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Abstract: The expectation that the physical expansion of space occurs smoothly may be expressed
mathematically as a requirement for continuity in the time derivative of the metric scale factor of
the Friedmann–Robertson–Walker cosmology. We explore the consequences of imposing such a
smoothness requirement, examining the forms of possible interpolating functions between the end
of inflation and subsequent radiation- or matter-dominated eras, using a straightforward geometric
model of the interpolating behavior. We quantify the magnitude of the cusp found in a direct
transition from the end of slow-roll inflation to the subsequent era, analyze the validity of several
smooth interpolator candidates, and investigate equation-of-state and thermodynamic constraints.
We find an order-of-magnitude increase in the size of the universe at the end of the transition to a
single-component radiation or matter era. We also evaluate the interpolating functions in terms of
the standard theory of preheating and determine the effect on the number of bosons produced.
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1. Introduction

The problem of trying to reconcile physical theories regarding the form and evolution
of the primordial universe with modern cosmological observations has occupied researchers
for decades. Providing a complete explanation for the origins of the characteristics that the
universe exhibits today has been challenging. We witness extreme uniformity and flatness
and the absence of certain particles predicted in some Grand Unified Theory (GUT) models.
Many physicists have detailed these well-known difficulties in texts and expository papers;
see, for example, Refs. [1–9].

The issue of uniformity has the name the horizon problem. We see a homogeneous,
isotropic universe on large scales. Despite the almost incomprehensible longevity of the
universe, it is simply too immense to have grown to be uniform on large scales. Causal-
ity demands that local homogeneity takes time to develop, with equilibrium conditions
dispersing at a rate no greater than the speed of light. Two local homogeneous elements
dispersed in time must retain a causal connection to remain in equilibrium with one an-
other. Yet opposite sides of the universe appear nearly identical to us. Even if we assume
they started that way, not enough time has passed for space to have expanded a great
enough distance to maintain the equilibrium—at least not according to the physics we
understand—with signaling bounded by the limit of the speed of light. Cosmologists
assess uniformity primarily using the temperature of the Cosmic Microwave Background
(CMB), which is the thermal radiation emitted as the matter in the universe was cooling and
transitioning from a conductive, opaque plasma to a neutral, transparent gas. The widely
accepted standard is TCMB ≈ 2.7255 K [10]. An early CMB probe, the Cosmic Background
Explorer, found the temperature variation from this mean to be on the order of 10−5 K. Each
causally connected portion of the CMB that should have been able to thermalize before the
recombination photons began to stream freely along their paths toward the Earth covers a
solid angle of approximately 0.013 sr in the sky, so that about 104 such solid angles make
up the CMB. How then, cosmologists ask, did 10,000 discrete portions of the CMB, which do
not appear to have been causally connected at the time of recombination, collectively equilibrate at a
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common temperature that is uniform to within the order of 10−5 K [1]? A period of superluminal
expansion provided by inflation could provide the missing causal connection.

Expansion itself does not change the inherent topology of the universe: a universe
that is closed, open, or flat remains so. However, expansion makes any curvature appear
locally more flat. The Planck Collaboration has measured the spatial curvature Ωk as
0.001± 0.002 [11], which means our nearly flat universe presents a second cosmological
difficulty: the flatness problem. The scale factors a(t) of matter-dominated and radiation-
dominated cosmologies are proportional to t2/3 and t1/2, respectively. According to the
first Friedman equation [1,12], Ωk scales as 1/ȧ2, so that in the absence of any other influ-
ences, the longevity of the universe means that consistency with the Planck measurement
requires that the curvature at the beginning of the radiation-dominated era must have
been extraordinarily small. Again, inflation offers a remedy: the inflationary exponential
scale factor would tend to drive down the spatial curvature to a level that could support
subsequent evolution to the value observed today.

The additional monopole problem arises from the predictions of some GUT mod-
els [13,14], which predict that a phase transition breaks the symmetry between the strong
and weak forces when the temperature of the universe drops to a level consistent with
the energy scale 1016 GeV. A result would be the formation of a dust of massive magnetic
monopoles, with a density that is subsequently proportional to a−3, potentially, thereby,
blocking the radiation and matter eras from taking place [5]. The monopole problem calls
for a mechanism to reconcile the GUT prediction of the creation of these massive particles
with our accepted understanding of the chronology of the early universe and current
cosmological observation. Inflation could provide dilution that would make magnetic
monopoles so few and far apart that finding them would be essentially impossible.

1.1. The Inflation Solution

In his groundbreaking paper in 1981 [15], Alan Guth introduced inflation as a theory
to address the inexplicable horizon, flatness, and monopole problems. However, he also
acknowledged the difficulty his mechanism created: an exit from the false vacuum that
drives inflation involved quantum tunneling from a false to the true vacuum state, an effect
that would occur primarily in localized bubbles—that is, discrete regions subsequently
characterized by the Klein–Gordon scalar field that drives inflation (the inflaton φ) having
settled into its true vacuum state. Moreover, expansion of space would continue between
the bubbles (where such tunneling had not yet occurred), and as a result, we would expect
to see parcels of nonuniform space today. Intersecting bubbles would have similar effects.
This model of inflation, thus, predicted a universe inconsistent with observation; Guth’s
original theory lacks a graceful exit.

In 1982, inflation pioneer Andrei Linde sought to solve the graceful exit problem with
a new theory: slow-roll inflation [16]. Instead of starting in a false vacuum, the inflaton
rolls down a potential energy plateau to a minimum where it oscillates around a true
vacuum state, which graph (a) of Figure 1 depicts schematically. The assumption that the
potential energy of the inflaton dominates the kinetic energy for a sufficient time results in
exponential inflation.

The slow-roll condition implies φ̈→ 0, so that the equation of motion of the scalar field

φ̈ + 3Hφ̇ + V(φ),φ = 0, (1)

reduces to
3Hφ̇ = −V(φ),φ. (2)

The Hubble parameter H is the expansion rate of the universe, V(φ) is the potential of
the inflaton, and the comma denotes the partial derivative with respect to φ. The theory
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assumes that the magnitudes of both the density and pressure of the inflaton become
approximately equal to the potential by treating the inflaton condensate as a perfect fluid:

ρ =
1
2

φ̇2 + V(φ) ≈ V(φ) (3)

p =
1
2

φ̇2 −V(φ) ≈ −V(φ). (4)

In this regime, the second Friedmann equation [1,12], commonly known as the acceleration
equation, because it governs ä, is essentially

ä(t)
a(t)

= −4πG
3

(ρ + 3p) =
8πG

3
ρ. (5)

In our notation, h̄ = 1 and c = 1 hereafter unless otherwise noted. Thus, the expansion of
space undergoes inflationary acceleration, ä

a > 0, as a result. The first Friedman equation,

H2 +
k
a2 =

8πG
3

ρ, (6)

with H2 =
( ȧ

a
)2 � k

a2 , yields the scale factor solution

a(t) = a0eHt. (7)

This is the exponential expansion of space predicted by the theory of slow-roll infla-
tion [8,17]. A period of superluminal expansion would explain the homogeneity and
isotropy of the observable universe by providing the necessary causal connection to solve
the horizon problem. Superluminal expansion would also flatten the spatial curvature and
decrease the density of magnetic monopoles. Numerical analysis provides insight into
the question of the number of e-folds of expansion necessary to resolve these problems.
However, this solution comes with its own associated shortcoming: producing an outcome
consistent with modern observations demands very specific initial conditions.

(a) (b)

Figure 1. The contrast between the potentials of slow-roll inflation, shown in (a), and chaotic
inflation, shown in (b). Slow-roll inflation requires a plateau to generate enough e-folds of inflationary
expansion to solve the horizon, flatness, and monopole problems. In chaotic inflation, the effects of
the friction term in the equation of motion replace that of the plateau in keeping the inflaton from
moving to the true vacuum too quickly. After inflation, both models involve the inflaton oscillating
around a minimum potential during a period of reheating, which we review in Section 1.2.

Although the underlying physics of inflation (such as the existence of the inflaton field)
remains unsubstantiated experimentally, the framework of inflation is widely accepted
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among cosmologists as a way of providing an underlying solution to various cosmological
problems. Over the years, researchers have revised the concept by devising a diverse body
of new theories. For our purposes, we shall focus on Linde’s solution to the problem of the
requirement of specific initial conditions in the slow-roll theory. In 1983, he published his
theory of chaotic inflation [18]. See Ref. [19] for a recent overview of the theory. In its simplest
version [17], the inflaton potential has the form V(φ) = 1

2 m2φ2. The plateau is absent, and
in an expanding universe, the friction term 3Hφ̇ in the inflaton equation of motion (1) has
the effect of restricting the motion of the inflaton, as the slow roll plateau does, resulting
again in exponential expansion. Figure 1 shows the two contrasting potentials.

Cosmologists have applied a variety of approaches to estimating the amount of in-
flation necessary to solve the horizon, flatness, and monopole problems. The amount by
which the cosmos expands is normally expressed in terms of the number of times the size
has increased by a constant factor—in other words, the number of the e-folds (or nepers)

N = log
a(t f )

a(ti)
. Linde [17] reports that a quadratic inflaton potential creates a wavelength

for the inflaton comparable in size to our observable universe after about 61 e-folds. In
a detailed analysis, Lyth [20] finds that, for a quartic inflaton potential, a range of e-fold
values from 47 to 61 results in a universe on the present scale. He further explains that at
a minimum, more than 14 e-folds are needed to generate perturbations leading to struc-
ture formation, and that an extended period of domination of the inflaton kinetic term
could increase his estimates of N by nearly 14; therefore, he concludes with an estimate of
14 < N < 75.

Other researchers have performed analyses to determine the number of e-folds re-
quired to solve specific inflationary problems [21]. Solving the horizon problem entails
that the comoving Hubble radius at the beginning of inflation [a(ti)H(ti)]

−1 must contain
what has become the comoving Hubble radius today [a(t0)H(t0)]

−1, so that the comov-
ing [a(t0)H(t0)]

−1 could have thermalized before expanding through the postinflationary
epochs of the universe up to the present. The Hubble radius is the distance light travels in
time t = H−1. Thus, we have

[a(ti)H(ti)]
−1 ≥ [a(t0)H(t0)]

−1 (8)

1
H(ti)

≥ 1
H(t0)

a(ti)

a(t0)
=

1
H(t0)

a(t f )

a(t0)

a(ti)

a(t f )
=

1
H(t0)

a(t f )

a(t0)
e−N (9)

−N ≤ log

[
H(t0)

H(ti)

a(t0)

a(t f )

]
= log

[
H(t0)

H(ti)

T(t f )

T(t0)

]
= log

[
H(t0)

T(t0)

T(t f )

H(ti)

]
. (10)

In Equation (10) we use the inverse relation between the scale factor and temperature,
which is derived in Appendix A for reference. Parameter values T(t0) ≈ 2.75 K and
H(t0) ≈ 100 km/s/Mpc lead to

N ≥ 67 + log

[
H(ti)

T(t f )

]
, (11)

which indicates that N is at least 67, because the temperature H(ti) represents is greater
than T(t f ).

1.2. Reheating

The expansion of space by inflation dilutes the number densities of all particles and
leaves the universe cold, with energy concentrated primarily in the inflaton. Following
the end of inflation, reheating results in the transfer of energy from the inflaton to stan-
dard model particles or their precursors. Reheating has two stages: first, the transfer of
energy, and then the subsequent thermalization to a temperature sufficient to promote
nucleosynthesis of light elements. A mechanism developed by Lev Kofman, Andrei Linde,
and Alexei Starobinsky in their iconic 1997 paper, “Towards the Theory of Reheating after
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Inflation” [22], which they call preheating because it precedes thermalization, supersedes
earlier explanations of reheating by way of perturbation theory and narrow parametric
resonance. We reference a selection of the wide range of literature available on the subject
of preheating [7,23–26].

A preheating framework appears to be necessary, because perturbative processes
prove too slow and inefficient to raise the reheating temperature enough to support nu-
cleosynthesis. Also, the perturbative approach required certain conditions and treated
inflatons collectively in a state of superposition of individual particles, each capable of
decaying independently—rather than as coherent semiclassical fields. On the other hand,
narrow parametric resonance models followed the approach that the inflatons formed a
homogeneous, coherent, oscillating wave appropriate for classical treatment. In narrow
parametric resonance, an inflaton wave interacts as a background source for a second scalar
field χ. However, this theory itself can be problematic. Because the modes of the scalar field
χ have physical wavelengths, the expansion of space redshifts modes outside the borders
of the resonance band and also makes the band more narrow. In addition, the expansion
and the decay of the inflaton into χ particles decrease the amplitude of the coherent inflaton
wave. The number of particles being produced instantaneously is proportional to both the
number of χ particles previously created and to the inflaton amplitude, so that the effects of
expansion and decay lower the efficiency of the resonant conversion and tend to suppress
the growth of the χ population. Narrow parametric resonance, thus, typically terminates
well before reheating is complete.

The parametric resonance in preheating models is instead broad: all modes less
than a specific momentum participate in the φ-χ coupling. A nonadiabatic transfer of
energy leads to exponential growth in the number and number density of the χ quanta.
Moreover, the expansion of space can actually make the resonance more effective by
gradually redshifting additional modes down to below the maximum momentum, making
them part of the process. The end of reheating depends on the possible range of values
of parameters involved in preheating and the complex dynamics of backreaction and
rescattering. However, preheating may still not be sufficient to complete reheating, and
the reheating process may have to revert to a period of narrow parametric resonance,
perturbative decay, or both to arrive at a temperature that is suitable for thermalization but
not high enough to produce very massive particles like monopoles.

In Section 2, the reader will find a description of the cusp discontinuity inherent in
inflationary theories involving an exponential scale factor and our approach to quanti-
fying the extent of the cusp. Section 3 introduces a method for finding an interpolating
function to replace the cusp, by detailing the geometry of a simple circular model. Then,
in Section 4, we focus on finding a more realistic interpolating function. We derive the
formalism establishing smoothness in the expansion of space at the end of inflation and
analyze the implications of the most straightforward interpolating candidates: power-law
functions. The equation-of-state and thermodynamic constraints provide additional means
of restricting possible interpolating functions, and this is discussed in Section 5. We analyze
the effect on the size of the universe of a horizontal parabola-like power law serving as
a transitional interpolating function in Section 6. Finally, we look at further numerical
analyses to determine the effect on the scalar χ number and number density predicted by
the Kofman, Linde, and Starobinsky (KLS) model of preheating in Section 7.

2. Period Scale Factors

The well-known expressions for the scale factor in the early universe include a curious
unphysical approximation: a lack of smoothness at the end of the inflationary epoch. The
inflationary and radiation-dominated scale factors, a1(t) and a2(t), respectively, follow [1]
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a1(t) = a(ti)eH(t−ti) (12)

a2(t) = a(t f )

(
t
t f

)1/2

. (13)

To demonstrate the discontinuity in ȧ, we assume contrariwise that the time derivatives of
the scale factors are equal at the end of inflation, t f :

d
dt

a1(t)
∣∣
t f
= a(ti)HeH(t−ti)

∣∣
t f
= a(t f )H (14)

d
dt

a2(t)
∣∣
t f
=

a(t f )√
t f

1
2t1/2

∣∣
t f
=

a(t f )

2t f
. (15)

By first expressing the Hubble parameter H in terms of N, the number of inflationary
e-folds of expansion, and then equating derivatives, we find

H =
N

t f − ti
(16)

N =
t f − ti

2t f
=

1
2
− ti

2t f
. (17)

Continuity of the derivatives requires that N ≤ 1
2 , or else the time at the beginning of

inflation is less than zero. Although much research into inflation has produced a wide
range of proposed values for N, this result is particularly problematic. If taken literally, it
would eliminate inflation as a solution to the kinds of problems the theory was designed
to solve.

The primary goal of this work is to understand how a more model without a kink
could affect the subsequent cosmology. In principle, a complete tracking of the equation-
of-state parameters at and immediately after the end of inflation would seem to provide
everything necessary to answer this question; however, to do this properly would require a
full accounting of all the physics of the inflaton field whose false vacuum energy density
drove the inflationary expansion. To study the transition at the end of inflation in a way
that is relatively independent of the detailed collective dynamics of the inflaton, we adopt
an phenomenalistic approach, looking at classes of mathematically reasonable interpolation
functions for the scale factor a(t) itself, rather than the equation of state. On sufficiently
short time scales, quantum and thermal fluctuations will mean that the equation of state
of the cosmos does not actually need to have a quasi-equilibrium form, and any use
of an analytical equation of state is necessarily an approximation. However, we shall
continue with the conventional approach of considering a model with an approximate
quasi-equilibrium equation of state, superposed on top of which there can be additional
fluctuations in some of the degrees of freedom. The use of a single-component equation of
state for the later postinflation epoch is naturally also an approximation; even in thermal
equilibrium, the true equation of state will always receive contributions from all the
quantum fields present in the theory—whether relativistic (radiation-like) or nonrelativistic
(matter-like). However, the question of how many components of the energy-momentum
content need to be taken into account to achieve full quantitative accuracy is separate
from the issue of whether a thermodynamically descriptive equation of state exists at all.
Even during a phase transition, there can be an interpolating equation of state (whose
degree of smoothness is determined by the order of the transition). It is conceivable that a
first-order phase transition may be so abrupt that the collective, thermodynamic description
of the physics breaks down during the immediate transition period; and if this is how
the universe behaves at the termination of inflation, then that would actually be a very
interesting observation. However, that lies beyond the scope of this paper; indeed, this
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work is specifically limited to the consideration of the opposite regime, in which the end of
inflation is represented by a higher-order transition, and the physics of the immediately
postinflationary era can be consistently described via a smoothly varying, continuous
dynamical picture.

Our approach is complementary to the one adopted in Ref. [27], which worked to trace
the effective value of parameter w (for the equation of state p = wρ) during the slightly
later periods of preheating and reheating. That paper’s authors noted the challenges of
trying to specify the w parameter precisely; instead, they analyzed the parameter’s time
evolution and sought to find a suitably averaged value through lattice simulation. Their
analysis concentrated on the evolution due to postinflation backreaction, which our analysis
precedes. However, as part of their study, they by necessity included an estimate of the
number of e-folds of additional expansion brought about by the coherent oscillations of the
inflaton before backreaction. They estimated the number of e-folds to be approximately
3.07 for a quadratic inflaton potential, without regard to the form of the scale factor. In this
work, we shall find that using a smooth scale factor similarly increases the expansionary
effect by approximately 2 to 3 e-folds, so that the two approaches are not in conflict.

2.1. Quantifying the Discontinuity

Although early universe estimates are themselves quite problematic because of the
uncertainty in the values of basic parameters, using reasonable values can provide some
insight into the mathematical relationship between the scale factors in different periods
of cosmological evolution. We can estimate a value for a(t f ) by taking advantage of the
inverse relation between the scale factor and temperature, in conjunction with estimates of
temperature then and now, T(t f ) and T(t0), respectively,

a(t f ) =
T(t0)

T(t f )
≈ 2.73 K

1.16× 1029 K
≈ 10−29, (18)

since, by convention, a(t0) = 1. The temperature of the CMB today is T(t0) ≈ 2.73 K [10],
and T(t f ) corresponds to the temperature equivalent to the value of H for a universe that
supports the standard model, which is H ≈ 1016 GeV [28].

Next, we compare slopes at the end of inflation. The inflationary slope is

ȧ1(t f ) ≈ 10−13 GeV ≈ 1011 s−1. (19)

For the radiation-era derivative, after solving Equation (16) for t f and substituting it into
Equation (15), we have

ȧ2(t f ) =
a(t f )H

2(N + Hti)
=

ȧ1(t f )

2(N + Hti)
. (20)

The estimate by Liddle and Lyth that inflation began at ti = 10−42 s [2] leads to Hti ≈ 0.02.
A reasonable assumption is that N ≈ 60 [17,20,21], which results in a measure of the
discontinuity. The time derivative of the radiation-era scale factor is approximately 1

120 of
the derivative of the inflationary scale factor. Graph (a) of Figure 2 shows this change in the
growth behavior qualitatively. We also note that these values, H = 1016 GeV and N = 60,
yield an estimate for the duration of inflation without the need to specify ti or t f :

∆t =
N
H
≈ 4× 10−39 s. (21)
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(a) (b)

Figure 2. (a) The graph depicts the discontinuity between inflationary and radiation-era scale factors
at the end of inflation. (b) The circular arc defined by the transitional scale factor acir(t) intersects
tangentially with the inflationary scale factor a1(t) and the now-displaced radiation-era scale factor
noted with a prime, a′2(t). The parameter ∆ is the time period from the end of inflation until the time
of continuity between acir(t) and a′2(t). The a functions are not to scale.

3. The Transition

What kind of transitional function could provide continuity between the two period
scale factors? At the end of inflation, the slope begins to decline. For simplicity, we require
a steadily declining slope with no regions in which the universe undergoes contraction.
This pair of requirements motivates us to conclude that a valid mathematical representation
of the physical expansion of space would likely consist of a properly chosen intermediate
power law. Expressing the mathematical formalism involves defining a set of parameters for
the power law whose values also serve to establish continuity at the points of intersection
with the prior inflationary and subsequent single-component-era scale factors. Initially, as
demonstrated with Figure 2b, we use a circular arc acir(t)—only to provide a qualitative
illustration of the geometry and the set of parameters. In Section 4, we discard the model
based on the circular arc, because it is not a realistic physical solution, and focus strictly on
evaluating the possible power-law transitions to identify viable candidates.

In Figure 2b, the arc lies tangent to a1(t) at the end of inflation and tangent to the now-
displaced radiation-era scale factor noted with a prime, a′2(t). The transitional duration ∆
remains to be determined.

In the more detailed view of Figure 3, we see five unknown variables:

• R—the radius of the circular arc;
• ∆—the time between t f and the tangent point at which the circular arc acir(t) meets

the displaced radiation era a′2(t);
• a(t f − δ)—the a-axis value at t f − δ, aligned with the center of the arc;
• δ—the measure of the t-axis displacement corresponding to the difference between

a(t f ) and a(t f − δ);
• a(t f + ∆)—the scale factor at t f + ∆, the t-axis point of tangency for acir(t) and a′2(t).

The transitional function is just the equation of the circle

acir(t) = a(t f − δ) +
√

R2 − [t− (R + t f − δ)]2. (22)

If a(t f ) and a(t f − δ) were to coincide, we would be introducing another discontinuity into
the model, i.e., the change from the inflationary slope to the infinite slope of the circular
arc. With the displacement δ, the edge of the circular arc lies earlier on the timeline than t f ,
and δ sets that duration. We note that a(t f − δ) is, therefore, never the physical value of the
scale factor and so has no direct effect on the expansion of space.
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Figure 3. Five unknown parameters characterize the two points of tangency of acir(t) with the period
scale factors (not to scale).

We establish smoothness by equating the scale factors and their derivatives at the
tangent points. Thus, we have five unknown parameters in the four matching conditions.
In Section 5.3, we invoke a fifth equation to specify the model completely.

4. Power-Law Transitions

Imposing a circular arc is an unreasonably strict condition to use to define an inter-
polating function. We shall continue now by exploring more general power-law solutions
for a(t) in the transition between the period scale factors (in fact, just as having the most
realistic quasi-equilibrium equation of state would involve including power-law terms
with different indices, corresponding to different types of matter content, a more elaborate
interpolator could also include a sum of terms with different power-law indices—although
we shall not consider functions with that level of generality). Even just a single properly
chosen power-law section could provide continuity and also potentially lengthen one or
the other of the periods it connects, depending on its orientation. A power law with n < 1
has essentially no impact on the length of the radiation era. For a power law with n > 1, a
very small increase in the inflationary period could have a substantial impact on the scale
factor, as discussed further in Section 4.2.

4.1. Interpolating Power Laws with n < 1

The power law takes the form

ap(t) = ap(t f − δ) + D [t− (t f − δ)]n. (23)

We use the notation ap(t) for power laws with n < 1. The subscript p denotes the rep-
resentative parabola for n = 1

2 , which opens to the right and has a horizontal axis. The
unknown coefficient D is the analog of the unknown radius of the circular arc. Additional
unknown parameters ap(t f − δ), δ, ∆, and a(t f + ∆) correspond to the parameters dis-
played in Figure 3 for the circular arc. We analyze the continuity of the forms of the scale
factor at the two points of tangency.
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4.1.1. Smoothness at t f

For the first matching condition—continuity of a(t)—at t f , ap(t)
∣∣
t f
= a(t f ) implies

D =
a(t f )− ap(t f − δ)

δn (24)

ap(t) = ap(t f − δ) +
a(t f )− ap(t f − δ)

δn [t− (t f − δ)]n. (25)

The second matching condition at t f equates the time derivatives, generating an expression
for the a-axis vertex coordinate:

ȧp(t)
∣∣
t f
= ȧ1(t)

∣∣
t f
= T(t0) (26)

ȧp(t)
∣∣
t f
= n

[ a(t f )− a(t f )− δ

δn

]
δn−1 (27)

ap(t f − δ) = a(t f )−
T(t0)δ

n
, (28)

where we used the relations in Equations (14) and (18) to express these in terms of the
current temperature T(t0), since t = t0 also provides the calibration scale for a. With the
vertex coordinate from Equation (28), the scale factor is

ap(t) = a(t f )−
T(t0)δ

n
+

T(t0)

nδn−1 [t− (t f − δ)]n. (29)

4.1.2. Smoothness at t f + ∆

The interpolating transition we imposed between the end of inflation and the begin-
ning of the radiation era shifts the Equation (13) scale factor according to

a′2(t) = a(t f + ∆)

√
t

t f + ∆
, (30)

where we use the prime to distinguish this shifted expression. The vertex of the radiation-era
t1/2 scale factor remains at (t = 0, a = 0). The third matching condition, in which the inter-
polating power law equals a′2(t) at the point of tangency, yields the noninformative solution

a′2(t)
∣∣
t f +∆ = ap(t f + ∆). (31)

However, the final smoothness condition equates the derivatives of the scale factors
a′2(t) and ap(t) at t f + ∆, so we have

ȧp(t)
∣∣
t f +∆ = ȧ′2(t)

∣∣
t f +∆ (32)

ȧ′2(t)
∣∣
t f +∆ =

ap(t f + ∆)
2(t f + ∆)

(33)

ȧp(t)
∣∣
t f +∆ =

T(t0)

δn−1 [t− (t f − δ)]n−1
∣∣∣∣
t f +∆

(34)

=
T(t0)

δn−1 (∆ + δ)n−1. (35)
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Thus, we ultimately arrive at the condition

T(t0)

δn−1 (∆ + δ)n−1 =
ap(t f + ∆)
2(t f + ∆)

(36)

T(t0)

δn−1 (∆ + δ)n−1 =
1

2(t f + ∆)

[
a(t f )−

T(t0)δ

n
+

T(t0)

nδn−1 (∆ + δ)n
]

. (37)

The formalism leaves us with the need to fix ∆ to evaluate the model; ∆ and a(t f + ∆) are
physical but as yet unknown parameters. The others are mathematical constructs with no
direct physical meanings. After substituting the early universe parameter values assumed
in Section 2.1, we find, for example, the solution for n = 1

2 at ∆ = 10−35 s:

δ ≈ 2.65× 10−6∆ (38)

(evaluated using Maple).
Table 1 lists additional values of δ for a sample set of transition durations ∆. The

purpose of having three significant figures listed in the table is to illustrate the relationship
between the displacement and any changes to the transition scale.

Table 1. The vertex displacements δ for power laws a(t) ∝ t1/2 and t2 for a sample set of transition
durations ∆ between the end of inflation and the beginning of the radiation era. Increasing the
duration ∆ for the power law n = 1

2 tends to set the displacement of the vertex. However, because of
the difficulty of establishing continuity with the inflationary slope at t f , the displacement δ for the
n = 2 interpolator is many orders of magnitude greater. With its vertex located later on the timeline
than t f , the table shows that increasing the transition has the effect of shifting the vertex of av(t)
farther away from the end of inflation.

Transition n ∆ (s) δ (s)

ap(t) 1
2 10−35 2.65× 10−41

10−33 3.22× 10−41

10−30 3.29× 10−41

10−22 3.29× 10−41

av(t) 2 10−35 1.50× 10−35

10−22 1.50× 10−22

We accomplished the objective of parameterizing the transition from the inflationary
scale factor with a family of power-law scale factors that ensure sufficient smoothness to
have continuity of a and its first time derivative—although we did not impose the condition
of continuity on any higher-order derivatives. The slope of the inflation-era scale factor
grows at a rate on the order of the Hubble parameter, and a requirement of continuity on
the second derivative would effectively extend inflation into the subsequent period, rather
than marking the physical end of inflation as the point at which the second derivative
becomes negative.

4.2. Power Laws with n > 1

To continue the study of alternative transitions, we now examine power laws with
n > 1, containing unknown parameters analogous to those analyzed in the previous section.
The scale factor formula is

av(t) = av(t f + δ) + E [t− (t f + δ)]n. (39)

The subscript v denotes the representative inverted parabola for n = 2 with the vertical
axis parallel to the a-axis. The displacement of the vertex from a(t f ) now places δ at a time
later than the tangent point at t f + ∆, as shown in Figure 4.
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Repeating the analysis of the matching conditions at t f and t f +∆ yields the scale factor

av(t) = a(t f ) +
T(t0)δ

n
+

T(t0)

n(−δ)n−1 [t− (t f + δ)]n (40)

and a fourth matching condition

T(t0)

(−δ)n−1 (∆− δ)n−1 =
1

2(t f + ∆)

[
a(t f ) +

T(t0)δ

n
+

T(t0)

n(−δ)n−1 (∆− δ)n
]

. (41)

As Table 1 details for a sample set of transition durations, the vertex displacement δ for
a power law with n = 2 and ∆ = 10−35 s is almost six orders of magnitude farther from
the point of tangency than that of the power law with n = 1

2 . The power law ap(t) ∝ t1/2

can establish continuity with the slope of the inflationary scale factor with such a minute
displacement, because the power law has an infinite slope at the vertex. However, the
power law av(t) ∝ t2 has no such infinite slope, and the difficulty of establishing continuity
with the large slope at the end of inflation, ∼1011 s−1, manifests itself in the displacement
being many orders of magnitude greater than that of ap(t) ∝ t1/2.

Figure 4. The displacement δ necessarily places the vertex of the representative inverted parabola
with power-law index n = 2 later than the end of inflation at t f and the tangency point at t f + ∆ (not
to scale). Increasing the duration over which the the interpolating scale factor applies also shifts the
vertex similarly.

Figure 5 displays the transitional scale factors of Equations (29) and (40), rescaled
by a translation of the t-axis t → t′ = t f + t. The timeline starts at the arbitrarily small
initial value t = 10−43 s. The graphs represent power laws for n < 1 and n > 1 with a
representative sample of powers. However, the graphs of the scale factors themselves offer
somewhat limited insight into the evaluation of the quality of the interpolating functions.
For that, we now look instead to graphs of the Hubble parameter:

H(t f + t) =
ȧ(t f + t)
a(t f + t)

. (42)
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In the transitional Hubble parameters below, Hin is the constant inflationary Hubble
parameter, taken to be 1016 GeV. For the two classes of power laws, we find

Hp(t f + t) =

(
1 + t

δ

)n−1

1
Hin
− δ

n + δ
n
(
1 + t

δ

)n (43)

Hv(t f + t) =

(
1− t

δ

)n−1

1
Hin

+ δ
n −

δ
n
(
1− t

δ

)n . (44)

Figure 5. The three av(t) scale factors with power laws t3/2, t2, and t5/2 essentially overlay each
other, and the ap(t) scale factor proportional to t1/4 approaches those of the power laws with n > 1.
The graph also shows the unsmoothed scale factor defined by Equation (13), which exceeds that of
ap(t) at t3/4. The t-axis timeline begins at t = 10−43 s after inflation terminates, while the vertical
dotted line at t = 10−35 s marks the nominal start of the radiation era.

In Figure 6, showing graphs of Equations (43) and (44), we note that the requirement
of smoothness at the beginning of the radiation era causes abrupt shifts downward and
upward as t→ ∆ for interpolating scale factors not proportional to t1/2. We note that the
power laws with n > 1 that overlay each other in both Figures 5 and 6 must exhibit the
shift downward to establish continuity with the radiation-era Hubble parameter. Unable
to justify a physical basis for this behavior, we shall move forward in our analysis by
eliminating these power laws as valid interpolating functions and focus on more specifically
determining workable interpolating functions with n < 1. We also note that as n → 1

2
from above or below, the scale factor ap(t) transforms more seamlessly into the radiation
era. Thus, at this stage, we expect that the most suitable interpolating functions will
correspond to the index value n = 1

2 , or something close to that. The power laws for the
interpolating region and the subsequent radiation-dominated era are both horizontally
opening parabolas (or nearly so), which differ principally in their vertex placements and
radii of curvature.
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Figure 6. The Hubble parameters corresponding to the scale factors shown in Figure 5. Once again,
the graphs based on the scale factors av(t) for t3/2, t2, and t5/2 essentially overlay each other. The
discontinuity of the radiation-era Hubble parameter with Hin exceeds two orders of magnitude. The
graph based on scale factor ap(t) for t3/4 fails to display asymptotic behavior with Hin at small times,
because the timeline has the same t-axis translation and does not start at t f . Again, the vertical dotted
line marks the start of the radiation era at t = 10−35 s.

5. Additional Constraints
5.1. The Equation of State

We continue with the evaluation of the usefulness of the possible interpolations by
considering a parameter εH , which is an alternative to the equation-of-state parameter ω
that satisfies p = ωρ, according to

εH =
d log(H−1)

d log a
=

3
2
(1 + ω). (45)

Following a graphical technique described by Kaloian Lozanov [26], we shall interpret the
formula as the slope in a plot of the evolution of the scale factor from inflation through
reheating, matter domination, and finally, the dark-energy-dominated era. Appendix B
provides more information about this expression. Figure 7 shows our version of the
Lozanov graphical approach for the power law ap(t) ∝ tn, with n ranging from 0.05 to 0.95.
Table 2 lists statistics for some of the graphed power laws, and smaller and larger values
of n.

Aside from the footnoted observations in Table 2, we note a further curious feature of
Figure 7. The graphs at the upper and lower extremes of n display almost cusp-like changes
of slope at the tangent point between the transition and the radiation-dominated era at
t = t f + ∆. Between inflation and the start of the radiation-dominated era, εH changes from
a value much greater than 2 to less than 2 for n > 1

2 . Conversely, for n < 1
2 , the parameter

starts at less than 2 and then becomes greater than 2. With our expectation that εH = 2,
only the power law n = 1

2 (the same power-law index as in the radiation era itself) appears
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able to transition seamlessly to the radiation era, which suggests that all powers except
n = 1

2 result in a cusp in the evolution of εH . This motivates a closer inspection.

Figure 7. The slopes of the graphs equal the parameter εH =
d log(H−1)

d log a .

Table 2. The displacement δ, parameter εH , and equation-of-state parameter ω = 2
3 εH − 1 for power

laws ap(t) ∝ tn, with values of n ranging between 0 and 1. (a) Computation sets this value more
precisely at ≈ 2.00039. After interpolation using the linear relation associated with Equation (46), the
expected εH = 2 for a radiation-dominated scale factor occurs at n ≈ 0.5002. (b) Values of εH → 2.6−

and ω ≈ 0.73 signify unphysical, exotic tachyon-like particles with velocities greater than the speed
of light, which Section 5.2 discusses in detail. (c) For εH ≈ 1.50 and ω ≈ 0.00, we have a transition
from inflation to an equation of state that would be consistent with a matter-dominated universe.
We take up consideration of the single-component matter-dominated universe in Section 5.3. (d) As
εH → 1.0+ and ω → − 1

3 , the scale factor remains inflationary, effectively eliminating the transition.

n δ (s) εH ω

0.002 2.53× 10−36 2.59 0.73 (b)

0.25 9.55× 10−37 2.37 0.58
0.50 2.65× 10−41 2.00 (a) 0.33
0.75 9.46× 10−56 1.50 0.00 (c)

0.98 2.31× 10−294 1.04 −0.31 (d)

Figure 8 plots εH versus the power-law index n at time (t f + ∆):

εH = 1 + (1− n)
a(t f )−

T(t0)δ
n + T(t0)δ

n

(
1 + ∆

δ

)n

T(t0)δ
(

1 + ∆
δ

)n . (46)

For n > 1
2 , the negative term in the numerator of Equation (46) is small relative to the

other terms appearing in the fraction, which are on the order of a(t f ) and essentially cancel
with the factor of the same characteristic size in the denominator. The linear relation
εH − 1 ∝ (1− n) remains, as the graph and Table 2 show. In contrast, for n < 1

2 , the scale
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factor a(t f ) is small relative to the other terms in the fraction. As n→ 0, the fraction and
(1− n) are both increasing, and εH increases to approximately 2.6.

Figure 8. The parameter εH = − Ḣ
H2 with power law ap(t) ∝ tn for n < 1 at the start of the radiation

era, with the transition period ∆ = 10−35 s.

Figure 8 aligns with the possibility raised by Figure 5 that only n = 1
2 results in a

transition to the radiation era without an awkward, cusp-like feature—whose very presence
would seem to be contrary to the dictum we adopted of modeling the transitions in a
smooth fashion. However, precise calculations consistently indicate that a slightly different
n ≈ 0.5002 actually produces the seamless transition. In the same way as the abrupt
shift that we cannot explain in the graph of the Hubble parameters tends to disqualify all
power laws except n = 1

2 , the cusp-like features again appear likely to signify unphysical,
unexplained behavior. However, before we attempt to resolve these conflicts, we shall
review additional constraints on the equation of state, starting with constraints related to
the speed of sound.

5.2. Speed of Sound Constraints

Another tool for evaluating the interpolators is the application of constraints on the
speed of sound to the equation of state. A speed of sound less than zero or greater than the
speed of light would violate stability or causality, respectively [29,30]. Stability requires that
the speed must be real; imaginary phase speeds would correspond to imaginary frequencies,
or modes that grow exponentially with time. At the other end, special relativity imposes
the standard limitation that information carried by arbitrary quanta cannot propagate faster
than the speed of light c = 1 in a vacuum. Thus, we expect the sound speed of the transition
waves to obey inequalities

0 ≤ v2
s ≤ 1. (47)

We assume, as is standard, that the inflaton wave oscillations are fast and, thus,
adiabatic, so that a passing wave brings about temperature changes without conductive
heat transfer. The thermodynamic behavior is reversible, and so the entropy per unit mass
is constant [31] as an inflaton wave passes through. Pressure p = p(s, ρ) becomes a function
of the density ρ only: p = p(ρ). We also make the assumption that the inflaton condensate
at the end of inflation is a perfect fluid, allowing us to apply a linear, single-component
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equation of state, p = ωρ, expressing the dependence of pressure on density in terms of a
ρ-independent equation-of-state parameter ω. This environment yields a sound speed

v2
s =

1
dρ/dp

=
dp
dρ

= ω, (48)

and using ω = 2
3 εH − 1, the condition 0 ≤ ω ≤ 1 implies 3

2 ≤ εH ≤ 3. At the precise end
of inflation, ∆ = 0 in Equation (46), leaving

εH = 1 + (1− n)
a(t f )

T(t0)δ
= 1 +

(1− n)
Hδ

. (49)

Figure 9 displays the effect of enforcing the sound speed restrictions from Equation (47)
on εH ; these conditions severely restrict the permissible range of power-law indices. The
line plot is a Python cubic spline interpolation of Maple-generated solutions for the param-
eter εH from Equation (46) in 0.001 increments around n = 1

2 . The section of the spline
interpolation within the gray horizontal band contains valid values of εH , corresponding
to interpolating theories with stable, causal sound speeds. Reading off the graph, we see
the permissible physical power-law band for the continuous function transitioning from
the end of inflation to the radiation era lies approximately between 0.4990 < n < 0.5005.
This narrow band is consistent with the large separation in Figure 7 between the power law
n = 1

2 and the closely adjacent powers n = 0.45 and n = 0.55.

Figure 9. Values of the parameter εH = 1 + (1−n)
Hδ at the end of inflation, t f ≈ 4 × 10−39 s, for

ap(t) ∝ tn with n ≈ 1
2 . The gray band depicts the permissible values of εH , 3

2 ≤ εH ≤ 3, subject to
the assumption that the inflaton condensate at the end of inflation is a single-component perfect fluid
with the equation of state p = ωρ.

5.3. Continuity of the Equation of State

Although we found restrictions on the allowed range of power-law values, a tension
between the expected and derived equations of state for n = 1

2 actually remains. We do
not find that εH = 2 corresponds exactly to n = 1

2 . We instead recall the expected εH = 2
was associated with n ≈ 0.5002 reported in Table 2, and we now seek to understand the
reason for the slight discrepancies between these values and the derived εH ≈ 2.00039 that
corresponds to the exact n = 1

2 .
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A comparison of the scale factor in Equations (28) and (29) of Section 4.1 with the first
two terms in the numerator of the fraction in the expression below:

εH derived = 1 + (1− n)
a(t f )−

T(t0)δ
n + T(t0)δ

n

(
1 + ∆

δ

)n

T(t0)δ
(

1 + ∆
δ

)n , (50)

indicates that those two terms arise from the a-axis scale factor displacement ap(t f − δ)
of the interpolating function’s vertex. The third term in the numerator represents the
functional dependence of the scale factor on time.

Table 3 separates the difference between the expected and derived εH into the relative
contributions from the components of the numerator: εH displacement and εH time. For compar-
ison, we repeat the analysis for a single-component, matter-dominated transition function
establishing continuity between the end of inflation and a matter-dominated era (that is,
with n = 2

3 power laws). We can see the results are qualitatively the same. The displacement
of the vertex of the scale factor along the a-axis is responsible for the discrepancies.

Table 3. These parameters correspond to power laws ap(t) with indices n = 1
2 and n = 2

3 transitioning
to radiation-dominated and matter-dominated eras with scale factors similarly proportional to t1/2

and t2/3. The column εH derived reconstructs the parameter as the sum of 1 and the contribution from
the displacement and the time components. We conclude that the displacement causes the difference
from εH expected.

n δ (s) εH expected εH derived εH displacement εH time

1
2 2.65× 10−41 2 2.00039 0.00039 1.00000
2
3 7.71× 10−42 1.5 1.50020 0.00020 0.50000

If not for the contribution of the vertex displacement, we would have seamless transi-
tions of the equation of state between the interpolating power laws and the radiation or
matter eras. A first-order phase transition at (t f + ∆) might be responsible for the cusp,
but we reason against that possibility. The dynamics of the expansion of space at the
tangent point undergoes no change. Prior to and after (t f + ∆), the power-law index n
governing expansion remains approximately the same for each single-component era. Also,
the transition precedes the period of preheating described in Section 7 and subsequent
thermalization, so that we expect the temperature to evolve smoothly at t f + ∆.

Instead, invoking continuity of the equation of state at (t f +∆) and noting εH expected = 1
n

for a single-component universe, as Appendix C shows, we solve Equation (50) for the
displacement δ and find

εHexpected =
1
n
= 1 + (1− n)

a(t f )−
T(t0)δ

n + T(t0)δ
n

(
1 + ∆

δ

)n

T(t0)δ
(

1 + ∆
δ

)n (51)

1
n
=

a(t f )−
T(t0)δ

n + T(t0)δ
n

(
1 + ∆

δ

)n

T(t0)δ
(

1 + ∆
δ

)n . (52)

Substituting a(t f ) = T(t0)/H from Equation (18) with H = Hin yields

δ =
n
H

. (53)

An analysis of Equation (50) demonstrated that the displacement

εH displacement = a(t f )−
T(t0)δ

n
(54)
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caused the cusp-like feature. With the Equation (53) result, and recalling a(t f ) =
T(t0)

H , we
instead have εH displacement = 0, and the bump on the curve is gone.

However, making the assumption of continuity of the equation of state at t f + ∆
destroys the smoothness of the scale factor that we imposed at both t f + ∆ and t f . Thus,
we must re-examine the matching condition at t f + ∆; returning to the fourth matching
condition and trying to solve for ∆, we see that

T(t0)

δn−1 (∆ + δ)n−1 =
1

2(t f + ∆)

[
a(t f )−

T(t0)δ

n
+

T(t0)

nδn−1 (∆ + δ)n
]

(55)

T(t0)

(
1 +

∆
δ

)n−1
=

1
2(t f + ∆)

[
T(t0)

H
− T(t0)δ

n
+

T(t0)δ

n

(
1 +

∆
δ

)n]
(56)

0 =
1
H
− δ

n
+

δ

n

(
1 +

∆
δ

)n
− 2(t f + ∆)

(
1 +

∆
δ

)n−1
. (57)

With δ = n
H , this simplifies to

2(t f + ∆) =
1
H

(
1 +

H∆
n

)
(58)

∆ =
1
H − 2t f

2− 1
n

. (59)

Thus, the transition period ∆ is undefined for n = 1
2 , which invalidates the claim of first-

derivative smoothness imposed by the Equation (38) parameters, δ ≈ 2.65× 10−6∆. For
n ≈ 0.5002, associated with εH = 2, the new formula’s value of ∆ is in fact less than zero.
Since ∆ is supposed to represent the length of time over which the interpolating function
applies, this value is manifestly unphysical.

Furthermore, substituting δ = n/H in the interpolating scale factor:

ap(t) = a(t f )−
T(t0)δ

n
+

T(t0)δ

n

(
1 +

t− t f

δ

)n
(60)

=
T(t0)δ

n

(
1 +

t− t f

δ

)n
, (61)

eliminates the a-axis displacement of ap(t). We introduced the displacement of the power-
law vertex in Section 4.1.1 in order to enforce the smoothness condition at t f , but this would
be undone by the assumption of exact continuity of the equation of state.

The Lozanov graphical approach to analyzing the equation of state suggests a range of
power-law indices, 0.5000 . n . 0.5002, are reasonable, and this is supported by the values
the are permitted by the speed-of-sound constraints 0.4990 . n . 0.5005. Having tried
unsuccessfully to establish continuity with the equation of state at t f + ∆, we now seek an
explanation of the discontinuity. If the transition represents a continuation and ultimately a
termination of inflation, a local discontinuity might result from a weak phase transition
of unknown character. A second explanation may be that a power-law index not equal to
0.5 in the transition signals that the composition of the universe is not strictly radiation-
dominated as the transition ends, and so a single-component model is not sufficient to
describe the dynamics.

6. Summary of Numerical Results

We found that a transition function with power-law index n can provide seamless
first-derivative smoothness over the period between the end of inflation and the devel-
opment of a single-component n-era universe, while obeying fundamental stability and
causality constraints. During the transition, the scale factor increases by approximately
an order of magnitude more, compared with what it would have been in a model with
a sharp cusp dividing the inflationary from postinflationary functional forms; and that
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additional accumulated expansion factor remains as time progresses. Figure 10 shows the
key comparisons.

(a) (b)

Figure 10. The growth in scale factors for single-component universes with smoothness enforced at
t f + ∆ with ∆ = 10−35 s and 10−22 s in (a,b), respectively. We note that the approximate order-of-
magnitude increases in the power-law scale factors occur at around 10−37 s in all cases.

Figure 11 depicts the increases toward asymptotic limits more clearly. Both
Figures 10 and 11 also reveal that these increases occur primarily in the vicinity of t = 10−37 s
and do not particularly depend on the duration of the transition ∆. Table 4 contains fur-
ther data, including how much larger, relatively speaking, the universes with the smooth
interpolations are than the models without smoothing. The underlying numbers show
that after 10−34 s, the asymptotic values 9.8 and 11.2 have completely stabilized (to over
12-decimal-place precision). Even by 10−37 s, the increased expansion factors have already
grown to be within 2% of their asymptotic values.

Figure 11. The scale factor ratios ap(t)
a′2(t)

. At approximately t = 10−37 s, the ratios reach greater than

98% of the asymptotic values of 9.8 and 11.2 for ap(t) ∝ t1/2 and ap(t) ∝ t2/3, respectively.
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Table 4. The ratios of ap(t) to a′2(t) at different times during the interpolation period. The percentages
represent the degree to which the ratios have approached the asymptotic values reached at 10−34 s.

ap(t) ∝ t1/2 ap(t) ∝ t2/3

Time (s) Ratio % Ratio %

10−34 9.837 100 11.227 100
10−36 9.828 99.9 11.217 99.9
10−37 9.69 98.5 11.03 98.3
10−38 8.4 85.8 9.4 83.3

We are left with the interesting result about what happens when we insert an inter-
polating function after the end of inflation to smooth out the dynamics. Compared with
the models with discontinuous derivatives—signifying abrupt transitions between the
inflationary period and a period with a different equation of state—the total expansion of
the scale factor is greater by about an order of magnitude (or between 2 and 3 e-folds). In a
way, this is unsurprising, since the interpolating function allows the inflationary expansion
to tail off a bit more gradually, and so the net result is always a larger universe at later
times. This kind of increase in the scale factor will form the basis for our analysis of the
effect of continuity in the numerical analysis going forward.

7. The Smooth Scale Factor in the Preheating Model

Having concluded that enforcing a smooth transition results in an order-of-magnitude
increase in the ultimate scale factor of the subsequent single-component universe, we
shall now examine the effects of this change on reheating, based on the preheating model
of KLS [22], in which the inflaton couples to a second scalar field χ in the era following
inflation, which is taken to be a matter-dominated universe. We shall evaluate preheating
effects using a smooth interpolating power law with n = 2

3 , as described previously in
Section 4.1 as an example of a power law with n < 1. We compare our results to those of the
KLS model, which employs the scale factor a(t) ≈ a f (t/t f )

2/3 with a discontinuous slope.
Our numerical analysis shows that the larger scale factor in the smooth model decreases
the χ occupation numbers nk and dilutes the total number density nχ. The dilution arises
naturally out of the volume increase due to the greater expansion of space—although the
broad parametric resonance during preheating partially offsets the effect. Broad parametric
resonance involves all modes of the scalar field χ less than a specific maximum being
involved in quasi-resonant interactions with the inflaton, and it causes an exponential
increase in the number of χ particles created.

7.1. Occupation Numbers

In this section and Section 7.2, we briefly summarize the foundations of the detailed,
extensive case that KLS present in support of their theory. The Lagrange density for the
scalar field χ coupled to the inflaton:

L = −1
2

χ,µχ,µ − 1
2

m2
χχ2 − 1

2
g2φ2χ2, (62)

in expanding space with vanishing mass parameter mχ = 0, generates the equation of motion

χ̈k +
3ȧ
a

χ̇k +

(
k2

a2 + g2φ2
)

χk = 0, (63)

where k =
√

k2, for the Fourier mode χk in momentum space. The inflaton at the end
of inflation is a coherently oscillating field of form φ(t) = Φ(t) sin(mt), with amplitude
envelope Φ(t) = MP√

3πmt
[24], so that

χ̈k +
3ȧ
a

χ̇k +

[
k2

a2 + g2Φ2(t) sin2(mt)
]

χk = 0. (64)
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In slow-roll inflation, chaotic inflation, and other inflationary models in which the friction
term 3Hφ̇ in the equation of motion (1) becomes negligible, the inflaton exhibits sinusoidal
oscillating behavior around φ = 0 (here the argument of the sine function has time t in
units of m−1, which the KLS model uses throughout). The appearance of the Planck mass
MP in Φ(t) derives from the Hubble parameter expressed in terms of the gravitational
constant. The units of k are m, and the scale factor, normalized in the Robertson–Walker
metric with a(t0) = 1 today, remains dimensionless.

Broad parametric resonance consists of nonadiabatic oscillation of the χ field in Fourier-
space regions where the equation of motion is unstable. The character of the instability is
revealed by converting Equation (64) into the standard Mathieu equation. Rescaling the
scalar field:

Xk = a3/2χk, (65)

eliminates the friction-like term and so yields

Ẍk +

[
k2

a2 + g2Φ2(t) sin2(mt)
]

Xk = 0. (66)

Now, recasting the argument of the oscillating term by setting z = mt completes the
conversion into the Mathieu equation:

X′′k + [Ak + 2q cos(2z)]Xk = 0. (67)

The prime represents the derivative with respect to the argument z, and the two parameters
in the equation are

Ak =
k2

a2m2 + 2q, q =
g2Φ2(t)

4m2 . (68)

The resonance behavior of solutions to the Mathieu equation depends on the values of
these Ak and q, which determine the stable and unstable regions. Appendix D reproduces
the standard plot depicting the stability and instability regions in the q-Ak plane with a
graph of the Mathieu equation parameters.

The oscillations of the scalar field exhibit adiabatic instability when

ω̇

ω2 & 1, (69)

and energy transfer occurs between the inflaton and the scalar field χ. Trial solutions of the
Mathieu equation:

Xk ∝ eµkz, (70)

are unstable for real values of the Floquet characteristic exponent µk [32,33]. Section 7.2
discusses µk in more detail.

The mode occupation number nk is the energy of the mode in question, divided by the
single-particle energy ωk:

nk =
ωk
2

(
|Ẋk|2

ω2
k

+ |Xk|2
)
− nk 0. (71)

(The adjustment −nk 0 to account for the zero-point energy density is effectively negligible).
Figure 12 reproduces the results of the discontinuous scale factor of the KLS model,

for the scalar field mode amplitude Xk and the exponential increase in the corresponding
occupation number log nk. The t-axis timeline of both graphs becomes a count of the
number of oscillations of the inflaton after t is expressed in units of 2π

m , with which the
revised equation of motion (66) is

Ẍk + (2π)2
[

k2

a2 + g2Φ2(t) sin2(2πt)
]

Xk = 0. (72)
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Broad parametric resonance preheating requires certain preconditions on Φ(t) and
the Mathieu equation parameter q, and it begins shortly after the end of inflation, after
approximately one quarter of an oscillation of the inflaton (KLS use this approximation
to advance their analysis). With time defined in terms of the number of oscillation cycles,
t f = π

2m ≈ 10−37 s, which makes the timeline consistent with that which we found for
the continuous scale factor, our order-of-magnitude increase in the size of the cosmos also
appears at around 10−37 s.

(a) (b)

Figure 12. (a) The scalar field and (b) occupation number for the first 60 oscillations, in the model
with a cusped scale factor, and for the inflaton mass m = 10−6 MP. The t-axis is in units of the
number of oscillations, 2π/m. We selected the specific mode of the KLS model with the wave number
k = 4m to maximize the growth of the occupation number. To reproduce the broad-resonance
exponential growth, we used parameters g = 6.25× 10−4, Ẋ(t f ) = 0.045, and Ẍ(t f ) ≈ 0; these were
identified empirically, and varying the parameter values away from these will decrease the observable
resonance effect. The scalar field derivative Ẋ(t f ) approximates what KLS advise—namely, that the
positive-frequency solution Xk(t) ≈ exp

(
−iωkt/

√
2ωk

)
be applied as an initial condition.

In Figure 12b, the scalar field spans many instability bands in the first ∼10 oscillations,
as q decreases substantially, and the resonances cause exponential growth in the occupation
number. From about 12 to 17 oscillations, the growth flattens as q lessens while crossing the
stability region corresponding to q values decreasing from about 2 to 1. Broad resonance
and growth resume in the next 10 oscillations in the instability band for q . 1 and Ak ≈ 1,
before ultimately terminating after ∼ 34 oscillations. Appendix D also shows graph (b) of
Figure 12 superimposed on the final three instability regions of Figure A1 (corresponding
to decreasing q as time progresses).

In Figure 13, we repeat the presentation from Figure 12 using the smooth transitional
scale factor in place of the kinked scale factor of the KLS model. The scalar field and
occupation number show sharp decreases from Figures 12 and 13. We can examine the
effect of the continuous scale factor more precisely by analyzing the root mean squares
of Xk and nk averaged over the 10 oscillations following the end of preheating, which
occurs after approximately 34 oscillations. With time t in units of m−1 according to the KLS
formalism, we can convert the scale factor units of time in seconds to oscillations:

a(t) ≈
[

t (s)
t f

]2/3

=

 t (s)
(

2π/m
s

)
π

2m

2/3

= (4t)2/3. (73)
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We also used the assumption for t f that broad parametric preheating begins after inflation
ends, at one fourth of an oscillation. Then, we apply a factor of 10 for the approximate
order-of-magnitude increase in the continuous a(t):

a(t)→ 10a(t) ≈ 10(4t)2/3. (74)

For Xk (in the k = 4m mode), we find a modest decline of ∼ 0.03 in the root mean square,
due to the order-of-magnitude increase in the scale factor. Figure 14 shows log nk for both
forms of the scale factor for 10 oscillations following the end of broad resonance. The
decrease in log nk because of the effect of the larger scale factor causes a reduction of just
∼0.002 in the root mean square of the occupation number nk at 10 oscillations after broad
resonance terminates.

(a) (b)

Figure 13. (a) The scalar field and (b) occupation number for the first 60 oscillations in a model with
the smooth scale factor. The graphs show reduced values of Xk and log nk compared to Figure 12
because of the effect of the order-of-magnitude increase in a(t).

Figure 14. These plots compare 10 oscillations of log nk after the end of broad resonance at ∼34 oscil-
lations for the two functional forms of the scale factor.
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Local maxima in log nk for the smooth scale factor in Figure 14 occur at every half
oscillation of φ at t = 1

2 , 1, 3
2 , . . .. At these points, where sin(2πt) = 0 in Equation (72), the

frequency reduces to

ωk = 2π
k
a

, (75)

with values of less than one: 0.080 . ωk . 0.095. For the 10 oscillation periods under
consideration with the smooth scale factor model, this range of fractional frequencies has
the effect of increasing the contribution of the term containing the kinetic energy Ẋk in the
occupation number:

nk =
ωk
2

(
|Ẋk|2

ω2
k

+ |Xk|2
)
− nk 0, (76)

even as it tends to suppress the contribution of the potential-like Xk term. Thus, the small
fractional frequency generates the local maxima. The range of larger frequencies with the
cusped scale factor following the end of resonance, 0.80 . ωk . 0.95, has less of an effect
and intersperses some local minima, depending on the relative values of Ẋk and Xk at the
half-oscillation times.

We are able to provide some understanding of the differences in appearance of
log nk—that is, the greater degree of dispersion of the amplitudes above the average
occupation number in Figure 13b in comparison with Figure 12b—by examining in detail
the effect of the fractional frequency. At oscillation 36, for example, the occupation num-
bers log nk(36) are approximately 45.3 and 40.2 for the cusped and smooth scale factor
models, respectively. The kinetic term in the energy, amplified by the frequency, for the
most part determines the occupation number in both models. The average occupation
numbers over four oscillations from oscillation 34 to 38 are approximately 43.9 and 36.8,
respectively—yielding an increase during this period of ∼0.03 with the cusped scale factor
and ∼0.09 with the smooth model. The lower level of the scalar field in the smooth model
and (more importantly) its time derivative moderate what would otherwise be an approxi-
mately 10-fold difference in the increases based on the values of ωk alone. Thus, we see
the greater dispersion of amplitudes above the average log nk in Figure 13. Appendix E
contains a table that lists some of the supporting data associated with the behavior around
oscillation 36 and related graphs.

7.2. Number Density

The number density of the scalar field quanta has its basis in the process of broad
parametric resonance KLS characterize in their paper as stochastic—that is, random. They
show that the variation in the phase θk of the scalar field χ in the course of semiclassical
interactions between the χ-particles and the oscillating inflaton field is very much greater
than π, which makes successive phases effectively random. However, this does not mean
that the there is no net energy flow from one sector to the other. In fact, a growth in the
number of particles between classical scattering events can be as much as three times as
probable as a decrease, based on the numerical effect of possible values for the phase angle
in the recurrence relation governing resonance. KLS also separate preheating into two time
periods. The first period precedes all backreaction and rescattering, and the second period
involves the effect of those interactions on the number density, which can be significant.
Backreaction and rescattering are quantum effects in which the created χ-particles interact
with the background inflaton field. In backreaction, interactions can alter the effective
masses of the particles and the frequency of the inflaton oscillations. Rescattering involves
a created particle scattering again, either off an inflaton or another χ-particle. However,
KLS conclude that the duration of the second period is so brief that, during it, they can
safely neglect the expansion of the universe, and their analysis of that part does not depend
on the scale factor. Therefore, here, we shall determine the effect of the continuous scale
factor on the number density conversely without including backreaction and rescattering.
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Semiclassical scattering leading to quantum-mechanical χ-particle production involves
the interaction of the scalar field χ and the background inflaton field oscillating around zero.
KLS derive the number density of the χ field from the adiabatic approximation solution to
Equation (66):

Xk(t) =
αk(t)√

ωk
e−i
∫ tj dt ωk +

βk(t)√
ωk

e+i
∫ tj dt ωk , (77)

with the scalar field phase θ
j
k =

∫ tj dt ωk and tj representing the time at the end of the jth

oscillation—such that as time t→ tj, the inflaton field is oscillating around its minimum,
φ → 0. The functions αk(t) and βk(t) are time-dependent Bogoliubov transformation
coefficients [34].

Around φ ≈ 0, Equation (66) becomes

Ẍk +

[
k2

a2 + g2Φ2(t)m2(t− tj)
2
]

Xk = 0. (78)

The scalar field χ with an effectively random phase θ
j
k completes a half-oscillation at

time t → tj for j = 1, 2, 3, . . .. As t → tj for each half-oscillation of χ, the inflaton field
concurrently oscillates near zero, creating a period of nonadiabatic energy transfer, which
leads to exponential growth in the number of χ-quanta according to Equation (69). At other
times, the number density nχ remains stable. Introduction of parameters

τ = k∗(t− tj) and κ =
k

ak∗
(79)

recasts Equation (78) as a differential equation with a parabolic cylinder function solution:

d2Xk
dτ2 + (κ2 + τ2)Xk = 0, (80)

which is also the Schrödinger equation with an unstable quadratic potential, V(φ) ∝ −τ2.
Appendix F derives the largest mode to participate in the broad parametric resonance,
k∗ =

√
gmΦ. The scattering of solutions Xk of Equation (66) leads to a recurrence relation

for the Bogoliubov coefficients, which may be represented by transfer matrix(
α

j+1
k e−iθ j

k

β
j+1
k e+iθ j

k

)
=

 1
Dk

R∗k
D∗k

Rk
Dk

1
D∗k

(α
j
ke−iθ j

k

β
j
ke+iθ j

k

)
. (81)

KLS provide the reflection Rk and transmission Dk amplitudes from the solutions of the
parabolic cylinder equation and also the phase angle ϕk, which is a complicated function of
the parameter κ:

ϕk = arg Γ
(

1 + iκ2

2

)
+

κ2

2

(
1 + log

2
κ2

)
. (82)

With these, the recurrence relation becomes(
α

j+1
k

β
j+1
k

)
=

(√
1 + e−πκ2 eiπϕk ie−i π

2 κ2+2iθ j
k

−ie−i π
2 κ2−2iθ j

k
√

1 + e−πκ2 e−iπϕk

)(
α

j
k

β
j
k

)
. (83)

Note that the occupation number nk in Equation (71) just depends on the Bogoliubov
coefficient βk [35]:

nk = |βk|2, (84)

and that for a coherent process nk � 1, it leads to the recurrence relation

nj+1
k ≈

[
1 + 2e−πκ2 − 2 sin(θ j

tot) e−
π
2 κ2
√

1 + e−πκ2
]
nj

k, (85)
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with the accumulated phase

θ
j
tot = 2θ

j
k − ϕk + arg β

j
k − arg α

j
k. (86)

Because the variation in the phases θ
j
k is very much greater than π, the randomness of

θ
j
k—and by extension the randomness of α

j
k and β

j
k as functions of θ

j
k—make θ

j
tot stochastic.

Noting that resonance begins to be suppressed unless πκ2 . 1, KLS found that, for πκ2 � 1,
a growth in the number of particles is three times as likely as a decrease. Within the range
0 < θ

j
tot ≤ 2π, values of 0 < θ

j
tot <

π
4 and 3π

4 < θ
j
tot ≤ 2π cause an increase in the number

of particles according to Equation (85); only over one quarter of the possible range of phases,
π
4 < θ

j
tot ≤ 3π

4 , does the number of χ-particles decrease, as energy flows (incoherently) back
to the inflaton field. A second recurrence relation also obtainable [32] from the Mathieu
Equation (67):

nj+1
k = nj

ke2πµ
j
k , (87)

in combination with Equation (85), yields the Floquet characteristic exponent

µ
j
k =

1
2π

log
[
1 + 2e−πκ2 − 2 sin(θ j

tot) e−
π
2 κ2
√

1 + e−πκ2
]
. (88)

Integration of nk for all modes that participate in broad parametric resonance gives
rise to the total number density of χ-quanta:

nχ =
1

(2πa)3

∫
d3k nk(t) =

1
4π2a3

∫
dk k2e2µkmt. (89)

The units of number density nχ are the expected m−3, since occupation number nk(t) is
dimensionless. KLS evaluate the integral on the far-right-hand side of Equation (89) by the
steepest descent method and estimate the number density to be

nχ ≈
k3
∗

64π2a3√πµmt
e2µmt. (90)

They also determine the maximum Floquet characteristic exponent µ associated with an
unknown maximum kmax, estimated as kmax ≈ k∗

2 .
We use the proportionality

nχ ∝
1

a3√µmt
e2µmt (91)

to perform a numerical analysis of the effect of the continuous scale factor by examining
the ratio

Rχ =
nχ a(t)smooth

nχ a(t)cusp

. (92)

The terms nχ a(t)smooth
and nχ a(t)cusp represent the number densities of the smooth and

cusped scale factor models, respectively. We anticipate a decrease in the number density
due to the increase in volume, moderated to a certain amount by the dependence of
the proportionality in Equation (91) on µ. The use of the proportionality eliminates the
dependence on the unknown mode k∗, which KLS estimate as k∗(t) ≈

√
gmΦ(t), as

detailed in Appendix F.
In the absence of e2µmt

√
µmt , the greater time allowed for the expansion of space in the

smooth model would on its own cause dilution—that is, a decrease in the number density.
The order-of-magnitude increase in the smooth scale factor alone would reduce the number
density by the cube of the scale factor increase: ∼10−3. However, the effect of the broad
parametric resonance in preheating—in particular, the term e2µmt

√
µmt > 1—may modestly
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offset the mere increase in the volume of space. The extent of the offset is dependent on
the stochastic sin(θ j

tot) in Equation (88). Figure 15 displays the ratio Rχ of number density
of the smooth scale factor to the discontinuous scale factor as a function of time (again
expressed as the number of oscillations). The value of the ratio at the start of preheating,
∼10−3, reflects the effect only of the expansion of space. As preheating progresses, however,
Rχ rises to a level slightly greater than 1.7× 10−3 at the end of broad parametric resonance,
at around 34 oscillations, in the limiting case in which sin(θ j

tot) is consistently equal to −1.
In contrast, as sin(θ j

tot) increases toward 1, Rχ decreases. For example, at sin(θ j
tot) = 0,

Rχ ∼ 1.6× 10−3, and Rχ is about 1.3× 10−3 at sin(θ j
tot) = 0.65. With a slightly larger

stochastic value, nχ a(t)cusp is not directly calculable via this method at lower oscillations,
and with a stochastic phase of 0.8, the calculations of both nχ a(t)cusp and nχ a(t)smooth

, even at
the end of 34 oscillations, because that would require the Floquet index µ in Equation (88)
to be negative. The negative Floquet index signals an essentially unphysical solution,
which the model formalism does not support; physically, this scenario would describe a
net energy flowing back into the inflaton field, while mathematically, the formalism breaks
down because the saddle point integration method is no longer usable. Thus, examination
of the ratio Rχ places a bound on the effect of the continuous scale factor. The reduction
of the number density due to the expansion of space alone, ∼10−3, increases only slightly,
by, at most, about 1.7× 10−3 after preheating, depending on the values of the stochastic
sin(θ j

tot) angles.

Figure 15. The ratio Rχ of nχ for the smooth scale factor, to that with a(t) with a discontinuous
derivative at the end of inflation, as used by KLS. The increase in volume in the smooth model,
resulting from the extra time given for space to expand as inflation tails off, dilutes nχ by ∼10−3,
which the broad parametric resonance term e2µmt/

√
µmt partially tends to offset. Maximizing the

offset with the total phase sin(θ j
tot) = −1 in Equation (88) minimizes the dilution, and that is what is

shown in this figure. Thus, with the smooth scale factor, nχ should be diluted by at least the ratios
shown here.
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8. Conclusions

This work has explored the consequences of applying the reasonable expectation of
smoothness to the physical expansion of space, as expressed by the characteristic scale
factors defining the early universe evolving through its generally accepted, broadly defined
epochs. We focused on the nearly instantaneous slice of time separating the inflationary era
and the subsequent era in which the stress–energy tensor was assumed to be dominated by
a single component: either radiation or matter. We focused on the transition out of inflation
specifically because it is where we inevitably expect to find the sharpest change in the be-
havior of the scale factor; assuming some realistic values for primordial parameters reveals
that the time derivative of the scale factor can decrease by a factor of 1

120 between inflation
and the radiation era. Rather than being guided by a specific equation-of-state model, we
imposed a first-derivative smoothness requirement upon the scale factor and looked at
phenomenalistic interpolating functions that could connect the inflation and subsequent
eras. The assumption of a continuously, steadily declining (but not contracting) slope after
the end of inflation led to an in-depth examination of families of interpolating candidates
with shifted power-law dependencies on time. We imposed the same requirements of
smoothness at the beginning and at the end of the brief interpolating transition period.

From these matching conditions, we uncovered that it was necessary to place the ver-
tices of power-law interpolating functions with indices n < 1 prior to the end of inflation at
t f and the vertices of functions with n > 1 subsequent to t f , with the displacement in either
case parameterized by δ. Also, the transition period ∆—the duration of the period between
the end of inflation and the single-component universe (whether modeled as composed
of radiation or matter)—was initially unknown. However, a remaining uncertainty in the
parameters of the model was implicit in our transition model. We could not find specific
expressions for all of them without imposing additional conditions, and we could do
no better than finally expressing the displacement δ in terms of the transition period ∆.
Graphical analysis of the Hubble parameter and the equation-of-state and speed-of-sound
stability and causality constraints allowed us to identify physically reasonable interpolating
power-law functions as those with indices that approached the power-law indices 1

2 and
2
3 for radiation and matter single-component universes, respectively. Numerical analyses
demonstrate the remarkable result that the actual transition lasts approximately 10−37 s,
essentially regardless of the composition of the single-component universe that follows the
transition and the duration ∆. In addition, the universe enters the single-component era
about an order of magnitude (or approximately 2–3 e-folds) larger than it would have been
if subject to a scale factor with a discontinuous slope, which switched instantaneously to
t1/2 or t2/3 behavior at the end of the inflationary epoch. Although the form of the inter-
polating function is not exponential, the increase in the lifespan of the universe, 10−37 s,
is not inconsequential compared to the assumption for the inflationary expansion of the
universe: N ≈ 60 e-folds. We understand the outcome to be a universe given an additional
short sliver of time in which to grow larger simply because we imposed a condition of
smoothness on the physical expansion of space. The numerical analysis adds precision to
this result. For a radiation-dominated era following the transition, at 10−37 s, the increase
in the size of the universe attained 98.5% of its asymptotic value, and the correspond-
ing figure for a subsequent matter-dominated era is 98.3%. Generalizing the approach,
using a multiple-component universe would also be interesting, as would considering
the high-scale physics of inflation that might provide the friction needed to end inflation
in a smoother way, or evaluating how the changed size of the postinflationary universe
could affect later inflation-related observables, such as the distribution of galaxies or the
temperature and polarization structure of the CMB.

We proceeded to examine the effect of the theoretical changes we had described to
the dynamic expansion of space (characterized by a smooth scale factor and the resulting
predicted increase in the size of the universe) on a subsequent preheating era. The evolution
of the universe after inflation remains highly speculative because of the challenges implicit
in experimental confirmation. A period of reheating appears to be required in order to
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be consistent with the later stages of cosmological development, but the details of the
reheating dynamics can depend sensitively on the nature of the particle species available to
be excited—including as-yet unobserved high-mass species that may not be accessible at
standard model scales but could nonetheless have been active participants in the dynamics
of the hot, dense early universe. However, we also discussed the intricate, highly technical
theory of preheating developed by Kofman, Linde, and Starobinsky to address some
generic problems with reheating. We applied the KLS formalism to our model with a
smooth interpolating scale factor leading into a matter-dominated universe, in order to
gauge the effects of the smoothing on the most sensitive χ-particle occupation number
nk and the corresponding number density nχ. We were able to estimate the numerical
changes compared with the results obtained using the standard cusped scale factor, and
we concluded that the differences are not necessarily numerically significant, apart from
a dilution in the total particle density that should be common to all models that predict
somewhat larger universes after the end of inflation. Specifically, for the occupation number
of the most aggressively growing χ mode, we found a modest decline in log nk = 4m of
∼2 ×10−3 in the root mean square for 10 oscillations following the end of broad parametric
resonance, which is a consequence of a decrease of just ∼3 ×10−2 in the root mean square
of the scalar field χk over the same period. In addition, by constructing a relation consisting
of the ratio of the number density in the cosmology with the smooth scale factor to that
with the cusped scale factor, we determined a partial offset to the expected dilution of the
quantity of bosons produced by broad parametric resonance due to the approximate 103

increase in the unit volume of space caused by the larger smooth scale factor. The stochastic
nature of broad parametric resonance precludes a specific prediction, but we found an
additional modest increase in the proportion, with an upper bound of .1.7 ×10−3.

It may be somewhat surprising that the effect of a proposed smoothing of the scale
factor is so minor—mostly limited to the natural rarefaction of the χ particles that comes
with a spatially larger universe. Regarding the possibility (in a case of optimal phase
alignment) of, at most, an additional near doubling per unit volume of the number density,
we noted that a doubling of a small number of something in a unit volume may easily be
thought of as not negligible. However, in terms of the many, many orders of magnitude
of primal particles in a unit volume of early space, we consider the outcome of having, at
most, close to twice as many as not being of substance. Thus, we view the result of the
numerical analysis of the effect of a not insignificant increase in the size of the universe
to represent confirmation of the comparative invariance of the KLS preheating model to
these kinds of modifications. We are satisfied that our result represents a modestly useful
contribution to the body of work in support of this iconic theory.
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Appendix A

In this appendix, we review the derivation of the inverse relation between the radiation
temperature of the universe and the scale factor, following the approach outlined by
Ryden [1]. In an isothermal environment, the first law of thermodynamics

dQ = dE + p dV (A1)

reduces to
dE
dt

= −p
dV
dt

. (A2)
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After substituting the pressure of a relativistic gas, pγ =
ργ

3 , and the CMB black body
energy density, ργ = 4σT4, we obtain

d(ργV)

dt
= −

ργ

3
dV
dt

, (A3)

dργ

dt
V + ργ

dV
dt

= −
ργ

3
dV
dt

, (A4)

1
T

dT
dt

= − 1
3V

dV
dt

. (A5)

In an expanding universe with volume element V = a3(t)L3, the relation becomes

1
T

dT
dt

= − 1
3a3(t)L3

d[a3(t)L3]

dt
= −1

a
da
dt

, (A6)

which is an elementary separable differential equation, satisfied for

T ∝ a−1. (A7)

Appendix B

This appendix details the derivation of the working forms of the equation of state in
flat space, defined as

εH = − Ḣ
H2 = − ä/a− (ȧ/a)2

(ȧ/a)2 = 1− ä/a
(ȧ/a)2 . (A8)

Substituting the first Friedmann equation in flat space:

H2(t) =
(

ȧ
a

)2
=

8πG
3

ρ, (A9)

and the acceleration equation:

ä
a
= −4πG

3
(ρ + 3p), (A10)

gives

εH = 1−
−4πG

3 (ρ + 3p)
8πG

3 ρ
=

3
2
(1 + ω), (A11)

where ω would be the coefficient of proportionality between pressure p and density ρ in
a single-component universe. For an exponential scale factor a = eHt, we clearly have
d log a = Hdt, but, in fact, this relationship holds more generally, as integrating it just gives
the definition of H. Thus, we can alternatively express εH as

εH = − Ḣ
H2 =

1
H

(
− Ḣ

H

)
=

1
H

d
dt

log(H−1) =
d log

(
H−1)

d log a
, (A12)

that is, as the slope along a plot of log
(

H−1) = − log H versus log a.
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Appendix C

The derivation of εH expected = 1
n for a single-component universe is:

an(t) = an(t0)

(
t
t0

)n
(A13)

ȧn(t) = n
an(t0)

t n
0

t(n−1) =
n
t

an(t) (A14)

än(t) = n
an(t0)

t n
0

(n− 1)t(n−2) =
n− 1

t
ȧn(t). (A15)

Therefore,

εH = − Ḣ
H2 = 1− ä/a

(ȧ/a)2 = 1− an(t)än(t)
ȧn(t)2 (A16)

= 1−
an(t) n−1

t ȧn(t)
ȧn(t)2 = 1−

an(t) n−1
t

n
t an(t)

=
1
n

. (A17)

Appendix D

We reproduce here the well-known stability–instability chart [32,33] showing the
regions of the parameter space in which the initial value problem solutions for the Mathieu
Equation (67) are either stable or unstable.

Figure A1. Stability–instability chart. The areas highlighted in gray are the regions of instability in
the q-Ak parameter space. The plot also depicts the Mathieu equation parameters associated with the
equation of motion solutions. Note that q and Ak decrease as time progresses.

The regions of instability correspond to the periods of sustained exponential growth
in nk during preheating. Figure A2 superimposes the Mathieu equation instability regions
associated with the equation of motion in the KLS model on the time evolution of log nk, to
highlight this correspondence.
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There are some interesting and noteworthy differences between the behavior in the
three broad-resonance growth regions for nk (at least for the particular, rapidly growing
value k = 4m we selected). There are small oscillations visible, in addition to the secular
growth in log nk. During periods when the parameters make the Mathieu equation stable
(the white bands in Figure A2), the oscillations are comparatively chaotic; this is also what
is seen in Figure 14 after the last resonant growth period has ended. There is a certain
amount of approximately periodic behavior, due to being driven by the amplitude squared
of the inflaton field, so there are fairly stark features every half an inflaton oscillation
period. However, underneath these is a chaotically varying baseline. During the periods
of resonance (the gray bands), the baseline behavior is different, with approximately
exponential growth in the occupation number, as is typical in an unstable driven system.
On top of this are additional oscillations, qualitatively similar in some ways to those in
the stability regions. However, there are also clear manifestations of the nonlinearity of
the Mathieu equation, in the form of period doubling or tripling. When the exponential
growth is subtracted, the residual still has, on average, one peak per half oscillation of the
inflaton field. However, these peaks are not evenly placed or of equal amplitude. During
the second shown resonance region, the oscillating residuals have periods equal to the full
inflaton oscillation period—a period doubling phenomenon. Within each full oscillation
are two dissimilar up-and-down cycles. Moreover, in the vicinity of and during the first,
shortest resonant period, there is period tripling, with the periodic residuals taking one
and half inflaton oscillation cycles to return fully to their original phase space positions.

Figure A2. The final three instability regions superimposed on the log nk resonance growth. As the
number of oscillations increases, we see exponential growth in the occupation number as the q and Ak
of Figure A1 decline toward zero and the equation of motion crosses the last three instability regions.

Appendix E

Below, Figures A3 and A4 show the behavior of the scalar field X and its time deriva-
tive in the two models. Table A1 also lists some of the supporting data associated with the
behavior of the scalar field around oscillation 36.
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Figure A3. Plots of scalar field X and its time derivative Ẋ with the cusped scale factor for 10 oscilla-
tions following the end of broad parametric resonance.

Figure A4. Plots of scalar field X and its time derivative Ẋ with the smooth scale factor for 10 oscilla-
tions following the end of broad parametric resonance.

Table A1. Data in support of the differences in appearance between Figures 12b and 13b. The last
column represents the increase in occupation number log nk(36) compared to the average value over
4 oscillations from oscillation 34 to 38, which are 43.9 and 36.8 for the KLS and smooth scale factor
models, respectively.

a(t)Model ωk ωk|X|2 |Ẋ|2
ωk

log nk(36) Increase

cusped 0.91 4.62× 1017 9.56× 1019 45.3 0.03
smooth 0.091 8.71× 1013 5.79× 1017 40.2 0.09

Appendix F

Appendix F details the derivation of the range of modes k∗ that participate in the
broad parametric resonance process. KLS provide the typical frequency for the scalar
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field χ oscillations, ω(t) =
√

k2 + g2φ2(t), subject to the adiabatic instability condition,
Equation (69):

ω̇

ω2 & 1 (A18)

ω̇

ω2 =
g2φφ̇

(k2 + g2φ2)
3/2 & 1. (A19)

The instability condition yields the inequality defining the unstable modes. The inflaton
at the end of inflation is an oscillating field of the form φ(t) = Φ(t) sin(mt). For broad
resonance, when φ(t) is small and the decaying envelope Ψ is approximately constant over
the period of a single oscillation, φ̇ ≈ mΦ. This makes the resonance condition

1 .
g2φmΦ

(k2 + g2φ2)
3/2 (A20)

k2 .
(

g2φmΦ
)2/3

− g2φ2. (A21)

We find the maximum range of k by taking the derivative of the inequality (A21) to
maximize the inflaton value φ∗:

2g4/3m2/3Φ2/3

3φ1/3
∗

− 2g2φ∗ = 0, (A22)

for which the solution is

φ∗ = (3)−3/4

√
mΦ

g
≈ 1

2

√
mΦ

g
. (A23)

Substituting φ∗ ≈ 1
2

√
mΦ

g into k2
max .

(
g2φ∗mΦ

)2/3 − g2φ2
∗, we find

kmax .

√
gmΦ

2
. (A24)

Taking k→ 0 in Equation (A20) generates an expression for the inflaton associated with the
minimum-range of mode k:

g2φmΦ

(g2φ2)
3/2 & 1 (A25)

φ .

√
mΦ

g
. (A26)

Figure A5 shows a standard graphical representation of the bands of φ(t) associated
with the minimum and maximum ranges of k. We note that k2

max applies to a band of φ(t)
for which |φ| ≤ 2φ∗. Thus, we find

k∗ =
√

gmΦ. (A27)
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Figure A5. The outer and inner pairs of dotted lines represent the ranges of φ(t) that participate in
parametric resonance. The wider outer band corresponds to the values of φ(t) that participate in the
resonance for the minimal Fourier component—that is, as k → 0. The inner band, − 1

2
√

mΦ/g ≤
φ∗ ≤ 1

2
√

mΦ/g, corresponds to the participating φ(t) associated for the modes with k∗ =
√

gmΦ.
This is the preheating band of broad parametric resonance. Explosive growth in the number of
particles occurs as φ(t)→ 0.
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