShe Yang [60] [−5, 5]D [0, 0]D 0 0.5 0.001
f26(~x) = |xi|i

f27(~x): XinShe Yang N.2 [60] [−2π, 2π]D [0, 0]D 0 2π π

f27(~x) =
(

∑D
i |xi|

)
exp
(
−∑D

i sin(x2
i )
)

f28(~x): XinShe Yang N.4 [60] [−10, 10]D [0, 0]D 0 0.5 0.2

f28(~x) =
(

∑D
i sin2(xi)− exp(−∑D

i x2
i )
)

exp
(
−∑D

i sin2
√
|xi|
)
+ 1

f29(~x): Zakharov [58] [−5, 10]D [0, 0]D 0 1 0.001

f29(~x) = ∑D
i x2

i +
(

∑D
i 0.5ixi

)2
+
(

∑D
i 0.5ixi

)4

Table A11. Non-zero benchmark functions.

Function Search Space, Ω Optimal Solution,~x * Optimum, f (~x *) Cneigh Cneighl

D-dimensional functions
f7(~x): Mishra 1 [59] [−1, 1]D [1, 1]D 2 0.5 0.01

f7(~x) =
(

1 + D−∑D−1
i xi

)D−∑D−1
i xi

f8(~x): Mishra 2 [59] [−1, 1]D [1, 1]D 2 0.5 0.01
f8(~x) = (1 + gn)gn, gn = D−∑D−1

i ( xi+xi+1
2 )

2-dimensional functions
f30(~x): Exponential [58] [−1, 1]D [0, 0] 1 0.05 0.001

f30(~x) =
(

1 + D−∑D−1
i xi

)D−∑D−1
i xi

f31(~x): Goldstein Price [32] [−2, 2]D [0,−1]D 3 0.06 0.01
f31(~x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2)]×

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

f32(~x): Bartels Conn [58] [−500, 500]D [0, 0] 1 10 0.01
f32(~x) = |x2

1 + x2
2 + x1x2|

f33(~x):Easom [58] [−100, 100]D [0,−1]D 3 70 40
f33(~x) = −cos(x1)cos(x2)exp[−(x1 − π)2 − (x2 − π)2]

f34(~x): Jennrich-Sampson [58] [−1, 1]D [0.257825]D 124.3612 0.05 0.001
f34(~x) = ∑10

i=1(2 + 2i− (eix1 + eix2 )2

f35(~x): Price 2 [58] [−10, 10]D [0]D 0.9 0.05 0.0001
f35(~x) = 1 + sin2(x1) + sin2(x2)− 0.1exp−x2

1−x2
2

f36(~x): Schwefel 2.36 [58] [0, 500]D [12]D −3456 5 0.01
f36(~x) = −x1x2(72− 2x1 − 2x2)

f37(~x): Styblinski-Tang [58] [−5, 5]D [−2.903534]D −78.332 5 0.01
f37(~x) = 1

2 ∑2
i=1(x4

i − 16x2
i + 5xi)

* The super-index D refers to a D−dimensional vector.
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Figure A4. Benchmark functions studied in this paper.
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