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Abstract: The intelligent connected vehicle (ICV) decision-making system needs to match tourist
interests and search for the route with the lowest travel cost when recommending POIs (Points of
Interest) and navigation tour routes. In response to this research objective, we construct a navigation
route-planning model for tourism intelligent connected vehicles based on symmetrical spatial clus-
tering and improved fruit fly optimization algorithm. Firstly, we construct the POI feature attribute
clustering algorithm based on the spatial decision forest to achieve the optimal POI recommenda-
tion. Secondly, we construct the POI spatial attribute clustering algorithm based on the SA-AGNES
(Spatial Accessibility-Agglomerative Nesting) to achieve the spatial modeling between POIs and
ICV clusters. On the basis of POI feature attribute and spatial attribute, we construct the POI rec-
ommendation algorithm for the ICV navigation routes based on the attribute weights. On the basis
of the recommended POIs, we construct the tourism ICV navigation route-planning model based
on the improved fruit fly optimization algorithm. Experiments prove that the proposed algorithm
can accurately output POIs that match tourists’ interests and needs, and find out the ICV navigation
route with the lowest travel cost. Compared with the commonly used map route-planning methods
and traditional route-searching algorithms, the proposed algorithm can reduce the travel costs by
15.22% at most, which can also effectively reduce the energy consumption of the ICV system, and
improve the efficiency of sight-seeing and traveling for tourists.

Keywords: symmetrical spatial clustering; improved fruit fly optimization algorithm; intelligent
connected vehicle (ICV); tourism POI recommendation; tourism navigation route

1. Introduction
1.1. Research Background and Problem Discussion

The issue of tourism transportation is the key to smart tourism research. After arriving
at the tourism destination city, tourists usually use different means of transportation such as
public buses, subways, taxis, shared bicycles, etc., when transferring between different POIs
in the city. When tourists use transportation modes to move and travel in the city, they will
pay for the travel costs. As an important component of the tourism budget, travel cost will
directly affect the total cost of tourists participating in tourism activities [1,2]. The lower the
travel cost is, the lower the total cost for tourists will be, and the higher tourists’ satisfaction
will be. However, tourists are usually unfamiliar with the transportation conditions of the
tourism cities; thus, it is difficult to achieve optimal routes by planning trips by themselves
when choosing public transportation, making the cost control difficult. The appearance
of intelligent connected vehicles (ICVs) has provided innovative ideas for smart tourism
transportation planning and route recommendation. By designing the ICV decision-making
system and route navigation system, it is possible to provide travel decisions for tourists,
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guide them to follow the optimal routes to their destinations, and effectively control the
travel costs, reduce tour expenses, and finally improve the tourists’ satisfaction [3,4]. At
present, the research on ICV routes mainly focuses on the following aspects: The first one is
research on the perception and obstacle avoidance of ICVs to the surrounding environment.
Through communication and interaction between ICVs and the surrounding objects, the
obstacles appearing on the travel routes are avoided to ensure the smooth driving of ICVs.
The second one is to integrate the ICV technology with the public transportation systems
to achieve the intelligent operation of the public transportation. The third one is to study
the route design and layout of the ICV-dedicated driving roads, especially how to ensure
the smooth operation of the ICVs and the traditional public transportation under the
coexistence of the two systems. For the construction of smart tourism, the integration of
ICV navigation route research with smart tourism decision-making and route planning is
currently weak and insufficient. There is no research on the introduction of ICV decision-
making and navigation route-planning mechanisms into the smart tourism transportation,
and there is also a lack of design and development of related algorithms. Meanwhile, there
are several main problems in the research of smart tourism decision-making and tourism
transportation routes. Firstly, there is insufficient research on the tourism decision-making
of the destination POIs. When tourists are unfamiliar with the POIs of tourism cities, how
to use the intelligent decision-making algorithms to achieve POI recommendations that
best match the tourists’ interests with the optimal spatial distributions is the key to meeting
the tourists’ motivation benefits. At present, there is insufficient research on the travel
interests and spatial distributions of POIs in smart transportation routes, resulting in the
POIs on the travel routes being unable to meet the tourists’ interests. Secondly, the planning
of intelligent tourism transportation routes has the features of subjectivity and blindness.
The design of tourism transportation routes lacks studies on the geospatial constraints and
traffic constraints, and there is also no research on the optimal routes under the condition
of POI recommendations, resulting in higher costs for tourism transportation routes and
higher travel costs for tourists.

In response to the current problems, we summarize the relationship between the
optimal ICV routes and smart tourism with tourists, and the goal of this study is to
construct the relationship between the optimal ICV routes and tourists.

(1) Relationship 1: The POIs on the ICV routes are the targets for tourists to visit. Whether
the tourists can generate the maximum benefit motivation from visiting the POIs is
an important evaluation indicator of whether the ICV routes are the optimal ones.
Therefore, each POI on the optimal ICV route must be the one that the tourists are
most interested in and willing to visit. By constructing the relationship between POI
functional attributes and tourist interest attributes, we recommend POIs for tourists
and establish the relationship between the ICV routes and the tourists’ interests and
demands.

(2) Relationship 2: From the perspective of energy conservation and travel cost control
for the tourists, the ICVs will produce travel costs and fees in moving and ferrying
tourists between different POIs, which will ultimately be paid by the tourists. From
the perspective of saving travel costs, the ICV routes are directly related to tourist
motivation benefits. The key to improving tourist satisfaction is to search for the
ICV routes with the best POIs and the lowest travel cost. Thus, the modeling for the
optimal ICV routes has close relationship to the tourists’ satisfaction.

1.2. Problem Solving Methods

In response to the research background and the existing problems of intelligent tourism
transportation and ICVs, we propose the following solutions. Firstly, in response to the in-
sufficient research on the destination POI decision-making, an intelligent decision-making
system for POI recommendation should be constructed. The ICVs in smart tourism trans-
portation play a role in guiding tourists to reach their destinations; thus, the design of
navigation routes should be based on POI recommendations. That is, the premise of the
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tourism ICV navigation route is to determine the POIs on the route that meet the interests
and needs of tourists. Therefore, recommending POIs that meet tourists’ interests and have
the optimal spatial distributions for tourists is the core function of constructing a tourism
ICV intelligent decision-making system. There are two steps to solving this problem. One
is to construct a POI clustering algorithm based on feature attributes, mining the matching
relationship between the POI feature attributes and the tourists’ interests, and recommend-
ing the POIs with the highest attribute matching degrees; the second is to construct the
POI spatial clustering algorithm centered around the tourism ICV transfer stations, and
obtain the POIs with the best spatial distributions from the POIs with the highest attribute
matching degrees through the spatial accessibility search, ultimately utilizing the POIs
to construct the tourism ICV navigation route algorithm. Secondly, in response to the
problems of subjectivity and blindness in planning the intelligent ICV navigation routes, it
is necessary to consider the geospatial constraints and basic transportation facilities of the
destination cities, such as POI distributions, road distributions, and spatial distances, etc.
Based on the modeling background of these constraints, the ICV navigation routes should
be constructed based on the recommended POIs, so as to minimize the travel cost of the
tourism ICV navigation route and reduce the travel time spent by tourists on the road and
ICV energy consumption, then finally improve the tourists’ satisfaction.

2. Related Work and Analysis
2.1. Related Work and Limitation

Representative studies on the ICV route problems and intelligent tourism transporta-
tion route-planning mainly include the following: Hou et al. [5] proposed a route-planning
mechanism based on deep reinforcement learning (DRL). A deep reinforcement learning
model was established using Rainbow DQN, and the prioritized successive decision-
making route-planning method was designed. It prioritized emergency vehicles, public
transportation vehicles and other general vehicles in the city, and verified the effectiveness
of the constructed route-planning method in different experimental scenarios. Noussaiba
et al. [6] constructed a heterogeneous algorithm called Ant Colony Optimization with
Pheromone Termites (ACO-PT), which combined two state-of-the-art algorithms, namely
Pheromone Termites (PT) and Ant Colony Optimization (ACO), to address efficient routing
to improve energy efficiency, increase throughput, and shorten end-to-end latency. Wang
et al. [7] proposed an adaptive adjustment mechanism to address the typical problems
of weak global optimization ability, easy falling into local optimization and slow conver-
gence speed in the intelligent vehicle route solving algorithms, and improved the Whale
optimization algorithm to enhance its operational ability. It has better convergence ability
compared to other algorithms. Liu et al. [8] innovatively introduced a bidding mechanism
in the scenario of connected vehicles and proposed a new dynamic route-planning method.
Experiments showed that in large-scale traffic flow scenarios, the bidding mechanism was
beneficial for improving the transportation efficiency of the road network. Kurdi et al. [9]
introduced a path planning algorithm inspired by the natural tidal phenomena—Tidal Path
Planning (TPP). The concept of gravity between the Earth and the Moon was adopted to
avoid searching blocked routes and to find a shortest path. Compared to other optimal
path algorithms, this algorithm had higher execution efficiency. Xu et al. [10] proposed a
personalized path planning model based on the urgency situation. The experimental results
showed that this algorithm could not only plan routes with different functions for different
users, but also plan personalized routes by different user preferences. Shan [11] proposed
an ant colony optimization algorithm to solve the problem of the optimal tourism route
planning. Based on the basic ant colony optimization algorithm, an optimized pheromone
update strategy was proposed. Experiments made comparisons of the effects of different op-
timization algorithms in tourism route planning, and the acceleration ratio of the optimized
ant colony algorithm was tested using the graphics processing unit parallel computing
program. The results showed that the proposed algorithm provided certain advantages and
had potential applications in parallel computing. Damos et al. [12] proposed a novel urban
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tourism path planning method based on a multi-objective genetic algorithm, with the main
goal of enhancing the accuracy of the genetic algorithm (GA) by adopting new parameters
and selecting the optimal tourism path by combining external and internal tourist site
potentials. Compared with existing tourism path planning methods, this method is more
accurate and straightforward than other methods when choosing routes.

Through the analysis of related work, it can be concluded that current studies on
ICV route-planning mainly focus on the following aspects. The first one is optimizing the
existing route algorithms to improve their execution efficiency. By introducing new vari-
ables, changing the structure of the algorithm, or adding new mechanisms, the execution
process of the original algorithm is changed, thereby the execution speed of the algorithm is
optimized. The second one is to classify the different vehicles within the city, measure their
priorities in the urban transportation system, and plan different routes based on the priority
level of the vehicles. The third one is to design new algorithms and use them to search for
the optimal path, providing new research methods for the tourism transportation route
planning. These tourism transportation route planning methods have a certain degree of
innovation, and have solved several problems in the current operation of tourism vehicles
and optimal tour route planning. However, from the perspective of satisfying the interests
and needs of individual tourists and controlling the cost of tour routes, these studies still
have some shortcomings, which are mainly reflected in the following two aspects:

Firstly, the research on matching of tourists’ interests with POI attributes is insufficient.
The core problem of tourism ICV route planning still relies on the selection and matching
of route nodes; that is, how to search for the POIs that best match tourists’ interests from
numerous tourist destinations and use them as the control points for tourism ICV navigation
routes. Due to the fact that POIs have both feature attributes and spatial attributes, it is a
precondition for ICV tourism route planning to recommend the POIs with the best feature
attributes and spatial attributes for tourists. Secondly, the research on ICV route costs is
insufficient. The planning of the tourism ICV navigation routes is influenced by geospatial
constraints, such as POI geographical location, ICV starting point, ICV terminal point, ICV
transfer station location, road spatial distribution, and road distance, etc. The planning
of tourism ICV navigation routes must consider the real-world spatial environment, and
it is necessary to design the optimization algorithm under these geospatial constraints to
output the routes with the lowest ICV travel cost.

2.2. The Difference and Advantage of Our Proposed Work

The gaps between our proposed model and related work, as well as the advantages of
the proposed work, are mainly reflected in the following aspects: Reference [5] focuses on
constructing the deep learning algorithm to achieve priority sorting of vehicles of different
levels, without considering the fairness of tourist services. Our method reflects the fairness
of all ICVs and ICV routes, allowing each tourist to enjoy the same POI recommendations
and ICV route planning services. Reference [6] focuses on studying the shortest route-
searching model based on the improved ant colony algorithm, and has conducted extensive
research on algorithm optimization. Our method aims to search for the POIs that best match
the interests of tourists, and on this basis, search for the optimal ICV routes connecting
the POIs. It is not aimed at improving a certain algorithm, but at building a new method
with the goal of tourist interests and reducing travel costs. Reference [7] also optimizes and
improves the algorithm to improve its convergence performance, which is different from
the goal of the method we constructed. Reference [8] is mainly aimed at optimizing the
transportation efficiency of the road network and improving the transportation capacity of
vehicles. Our method has different research objectives, aiming to match tourist interests
and reduce travel costs. Reference [9] optimizes and improves the algorithm to improve its
execution efficiency, which is different from the goal of the method we proposed. Execution
efficiency is not our research goal. Within a tolerable range of algorithm runtime, our
constructed method places more emphasis on the matching degree between POIs and
tourist interests, as well as the overall cost of ICV routes. Reference [10] constructs a model
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based on the urgency of tourism, which has strong constraints on travel time. It is also
different from the method we constructed. Our method assumes that tourists have sufficient
travel time and budget, and from the perspective of fair recommendation, it matches the
optimal POIs for tourists and searches for optimal routes. Both references [11,12] aim to
optimize intelligent algorithms with the aim of improving their accuracy. This research
method does not start from the personalized needs of tourists and it ignores the matching
of POI feature attributes with tourist interests. Our method focuses on matching tourist
interests, reducing ICV route costs and improving tourist satisfaction.

2.3. Our Proposed Method

Based on the analysis of the problems, we propose and construct a navigation route-
planning model for the tourism intelligent connected vehicle based on symmetrical spatial
clustering and the improved fruit fly optimization algorithm. The main studies and contri-
butions are as follows. Figure 1 shows the main research ideas and content architecture of
our work.

(1) We construct a POI feature attribute clustering algorithm based on the spatial decision
forest, which clusters the urban POIs according to the root nodes with different natural
attributes. The binary tree algorithm with the descending matching degree of tourists’
interests is proposed to generate a spatial decision tree. Each decision tree represents
one feature attribute cluster. The construction of the spatial decision forest can output
the POIs that best match tourists’ interests for ICVs.

(2) We also construct a POI spatial attribute clustering algorithm based on the spatial
accessibility and AGNES (SA-AGNES). Taking the ICV transfer stations as the core
points of AGNES spatial clustering, the spatial attributes of POIs within the neigh-
borhood of the transfer stations are determined by searching spatial accessibility, and
the POIs are spatially clustered to determine the spatial relationship between the ICV
transfer stations and neighboring POIs. Finally, the ICV intelligent decision-making
system will output the POIs with the optimal spatial distributions.

(3) We design and construct an optimal POI recommendation algorithm based on spatial
clustering. In response to the control node selection problem of the tourism ICV
navigation route-planning algorithm, we set the searching target as the POIs that
best match tourists’ interests and have the optimal spatial distributions. The ICV
intelligent decision-making system searches for POIs that tourists need to visit, and
uses them as the precondition for the ICV route-planning algorithm.

(4) Based on the modeling of the urban geospatial environment and traffic road condi-
tions, we construct a tourism ICV navigation route model based on the improved
fruit fly optimization algorithm. Using the ICV transfer stations and POIs as nodes, it
outputs the tour route with the lowest travel cost under the geospatial constraints.

(5) We design and perform the validation experiment and comparative experiment, which
proves that the proposed algorithm can accurately output POIs that match tourists’
interests, and can find out the ICV navigation route with the lowest travel cost.
Compared with the commonly used map route-planning methods and the traditional
route-searching algorithms, the proposed algorithm can reduce the travel cost by
15.22% at most, and effectively reduce energy consumption of the ICV system, then
finally improve the tourists’ satisfaction.
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3. Methodology
3.1. The Optimal POI Recommendation Algorithm for Tourism ICV System

This section consists of three parts. We firstly construct a POI feature attribute clus-
tering algorithm in Section 3.1.1, with the aim of establishing a matching relationship
between the tourist interest needs and POI feature attributes. Secondly, in Section 3.1.2, we
construct a POI spatial attribute clustering algorithm with the aim of establishing the spatial
relationship between POIs and ICV transfer stations. Based on the two types of models
in Sections 3.1.2 and 3.1.3, we introduce the concept of attribute weight and construct a
POI recommendation algorithm based on attribute weights in Section 3.1.3. The aim is to
recommend POIs with feature attributes that best match the interests of tourists and achieve
optimal spatial distribution and spatial accessibility. According to the modeling conditions
as per the POI feature attribute clustering algorithm, the POI natural classification, POI
feature attribute and POI feature attribute recommendation degree are the three most
important attributes. As per the POI spatial attribute clustering algorithm, the POI spatial
accessibility and POI spatial cluster are the two most important attributes. As per the POI
recommendation algorithm based on the attribute weight, the attribute weight factor and
POI recommendation degree are the two most important attributes.

3.1.1. POI Feature Attribute Clustering Algorithm Based on Spatial Decision Forest

According to the characteristics, POIs could be divided into natural classifications
such as “park and green land”, “culture and history”, “leisure shopping” and “amusement
and theme park”. A single POI has feature attributes that affect tourists’ interests and play
a decisive role in selecting POIs, such as “travel cost”, “travel time”, “POI level”, and “POI
popularity”, etc., which constitute the key factors for recommending POIs in the tourism
ICV intelligent decision-making system. The key to recommending POIs for tourists
traveling in cities using ICVs is to obtain their interest needs and construct a matching
relationship between the tourists’ interests and the POI feature attributes [13–15]. Based on
the ICV decision objectives, we construct a POI feature attribute clustering algorithm based
on the spatial decision forest. In the algorithm, the POI natural classification, POI feature
attribute and POI feature attribute recommendation degree are the three most important
attributes.

In tourism activities, the characteristics of POIs that attract tourists to make choices
and reflect the basic tourism functions are the POI natural attribute classifications, denoted
as GN(i), 0 < i ≤ k1, i, k1 ∈ N, in which k1 is the total number of the natural attribute
classification.

The factors that affect tourists’ interests and determine whether to choose POIs for
sightseeing are the POI feature attribute factors, denoted as fP(i), 0 < i ≤ k2, i, k2 ∈ N, in
which k2 is the total number of the feature attribute. The POI feature attribute factor is
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the key to determining tourists’ interest choices and recommending POIs. To construct
a POI interest matching algorithm, it is necessary to quantify and store the POI feature
attribute factors in a structured format. Construct a k2 × 1 dimension column vector to
store k2 number of feature attribute factors fP(i) and perform initial quantization. Set this
structured vector as the POI feature attribute vector, denoted as fP(i). Each element fP(i)
in vector fP(i) has different quantization interval fP(i,j), each fP(i,j) represents the feature
measurement of the factor fP(i), and each quantization interval fP(i,j) is a subset of the
factor fP(i) and is independent from each other. Using the row elements fP(i) of the column
vector fP(i) as the initial growth element, the feature measurements fP(i,j) are extended to
the column elements of each row to form a k2 × l dimension matrix, 0 < l ≤ maxl, l ∈ N.
The quantization interval matrix is defined as the POI feature attribute matrix, denoted
as fP(i,j).

We construct the POI feature attribute vector fP(i) and the POI feature attribute matrix
fP(i,j) using Formulas (1) and (2).

fP(i) =
〈

fP(1), fP(2), . . . , fP(k2)
,
〉T

(1)

fP(i,j) =


fP(1,1) fP(1,2) . . . fP(1,l)
fP(2,1) fP(2,2) . . . fP(2,l)

. . . . . . . . . . . .
fP(k2,1) fP(k2,2) . . . fP(k2,l)

 (2)

Using the equivalent factor fT(i) corresponding to the POI feature attribute factor
fP(i) as the element, we construct a k2 × 1 dimension column vector representing the
quantitative tourists’ interests in POI feature attributes. Set this column vector as the
tourist interest measurement vector, denoted as fT(i). The element in the vector fT(i) is
the tourist interest factor fT(i), which corresponds to the POI feature attribute factor fP(i).
Using the row elements fT(i) of the column vector fT(i) as the initial growth elements, the
feature measurement fT(i,j) is extended to the column element of each row to form a k2 × l
dimension matrix, 0 < l ≤ maxl, l ∈ N, and the quantization interval matrix is the tourist
interest measurement matrix, denoted as fT(i,j). Matrix fT(i,j) is the correlating matrix for
the matrix fP(i,j), and its data structure is the same as fP(i,j). Formulas (3) and (4) represent
the tourist interest measurement vector fT(i) and tourist interest measurement matrix fT(i,j).

Before taking the ICV to the POI, the tourists need to input interest factors and
corresponding quantitative values into the ICV intelligent decision-making system. The
ICV intelligent decision-making system quantifies the vector fT(i) as the basic interest needs
of tourists. The tourists firstly select factors fT(i) from the matrix fT(i,j), and then determine
the specific quantization value for each factor fT(i) to generate a quantization vector fT(i).

fT(i) =
〈

fT(1), fT(2), . . . , fT(k2)
,
〉T

(3)

fT(i,j) =


fT(1,1) fT(1,2) . . . fT(1,l)
fT(2,1) fT(2,2) . . . fT(2,l)

. . . . . . . . . . . .
fT(k2,1) fT(k2,2) . . . fT(k2,l)

 (4)

When the classifications i for fP(i,j) and fT(i,j) of matrix fP(i,j) and fT(i,j) are different, the
quantization intervals have different orders of magnitude. To ensure that each classification
has the same order of magnitude effect on POI interest matching, we introduce a POI
recommendation disturbance factor δ(i) to normalize the factors fP(i,j) and fT(i,j). The
ICV intelligent decision-making system determines the recommendation degree of POI by
judging the spatial closeness between the tourist interest measurement vector fT(i) and the
POI feature attribute vector fP(i), and then recommends the POIs with the best matched
feature attributes for tourists. Formulas (5) and (6) represent the POI recommendation
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function ζ(fT(i), fP(i)) constructed by introducing the recommendation disturbance factor
δ(i), in which i is traversed i ∼ (0, k2), i, k2 ∈ N.

ζ(fT(i), fP(i)) =
1∥∥∥δ(i) ·

(
fP(i) − fT(i)

)∥∥∥
p
+ 1

(5)

ζ(fT(i), fP(i)) =
1(

k2
∑

i=1

∣∣∣δ(i) · fP(i) − δ(i) · fT(i)

∣∣∣p) 1
p

+ 1

(6)

Construct a complete binary tree with the natural classification GN(i) as the root node
and the POI feature attribute recommendation degrees ζ(fT(i), fP(i)) in descending order as
the child nodes. This binary tree is the spatial decision tree based on the feature attribute
recommendation, denoted as tree·GN(i)

. The decision forest composed of spatial decision
trees tree·GN(i)

generated by k1 number of natural classifications GN(i) is defined as a spatial
decision forest based on the feature attribute recommendation, denoted as forest·GN(i)

.
The POI feature attribute clustering algorithm based on the spatial decision forest is

constructed as follows (Algorithm 1). Figure 2 shows the schematic diagram of the process
for constructing the feature attribute clustering algorithm:
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Subfigure (1) shows the first step of the algorithm: generating the natural attribute
labels;

Subfigure (2) shows the second step of the algorithm: taking the first natural attribute
as an example, calculate the recommendation degrees ζ(x) of all POIs for the attribute;

Subfigure (3) shows the third step of the algorithm: comparing the recommendation
degrees ζ(1) and ζ(2) of the first POI and the second POI, with the larger value stored in the
root node and the smaller value stored in the left child node of the lower level;

Subfigure (4) shows the fourth step of the algorithm: adding the third POI recommen-
dation degree ζ(3), comparing ζ(1), ζ(2) and ζ(3). The maximum value is stored at the root
node, the second maximum value is stored at the leftmost child node of the lower level,
and the minimum value is stored at the rightmost child node of the lower level;

Subfigure (5) shows the fifth step of the algorithm: comparing the recommendation
degrees of all POIs. The larger value is stored in the upper level or left child node, and the
smaller value is stored in the lower level or right child node, so that the recommendation
degree of any upper-level child node is greater than that of the lower level, and the
recommendation degree of any left child node in any level is larger than that of the right
child node;

Subfigure (6) shows the sixth step of the algorithm: constructing the second decision
tree;

Subfigure (7) shows the seventh step of the algorithm: constructing the decision trees
for all the natural attributes to form a decision forest.
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Figure 3 shows a spatial decision forest forest·GN(i)
constructed by k1 number of spatial

decision trees.
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Algorithm 1: The POI feature attribute clustering algorithm based on spatial decision forest
forest·GN(i)

Input: POI natural attribute GN(i) root nodes, POI feature attribute vector fP(i), POI feature
attribute matrix fP(i,j), tourist interest measurement vector fT(i), tourist interest measurement
matrix fT(i,j), disturbance factor δ(i)

Output: Spatial decision forest forest·GN(i)

Step 1: As to attribute GN(i), take i = 1, construct spatial decision tree tree·GN(1)
. Obtain POIs

that meet P(x) ∈ GN(1), encode the POIs P(x), x ∈ (0, h1], x, h1 ∈ N.
Step 2: Calculate the ζ(fT(i), fP(1)) ∼ ζ(x), x traverses x ∈ (0, h1], then output h1 number of

recommendation degrees ζ(fT(i), fP(1)) ∼ ζ(x).
Step 3: Compare ζ(1) and ζ(2), iterating x = x + 1:

(1) Search maxζ(x), store into Node(1,1);
(2) Search minζ(x), store into Node(2,1).

Step 4: Add ζ(3), compare ζ(1), ζ(2), and ζ(3), iterating x = x + 1:

(1) Search maxζ(x), store into Node(1,1);
(2) Search submaxζ(x) and store into Node(2,1);
(3) Search minζ(x), store into Node(2,2).

Step 5: Return to Step 3, in line with the same algorithm from Step 3 to Step 4, add ζ(x),
compare ζ(1), ζ(2), . . ., ζ(x), store recommendation degree ζ(x) into node Node(α,β), in descending
order sort algorithm of decision tree tree·GN(1)

, iterating x = x + 1. When iterating of x meets
x = h1, the algorithm ends. Output tree·GN(1)

.
Step 6: Turn back to Step 1. As to attribute GN(i), take i = 2. In line with the same algorithm

from Step 2 to Step 5, construct the spatial decision tree tree·GN(2)
.

Step 7: As to attribute GN(i), traverse i ∈ (2, k1], output tree·GN(3)
, tree·GN(4)

, . . ., tree·GN(k1)
, relating

to k1 number of natural clusters GN(i). The k1 number of decision tress tree·GN(i)
consists of the

spatial decision forest forest·GN(i)
. The algorithm ends.

3.1.2. POI Spatial Attribute Clustering Algorithm Based on SA-AGNES

When the ICVs move in the city and search for POIs, in addition to matching the feature
attributes of POIs, they should also consider the geospatial attributes of POIs, namely the
spatial relationship between POIs and ICVs, in order to recommend the POIs with best
spatial accessibility for tourists. In the design of the urban ICV systems, the ICV transfer
stations can serve as the starting and ending points of the ICV navigation routes. That is,



Symmetry 2024, 16, 159 10 of 39

the tourists take ICVs from the transfer stations to various POIs for sightseeing, and finally
return to the nearest ICV transfer stations to the destination POIs. The entire process forms a
complete ICV navigation route [16–18]. Therefore, a spatial relationship model between the
POI and the ICV transfer stations is constructed, and then a POI spatial attribute clustering
algorithm is constructed based on the spatial relationship to recommend the optimal POIs
for the tourists. According to the modeling idea, in this section, we construct the POI spatial
attribute clustering algorithm based on the SA-AGNES. In the algorithm, the POI spatial
accessibility and POI spatial cluster are the two most important attributes.

The spatial accessibility (SA) between a certain ICV transfer station IS(i) and the POI
P(i) in the urban ICV system is determined by the coordinates of IS(i) and P(i), representing
the degree of spatial obstruction from the ICV transfer station IS(i) to the POI P(i), denoted
as SA(IS(i),P(i)). The higher the spatial accessibility is, the lower the travel cost from the ICV
to the POI P(i) will be, and vice versa. Formula (7) is the constructed POI spatial accessibility
model SA(IS(i),P(i)), in which (x · IS(i), y · IS(i)) is the coordinate of the ICV transfer station
IS(i) in the urban geographic space and (x · P(i), y · P(i)) is the coordinate of the POI in the
urban geographic space. Figure 4 shows the constructed POI spatial accessibility model
SA(IS(i),P(i)).

SA(IS(i),P(i)) =
∣∣∣(x · IS(i) − x · P(i))

2 + (y · IS(i) − y · P(i))
2
∣∣∣− 1

2 (7)

The g number of POIs in the city are clustered based on their spatial accessibility
SA(IS(i),P(i)) to the ICV transfer stations IS(i), and the k number of generated clusters are POI
spatial clusters, denoted as C(i). To construct a spatial clustering algorithm, the k number
of ICV transfer stations IS(i) in the city are set as the seed points of POI spatial clusters C(i),
denoted as seed(i). Each cluster contains and only contains one seed point seed(i), and the
cluster contains g(i) number of POIs, and there is i ∈ (0, k], i, k ∈ N.
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Figure 4. The constructed POI spatial accessibility model SA(IS(i) ,P(i))
.

Take the cluster C(i) as the matrix row, the cluster element C(i,j) ∼ P(i) as the matrix
column, the seed point seed(i) of each cluster C(i) as the first element of each row, then we

generate a k ×
(

1 + maxg(i)
)

dimension matrix, and it is the POI spatial clustering matrix,
denoted as C(i,j), i ∈ (0, k], j ∈ (0, maxg(i)], i, j, k, g(i) ∈ N. Formula (8) is the constructed
POI spatial clustering matrix C(i,j), with C(i,1) corresponding to seed(i) ∼ IS(i). Formulas (9)
and (10) represent the spatial accessibility SA(IS(i),P(i)) ∼ SA(i,j) topological matrix SA(i,j)

∗
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of the POI P(i) corresponding to the matrix C(i,j), C(i,1)
T , the cluster seed point seed(i) is the

column vector, and SA(i,j) is the accessibility matrix.

C(i,j) =


C(1,1) C(1,2) . . . C(1,g(1))

C(2,1) C(2,2) . . . C(2,g(2))

. . . . . . . . . . . .
C(k,1) C(k,2) . . . C(k,g(k))

 (8)

SA(i,j)
∗ =

[
C(i,1)

T , SA(i,j)

]
(9)

SA(i,j)
∗ =


C(1,1) SA(1,2) . . . SA(1,g(1))

C(2,1) SA(2,2) . . . SA(2,g(2))

. . . . . . . . . . . .
C(k,1) SA(k,2) . . . SA(k,g(k))

 (10)

The POI spatial attribute clustering algorithm based on the SA-AGNES is constructed
as follows (Algorithm 2). Figure 5 shows the process for constructing the cluster matrix
algorithm:
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Subfigure (1) shows the first step of the algorithm: calculating the spatial accessibility
SA(IS(i)) between the first POI and the k number of ICV seed points seed(i);

Subfigure (2) shows the second step of the algorithm: comparing the k number of
spatial accessibility and storing them in the transition vector ∆SA. The larger value is stored
in the front element of the vector, and the smaller value is stored at the back element of the
vector; take the ICV corresponding to the first element as the seed point to the POI. The
POI belongs to the cluster where the ICV is located and is stored in the corresponding row
element of SA(i,j)

∗;
Subfigure (3) shows the third step of the algorithm: calculating the ICV seed point

corresponding to the maximum spatial accessibility value of the second POI. The POI
belongs to the cluster where the ICV is located and is stored in the corresponding row
element of SA(i,j)

∗;
Subfigure (4) shows the algorithm’s steps 4 to 5: generating the full ranked SA(i,j)

∗.
Combined with the output topological matrix SA(i,j)

∗, the topological forest forest·GN(i)
∗

with the labeled spatial accessibility SA(IS(i),P(i)) is generated on the basis of the decision
forest forest·GN(i)

, as shown in the Figure 6. An example of the POI spatial cluster constructed
by matrix SA(i,j)

∗ is shown in the Figure 7.
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Algorithm 2: The POI spatial attribute clustering algorithm based on SA-AGNES

Input: k number of coordinates (x · IS(i), y · IS(i)) of ICV transfer stations IS(i), g number of
coordinates (x · P(i), y · P(i)) of POIs P(i), the initialized seed points seed(i), and the initialized zero

matrix OSA(i,j)∗ for the k ×
(

1+maxg(i)
)

dimension matrix SA(i,j)
∗. Initialize the 1 × k dimension

transition vector ∆SA for spatial accessibility.
Output: Full ranked matrix SA(i,j)

∗ for cluster.
Step 1: As to g number of POIs P(i), take i = 1, calculate the SA(IS(i) ,P(1))

∼ SA(IS(i))
between

P(1) and k number of seed points seed(i).
Step 2: Compare k number of SA(IS(i))

, in which i traverses i ∈ (0, k], i, k ∈ N.
Step 2.1: Compare SA(IS(1))

and SA(IS(2))
, iterating i = i + 1:

(1) Search maxSA(IS(x))
, store into ∆SA(1);

(2) Search maxSA(IS(x))
, store into ∆SA(2);

Step 2.2: Add SA(IS(3))
. Compare SA(IS(1))

, SA(IS(2))
, and SA(IS(3))

, iterating i = i + 1:

(1) Search maxSA(IS(x))
, store into ∆SA(1);

(2) Search submaxSA(IS(x))
and store into ∆SA(2);

(3) Search maxSA(IS(x))
, store into ∆SA(3).

Step 2.3: Add the SA(IS(i))
, traversing i ∈ (3, maxi], in line with the same algorithm from

Step 2.1 to Step 2.2, compare SA(IS(1))
, SA(IS(2))

, . . ., SA(IS(i))
. Descend to store SA(IS(i))

into ∆SA,
iterating i = i + 1.

Step 2.4: Loop iteration i = i + 1 until i = k, iteration ends. Output a full ranked vector i = k.
Take the seed point seed(i) ∼ IS(i) of the current element ∆SA(1) as the cluster C(i,1) seed point
where the POI P(1) is located. Store SA(IS(i) ,P(1))

into element SA(i,1) of matrix SA(i,j)
∗, note

P(1) ∈ C(i).
Step 3: For g number of POIs P(i), take i = 2 and calculate the SA(IS(i) ,P(2))

between P(2) and k
number of the seed points seed(i). According to the Step 2 algorithm, iterate i = i + 1 and store
SA(IS(i))

in ∆SA by descending order. At the end of the iteration i = k, output a full ranked vector
∆SA. Take the seed point seed(i) ∼ IS(i) of the current element ∆SA(1) as the cluster C(i,1) seed
point where the POI P(2) is located. Store SA(IS(i) ,P(2))

into element SA(i,j) of matrix SA(i,j)
∗, note

P(2) ∈ C(i).
Step 4: As to the g number of POIs P(i), iterating i = i + 1, and traversing i ∈ (0, g]. When a

P(i) is iterated, store SA(IS(i) ,P(i))
into element SA(i,j) of matrix SA(i,j)

∗, note P(i) ∈ C(i).
Step 5: As to the P(i), until the i = g is iterated. Output the full ranked matrix SA(i,j)

∗, the
algorithm ends.

3.1.3. POI Recommendation Algorithm Based on Attribute Weight for ICV
Navigation Route

Considering the different preference degrees of the tourists to the POI feature attributes
and spatial attributes, we introduce the concept of attribute to determine the preferences
of tourists to the POI feature attributes and spatial attributes [19,20]. The key elements
in constructing the ICV optimal POI recommendation algorithm are as follows. In the
algorithm, the attribute weight factor and POI recommendation degree are the two most
importation attributes.

(1) The matching between the POI feature attributes and the tourists’ interests, i.e., feature
attribute recommendation degree ζ(fT(i), fP(i));

(2) When the ICV travels on the tour route, considering the urgent situations such as
power outages, sudden malfunctions, traffic accidents, tourist suspensions and ad-
verse weather conditions, the ICV tour route should surround the ICV transfer stations
IS(i) and search for the POIs with the best spatial accessibility SA(IS(i),P(i)) within the
cluster C(i) including IS(i).

(3) The setting of attribute weight should balance ζ(fT(i), fP(i)) and SA(IS(i),P(i)).
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Figure 7. An example of POI spatial cluster constructed by matrix SA(i,j)
∗.

For the balancing on tourists’ interests, we set two factors ε(1) and ε(2) to constrain the
tourists’ preferences to the POI feature attributes and spatial attributes, and specify that
0 < ε(i) < 1, i ∈ [1, 2], i ∈ N, ε(i) ∈ R, the ε(1) and ε(2) must satisfy the Formula (11). The
POI recommendation degree ζP(i) for constructing the ICV navigation route is shown in
Formula (12).

ε(1) + ε(2) = 1 (11)

ζP(i) = ε(1) · ζ(fT(i), fP(i)) + ε(2) · SA(IS(i),P(i)) (12)

Based on the idea and method of recommending POIs for ICVs, we construct the
optimal POI recommendation algorithm based on attribute weight for tourism ICVs as
follows (Algorithm 3). Figure 8 is a schematic diagram of the process for constructing the
optimal POI recommendation algorithm:
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Subfigure (1) shows the first step of the algorithm: selecting the first decision tree and
calculating the recommendation degrees ζP(i) of POIs for all nodes;

Subfigure (2) shows the second step of the algorithm: comparing the recommendation
degrees of Node(1,1) and Node(2,1) with the larger value stored at the root node and the smaller
value stored at the left child node of the lower level; Comparing the recommendation
degrees of Node(1,1), Node(2,1) and Node(2,2) with the maximum value stored at the root node,
the larger value stored at the left child node of the lower level, and the minimum value
stored at the right child node of the lower level; and so on. All POI recommendation
degrees are finally stored and the corresponding clusters for all nodes are marked;

Subfigure (3) shows the third step of the algorithm: generating a recommendation
degree heap sorting structure for all the decision trees and labeling the clusters;

Subfigure (4) shows the fourth step of the algorithm: selecting the optimal POI corre-
sponding to the root node of each decision tree.

Algorithm 3: The optimal POI recommendation algorithm based on the attribute weight for
tourism ICVs

Input: Spatial topological forest forest·GN(i)
∗, attribute weight factor ε(i)

Output: The best matched POIs P(i) for tourists’ interests.
Step 1: Select decision tree tree·GN(i)

∗ of the decision forest forest·GN(i)
∗. Calculate POI

recommendation degrees ζP(i)
for all nodes in the decision tree.

Step 2: Construct the optimization algorithm for the maximum heap sorting decision tree
tree·GN(1)

∗.
Step 2.1: Compare the root node Node(1,1) with the child node Node(2,1) in recommendation

degree ζP(i) ∼ ζNode(x,y):

(1) If ζNode(1,1) ≥ ζNode(2,1), keep the storage unchanged;
(2) If ζNode(1,1) < ζNode(2,1), store ζNode(1,1) and ζNode(2,1) into Node(2,1) and Node(1,1).

Step 2.2: Add the child node Node(2,2), compare Node(1,1), Node(2,1), and Node(2,2) in
recommendation degree ζNode(1,1), ζNode(2,1), and ζNode(2,2).

(1) Store max
(

ζNode(1,1), ζNode(2,1), ζNode(2,2)

)
into root node Node(1,1);

(2) Store min
(

ζNode(1,1), ζNode(2,1), ζNode(2,2)

)
into child node Node(2,2);

(3) Store the remaining recommendation degree into Node(2,1).

Step 2.3: In line with the same algorithm from Step 2.1 to Step 2.2, store the recommendation
degrees ζP(i) ∼ ζNode(x,y) in descending order, so that the recommendation degree ζP(i)

of any
No. α layer in the decision tree tree·GN(i)

∗ is always greater than recommendation degree ζP(i)
in the

next No. α + 1 layer. At the same time, the recommendation degree of the left node Node(α,y) in
any No. α layer is always greater than that of any right node Node(α,y+∆ω), in which ∆ω is a slight
increase that meets β + ∆ω ≤ kNode(i)

and kNode(i)
is the number of nodes in the No. n layer.

Step 2.4: Mark the cluster C(i) which the current recommendation degree of each node
belongs to, and the optimization algorithm for the decision tree tree·GN(1)

∗ ends.
Step 3: Select decision tree tree·GN(i)

∗ of the decision forest forest·GN(i)
∗. Calculate POI

recommendation degrees ζP(i)
for all nodes in the decision tree. In line with the algorithm in

Step 2, realize the optimization for tree·GN(i)
∗. Traversing i ∈ (1, maxi].

Step 4: As to tree·GN(i)
∗, until the i = k1 is iterated. The optimization algorithm for the decision

forest forest·GN(i)
∗ ends. Output the optimal POIs P(i) in each decision tree tree·GN(i)

∗, relating
clusters C(i), and ICV transfer stations IS(i).



Symmetry 2024, 16, 159 15 of 39

3.2. Tourism ICV Navigation Route Model Based on the Improved Fruit Fly
Optimization Algorithm

During the ICV route-searching and selection process, the movement of ICVs between
different POIs will produce the time costs, which are directly related to the distance of
ICV movement. Firstly, the spatial accessibility generated by the locations of the ICV and
the POI determines the spatial cost. The larger the spatial accessibility is, the lower the
time and distance costs for the ICV to move from its current location to the POI will be.
The smaller the spatial accessibility is, the greater the time and distance costs for the ICV
to move from its current location to the POI will be. Therefore, when constructing an
ICV navigation route model, the spatial accessibility between ICV and POI, as well as the
resulting movement time and distance, are the key factors determining the quality of ICV
navigation routes and are the core elements for constructing the optimal ICV navigation
route model. In the process of constructing the improved fruit fly optimization algorithm to
search for the optimal routes, the road nodes and node path distances relating to the urban
geospatial constraints are involved. As no toll is charged for any vehicle passing on the
urban public open roads, i.e., there is no toll on the urban roads, the algorithm construction
does not consider the road toll.

The fruit fly optimization algorithm is a designed bionic algorithm to simulate the
foraging behavior of fruit flies. Its principle and calculation process are simple and easy
to implement. The basic principle is to simulate the process of fruit flies continuously
approaching food and ultimately finding the food, which has the characteristics of random
direction, random step size, and group convergence, and can ultimately find the global
optimal solution [21,22]. The reasons for choosing the fruit fly optimization algorithm to
search for the optimal ICV guidance route are as follows:

(1) The searching for the route nodes has the feature of arbitrariness. When an ICV leaves
a node to search for the next node, it has the feature of randomness in point selection,
which is consistent with the characteristic of random searching by fruit flies;

(2) The searching direction has the feature of arbitrariness. When an ICV leaves a node to
search for the next node, it has directional randomness, which is consistent with the
characteristic of random searching by fruit flies;

(3) When an ICV selects a path node, randomly selecting the next node is equivalent to
replacing a target node, which is related to changing a step size, and identical to the
principle of the fruit fly optimization algorithm’s step-size searching.

(4) The fruit fly optimization algorithm has the characteristic of population convergence.
After each searching cycle, all the fruit flies fly towards the current optimal solution.
During the searching process, individuals which are not the optimal solution can be
excluded, and the convergence speed is fast.

In this section, we construct an improved fruit fly optimization algorithm. Firstly,
we use the recommended POIs as the ICV navigation route nodes to construct a fruit
fly optimization sub-interval, and use the road nodes within the sub-interval as the ICV
sub-interval passing nodes to construct the fruit fly individuals. Secondly, we take the
ICV transfer stations IS(i), where tourists take the ICVs and depart from, as the starting
points of the ICV navigation routes, and the ICV transfer stations IS(i), where tourists
ultimately return the ICVs, as the ending points of the ICV navigation routes. The POIs
with the highest recommendation degrees ζP(i) within the cluster C(i) corresponding to
each transfer station IS(i) are the POIs to be visited. They are used to construct the optimal
ICV guidance route. ICVs move within the sub-intervals in a unidirectional way, meaning
that they move from one POI to another without following a repetitive or turnaround route.
Based on the analysis, combined with the decision results of the ICV on POIs and the travel
mode of ICV navigation routes, the problem of searching for the optimal ICV navigation
route is transformed into constructing the fruit fly individuals in each sub-interval and
searching for the optimal navigation route in each sub-interval. The global optimal ICV
navigation route is obtained by iterating the optimal routes from all the sub-intervals. In
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the algorithm, the fruit fly individual in sub-interval, mileage cost function, and odor
concentration function are the three most important attributes.

Compared to the traditional fruit fly optimization algorithm in searching for the
optimal solution, our proposed improved fruit fly optimization algorithm better conforms
to ICV decision-making logic and travel mode, resulting in significant improvement. Firstly,
the traditional fruit fly optimization algorithm uses the spatial location as a criterion for
initializing the fruit fly individuals, while our proposed improved optimization algorithm
uses tour route cost as a criterion, which is aimed at the optimization and improvement of
specific applications. Secondly, the traditional fruit fly optimization algorithm compares
the odor concentrations between fruit fly individuals while randomly searching for the
individuals. It requires prior determination of the number of individuals, iteration times,
and food location, etc. The iterative process is relatively complex and has high time
complexity. Our proposed improved fruit fly optimization algorithm traverses all fruit fly
individuals, and initially determines the fruit fly population with the odor concentration to
be compared, and then converts them all into pathways between POIs. Then, through the
step size transformation for comparison, it reduces the structural and time complexity of
the algorithm, improves the readability of the pseudocode, and makes significant progress
compared to the traditional fruit fly optimization algorithm. Thirdly, the traditional fruit fly
optimization algorithm sets a random step size when individuals fly and search for food,
which has significant blindness. However, our proposed improved algorithm is based on
the 2-opt transformation of road nodes. Due to the fixed distance between road nodes, the
fruit fly step size has precise quantitative values, and the calculation steps and results are
more accurate.

Definition 1. ICV navigation route sub-interval Rsub(i) and sub-interval nodes nsub(i). The ICV
path formed between the transfer station IS(i) and POI P(i) or between POI P(i) and POI P(j) on
the ICV tour route is defined as the ICV navigation route sub-interval, denoted as Rsub(i). The road
nodes that ICV passes through during one-way movement within a sub-interval Rsub(i) are defined
as sub-interval nodes, denoted as nsub(i). Set the number of nodes nsub(i) included in a sub-interval
as ksub(i).

Definition 2. Fruit fly solution space FRsub(i)
and fruit fly individual fRsub(i,j)

based on sub-interval
Rsub(i). Within a sub-interval Rsub(i), the ICV moves from the starting point IS(i) or P(i); avoiding
repeating or turning back, it passes through several nodes nsub(i) and moves to the terminal point
P(j) of the sub-interval, and the whole process forms an ICV travel pathway; this pathway is defined
as a fruit fly individual, denoted as fRsub(i,j)

, in which i represents the sub-interval number and j
represents the fruit fly individual number. In a sub-interval Rsub(i), the solution set composed of all
fruit fly individuals fRsub(i,j)

is defined as the fruit fly solution space FRsub(i)
.

The quantity of the feasible solutions in the solution space FRsub(i)
is determined by

the maximum number of footmarks for the individual fruit flies fRsub(i,j)
. The locations of

the ksub(i) number of nodes nsub(i) in Rsub(i) are fixed. In a sub-interval, the ICV moves in a
unidirectional way and traverses limited nodes nsub(i). According to the definition, a fruit

fly individual fRsub(i,j)
relates to a 1 ×

(
psub(i) + 2

)
dimensional vector fRsub(i,j)

composed
of psub(i) number of nodes nsub(i) passed by an ICV. The first element of the vector is the
starting point IS(i) or P(i) of the sub-interval Rsub(i), and the last element is the terminal
point P(j) or IS(j) of sub-interval Rsub(i), satisfying 0 < psub(i) < ksub(i), psub(i), ksub(i) ∈ N. The
elements contained in the vector fRsub(i,j)

corresponding to the individual fruit flies fRsub(i,j)

are fRsub(i,j,t)
, in which i represents the sub-interval number, j represents the individual fruit

fly number, and t represents one node nsub(i) within fRsub(i,j)
.

According to the definition, the modeling steps and preset constraints for constructing
an individual fruit fly fRsub(i,j)

are as follows (starting from a POI):
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(1) Initialize the sub-interval Rsub(i), including ksub(i) = 12 number of nodes nsub(i),
starting point P(i), and and terminal point P(j), as shown in the Figure 9(1).

(2) Step 1: Select nsub(1) or nsub(2). Node nsub(1) is found, then a feasible path is formed,
keep nsub(1), as shown in the Figure 9(2).

(3) Step 2: Select nsub(3) or nsub(4). Node nsub(4) is found, then a feasible path is formed,
keep nsub(4), as shown in the Figure 9(3).

(4) Step 3: Select nsub(5), nsub(6), or nsub(7). Node nsub(7) is found, then a feasible path is
formed, keep nsub(7), as shown in the Figure 9(4).

(5) Step 4: Select nsub(8) or nsub(11). Node nsub(11) is found, then a feasible path is formed,
keep nsub(11), as shown in the Figure 9(5).

(6) Step 5: Select nsub(9) or nsub(10). Node nsub(10) is found, then a feasible path is formed,
keep nsub(10), as shown in the Figure 9(6).

(7) Step 6: Node nsub(12) is found, then a feasible path is formed, keep nsub(12), as shown
in the Figure 9(7).

(8) Step 7: Arrive at the POI P(j) and form a pathway nsub(i) → 1, 4, 7, 11, 10, 12 , which
constitutes one individual fruit fly fRsub(i,j)

, as shown in the Figure 9(8). The searching
process ends.
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Definition 3. The current optimal solution fRsub(i,j)
∆ in solution space FRsub(i)

. The optimal solution
found by the fruit fly group during the search for food in the solution space FRsub(i)

is defined as the

current optimal solution fRsub(i,j)
∆ in the solution space.

The purpose of establishing the current optimal solution mechanism in the solution
space is to ensure that the fruit flies fRsub(i,j)

always fly towards the current optimal solution

fRsub(i,j)
∆ when searching for the global optimal solution, and to preserve the current optimal

solution. When a better fruit fly individual is found, the current optimal solution will be
replaced to ensure that the algorithm does not fall into the local optimal solution.

Definition 4. Fruit fly step size Le(t1,t2). The fruit fly group always searches for food in a certain
direction; that is, flying towards the fruit fly with the highest odor concentration, and the flight
follows a certain regular pattern. For an individual fruit fly fRsub(i,j)

, define the fly step size Le(t1,t2)
as a 2-opt operation between arbitrary element ∀ fRsub(i,j,t1)

and ∀ fRsub(i,j,t2)
in the vector fRsub(i,j)

.

According to the definition, individual fruit fly fRsub(i,j)
must go several steps Le(t1,t2)

towards the fruit fly fRsub(i,j)
∆ with the highest odor concentration. We construct a flying
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distance model L( fRsub(i,j)
, fRsub(i,j)

∆) for individual fruit fly fRsub(i,j)
as shown in Formula (13),

and then an iterating model fRsub(i,j)
∆ is constructed as shown in Formula (14).

L( fRsub(i,j)
, fRsub(i,j)

∆) =
maxu

∑
u=1

Le(t1(u),t2(u)) (13)

fRsub(i,j)
∆ = fRsub(i,j)

+
maxu

∑
u=1

Le(t1(u),t2(u)). (14)

Definition 5. Distance cost function S( fRsub(i,j)
) and odor concentration function O( fRsub(i,j)

).

The criterion for determining whether an individual fruit fly fRsub(i,j)
is a fruit fly fRsub(i,j)

∆ is the
concentration of food odor in the fRsub(i,j)

location. In the ICV navigation route-searching process,
the ICV starts from the starting point and travels along the path represented by the vector fRsub(i,j)

corresponding to one fruit fly fRsub(i,j)
in the sub-interval Rsub(i), and ultimately reaches the terminal

point. The distance traveled by the ICV during this process is defined as the distance cost function,
denoted as S( fRsub(i,j)

). According to the definition, the distance cost function of the fruit fly is
formed by the iteration of distances between nodes nsub(i) in vector fRsub(i,j)

. The function that uses

the distance cost function S( fRsub(i,j)
) to determine whether a fruit fly individual is the current

optimal individual fRsub(i,j)
∆ is defined as the odor concentration function, denoted as O( fRsub(i,j)

).

The distance cost function O( fRsub(i,j)
) and odor concentration function O( fRsub(i,j)

) we
construct are shown in the Formulas (15) and (16).

S( fRsub(i,j)
) = d(P(i), fRsub(i,j,t)

) + d( fRsub(i,j,psub(i))
, P(j))

+
psub(i)−1

∑
t=1

d( fRsub(i,j,t)
, fRsub(i,j,t+1)

)
(15)

O( fRsub(i,j)
) =

1
S( fRsub(i,j)

)
(16)

According to the definition and algorithm idea, the searched global optimal solution
for the fruit fly group within the sub-interval Rsub(i) is the shortest path between P(i)
and P(j), which corresponds to the fruit fly individual fRsub(i,j)

with the maximum odor
concentration function value O( fRsub(i,j)

). We propose to construct an ICV navigation
route model based on an improved fruit fly optimization algorithm. The basic idea is:
determine the initial positions of all the fruit fly individuals fRsub(i,j)

in the sub-interval
Rsub(i) solution space FRsub(i,j)

, and randomly select the fruit fly individual rand fRsub(i,j)
as

the current optimal solution fRsub(i,j)
∆. All fruit flies fly to rand fRsub(i,j)

with the step Le(t1,t2),
and when a unit step Le(t1,t2) is iterated, the algorithm judges the current state of the fruit
fly group to determine whether any fruit fly individual has a higher odor concentration
than rand fRsub(i,j)

, and then decides whether to perform the replacement operation. With

the new current optimal solution fRsub(i,j)
∆ as the goal, all fruit flies fly towards it and repeat

the above searching steps until the fruit fly individual with the highest odor concentration
O( fRsub(i,j)

) is found. The following is the constructed tourism ICV navigation route model
based on the improved fruit fly optimization algorithm (Algorithm 4), and Figure 10 shows
the process of searching for the global optimal ICV navigation route by using the improved
fruit fly optimization algorithm. Within the figure,
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Subfigure (1) represents constructing the sub-intervals between ICV and POI, or
between two POIs. The sub-intervals are denoted as 1, 2, 3,. . .;

Subfigure (2) represents randomly choosing the pathway represented by one fruit fly
individual from the sub-interval;

Subfigure (3) represents supposing the randomly selected fruit fly individual as the
optimal individual, representing the current location of the food;

Subfigure (4) represents all the fruit fly individuals in the sub-interval flying towards
the current optimal fruit fly individual by the step size, generating a new optimal individual
during the flying process;

Subfigure (5) represents the optimal fruit fly individual produced during the flying
process;

Subfigure (6) represents determining whether its odor concentration is greater than
the current optimal fruit fly individual, and performing a replacement operation; Return to
subgraph (1) to generate a new subinterval state;

Subfigure (7) represents continuing to iterate the new optimal fruit fly individual until
the globally optimal fruit fly individual within the sub-interval is found.

Algorithm 4: Tourism ICV navigation route model based on the improved fruit fly optimization
algorithm

Input: Recommended POI, sub-interval Rsub(i), node nsub(i) for each sub-interval, starting
point IS(i) or P(i), terminal point IS(j) or P(j).

Output: Optimal ICV navigation route
Step 1: As to the sub-interval Rsub(i), take i = 1, construct the optimal ICV route for the first

sub-interval.
Step 1.1: Initialize the fruit fly individual fRsub(1,j)

and solution space FRsub(1)
.

Step 1.2: Set up the sub-interval model Rsub(1). Confirm the starting point IS(i), node nsub(i),
terminal point P(i);

Step 1.3: Starting point IS(i) of Rsub(1) searches for node nsub(1). Judge whether there exists a
¬nsub(1) that will be absorbed into fRsub(1,j)

in Rsub(1):

(1) Exists: Add it into element fRsub(1,1,t)
of fRsub(1,1)

. Continue to judge whether there exists
¬nsub(1), until the terminal point P(i) is searched, which forms a complete fRsub(1,1)

. Output
vector fRsub(1,1)

;
(2) Does not exist: turn to Step 1.4 and search fRsub(1,2)

.
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Algorithm 4: Cont.

Step 1.4: Starting point IS(i) of Rsub(1) searches for node nsub(2). Judge whether there exists a
¬nsub(2) that will be absorbed into fRsub(1,j)

in Rsub(1):

(1) Exists: Add it into element fRsub(1,2,t)
of fRsub(1,2)

. Continue to judge whether there exists
¬nsub(2), until the terminal point P(i) is searched, which forms a complete fRsub(1,2)

. Output
vector fRsub(1,2)

;
(2) Does not exist: turn to Step 1.5 and search fRsub(1,3)

.

Step 1.5: Starting point IS(i) of Rsub(1) searches for node nsub(i). Judge whether there exists a
¬nsub(i) that will be absorbed into fRsub(1,j)

in Rsub(1):

(1) Exists: Add it into element fRsub(1,j,t)
of fRsub(1,j)

. Continue to judge whether there exists
¬nsub(i), until the terminal point P(i) is searched, which forms a complete fRsub(1,j)

. Output
vector fRsub(1,j)

. This process traverses j ∈ (2, λ1], and the searching ends. Turn to Step 1.6.
(2) Traverse j ∈ (2, λ1], if ¬nsub(i) still does not exist, then the sub-interval Rsub(1) does not

exist. The searching ends, turn to Step 1.6.

Step 1.6: Output the solution space FRsub(1)
, including λ1 number of fruit fly individual fRsub(1,j)

,
namely maxj = λ1.

Step 2: In line with the same algorithm as Step 1, as to the sub-interval Rsub(i), take i = 2,
construct the optimal ICV route for the second sub-interval. Output solution space FRsub(2)

,
including λ2 number of fruit fly individuals fRsub(1,j)

, namely maxj = λ2.
Step 3: Continue searching, and output solution space FRsub(i)

, including λi number of fruit fly
individuals fRsub(1,j)

, namely maxj = λi. Traverse solution space FRsub(i)
, corresponding to

i ∈ (2, maxi]. Output all fruit fly individuals fRsub(i,j)
for all sub-intervals Rsub(i) in ICV navigation

route.
Step 4: Update locations in the fruit fly group FRsub(1)

. Iterate to calculate the optimal fruit fly

individual fRsub(1,j)
∆ for Rsub(1). Output the optimal navigation route for Rsub(1).

Step 4.1: Randomly select a fruit fly individual rand fRsub(1,j)
as fRsub(1,j)

∆, calculate O( fRsub(1,j)
);

Step 4.2: As to ∀ f(1,¬ j), fly to fRsub(1,j)
by unit step size Le(t1,t2). Update locations in the fruit fly

group FRsub(1)
. Set that after flying by unit step size, ∀ f(1,¬ j) turns to fRsub(1,j)new

, make judgement:

(1) If O( fRsub(1,j)
) > O( fRsub(1,j)new

), keep current fRsub(1,j)
as fRsub(1,j)

∆, and all fruit flies continue
flying to fRsub(1,j)

with step size Le(t1,t2), turn to Step 4.3 and judge fRsub(1,j)new
;

(2) If there exists ∀ fRsub(1,j)new
that makes O( fRsub(1,j)

) < O( fRsub(1,j)new
), replace fRsub(1,j)

∆ with
fRsub(1,j)new

, turn to Step 4.3 and continue searching.

Step 4.3: Based on current fRsub(1,j)
∆, fly to fRsub(1,j)

∆ by unit step size Le(t1,t2). Update locations
in the fruit fly group FRsub(1)

. Make judgement:

(1) If O( fRsub(1,j)
∆) > O( fRsub(1,j)new

), keep fRsub(1,j)
∆ as current solution, and all fruit flies

continue flying to fRsub(1,j)
∆ with step size Le(t1,t2), turn to Step 4.4 and judge fRsub(1,j)new

;

(2) If there exists ∀ fRsub(1,j)new
that makes O( fRsub(1,j)

∆) < O( fRsub(1,j)new
), replace fRsub(1,j)

∆ with
fRsub(1,j)new

, turn to Step 4.4 and continue searching.

Step 4.4: Repeat Step 4.1 to Step 4.3. Update locations in the fruit fly group FRsub(1)
until a

certain fRsub(1,j)new
is searched as the global optimal solution in solution space FRsub(1)

, relating to the
optimal function value O( fRsub(1,j)

)
opt

, and its vector fRsub(1,j)new
∼ fRsub(1,j)

relates to the optimal ICV

navigation route in Rsub(1).
Step 5: Update locations in the fruit fly group FRsub(2)

, iterate to calculate the optimal fruit fly

fRsub(2,j)
∆ in Rsub(2), and output the optimal ICV navigation route in Rsub(2).

Step 6: Update locations in the fruit fly group FRsub(i)
, iterate to calculate the optimal fruit fly

fRsub(i,j)
∆ in Rsub(i), and output the optimal ICV navigation route in Rsub(i), traversing i ∈ (2, maxi].

Output the optimal ICV navigation routes in all sub-intervals Rsub(i).
Step 7: Connect all the optimal navigation routes in all Rsub(i) from the starting point IS(i)

or P(i) to the terminal point IS(j) or P(j), and output the intact optimal ICV navigation route
for tourists.
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4. Experiment and Result Analysis
4.1. Experimental Objectives

The goal of this section is to design an example experiment to verify the feasibility and
accuracy of our proposed algorithm, and to design a comparative experiment to verify the
advantages of our proposed algorithm over traditional map route-planning methods and
the commonly used shortest route-searching algorithms. The experimental objectives are
divided into the following six points:

(1) Goal 1: Test and verify the feasibility and accuracy of POI feature attribute recommen-
dation results;

(2) Goal 2: Test and verify the feasibility and accuracy of the spatial decision forest results;
(3) Goal 3: Verify the feasibility and accuracy of the spatial topology forest results;
(4) Goal 4: Verify the feasibility and accuracy of the recommendation decision forest and

the recommended POI output results;
(5) Goal 5: Verify the feasibility and accuracy of the recommended ICV tour route results;
(6) Goal 6: Verify the advantages of the constructed ICV navigation route algorithm

over traditional map route-planning methods and the commonly used shortest route-
searching algorithms.

4.2. Experiment Process and Data Collection
4.2.1. Experiment Process and Metric Selection

1. Experiment Process

In the experiment, we choose the tourism city Chengdu as the research area, with the
representative POIs P(i) within Chengdu as the alternative tourist destinations, and set the
ICV transfer stations IS(i) at the main controlling transportation hubs in the downtown
area of Chengdu. The main process of the experiment is designed as follows.

(1) Randomly select one tourist as the research subject, determine the natural attributes
GN(i) of all the POIs, including: GN(1) “park and green land”, GN(2) “cultural and
historical commemoration”, GN(3) “leisure shopping center”, and GN(4) “amusement
and theme park”. Determine the POI feature attribute vector fP(i) and the POI fea-
ture attribute matrix fP(i,j), in which the POI feature attributes include fP(1): “travel
cost”, fP(2): “travel time”, fP(3): “POI level (A-Class)”, and fP(4): “POI popularity”.
Determine the tourist interest measurement vector fT(i) and the tourist interest mea-
surement matrix fT(i,j) based on the POI feature attributes, then randomly determine
and quantify the tourist interest vector, and calculate the POI feature attribute recom-
mendation degree function ζ(fT(i), fP(i)), ultimately generating the spatial decision
trees tree·GN(i)

and the spatial decision forest forest·GN(i)
.

(2) Calculate the POI spatial accessibility SA(IS(i),P(i)) using the spatial relationship be-
tween the ICV transfer station IS(i) and the POI P(i), generate the POI spatial clustering
matrix C(i,j), and determine the spatial clustering clusters C(i) with each ICV transfer
station IS(i) as the seed point. Generate the topological forest forest·GN(i)

∗ based on the
spatial decision forest forest·GN(i)

and the spatial clustering C(i) results.

(3) Tourists determine the attribute weight factors ε(i). Calculate the POI recommendation
degree ζP(i) based on the topological forest forest·GN(i)

∗, and output the decision forest
forest·GN(i)

∗ with the labeled spatial clusters C(i) and the recommendation degree ζP(i) .
Determine the optimal POIs recommended to the tourist.

(4) Use the constructed improved fruit fly optimization algorithm to output the optimal
ICV navigation routes. Starting from the ICV transfer station IS(i) selected by the
tourist, the algorithm searches for the ICV navigation routes one by one through the
recommended POIs, and outputs the route with the highest odor concentration func-
tion O( fRsub(i,j)

) in each sub-interval Rsub(i). The terminal point of the ICV navigation
route is the chosen ICV transfer station IS(i).
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(5) The route-searching methods embedded in the Gaode Map (GDM) and the Baidu
Map (BDM), and the most representative route-searching algorithms Dijkstra and
Floyd–Warshall, are set as the two control groups. Then we design the comparative
experiment, in which the proposed algorithm is set as the experimental group, while
the map route-planning methods and the commonly used route-searching algorithms
are set as the two control groups. We compare the travel costs of our proposed
algorithm with the control groups’ route-planning methods in outputting the optimal
ICV navigation routes.

2. Metric Selection

To verify the advantages of our proposed algorithm comparing to the traditional map
algorithms and route-searching algorithms, we design a comparative experiment. The
following metrics are selected to compare the algorithms of the experimental group (PRA)
and the control group.

(1) Sub-interval weight difference ∆O

The sub-interval weight difference ∆O is used to measure the difference in odor con-
centration weight generated by each algorithm within the same sub-interval, representing
the algorithm’s ability to control the travel cost within the sub-interval. The higher the odor
concentration value is, the stronger the algorithm’s ability to control the travel cost will
be, and the lower the cost incurred by tourists moving within the sub-interval will also
be. The sub-interval weight difference ∆O is defined as the difference between the odor
concentration produced by the experimental group and the odor concentration produced
by the control group within the same sub-interval. A positive difference indicates that the
experimental group has a better ability to control the travel cost than the control group,
while a negative difference indicates that the experimental group has a lower ability to
control the travel cost than the control group.

(2) Route weight difference ∆Oto

The route weight difference ∆Oto is used to measure the difference in odor concentra-
tion weight generated by each algorithm for the entire route, representing the algorithm’s
ability to control the travel cost of the entire route. The higher the odor concentration
value is, the stronger the algorithm’s ability to control the travel cost will be, and the
lower the cost incurred by tourists moving within the route will also be. The route weight
difference ∆Oto is defined as the difference between the odor concentration generated by
the experimental group and the odor concentration generated by the control group in the
same route. A positive difference indicates that the experimental group has a better overall
ability to control the travel cost than the control group, while a negative difference indicates
that the experimental group has a lower overall ability to control the travel cost than the
control group.

(3) Sub-interval mileage difference ∆S

Sub-interval mileage difference ∆S is directly used to measure the difference in the
travel mileage generated by each algorithm within the same sub-interval. It is defined
as the difference between the mileage generated by the control group and the mileage
generated by the experimental group within the same sub-interval. A positive difference
indicates that the travel cost generated by the control group is higher than that of the
experimental group, while a negative difference indicates that the travel cost generated by
the control group is lower than that of the experimental group.

(4) Route mileage difference ∆Sto

Route mileage difference ∆Sto is directly used to measure the difference in travel
mileage generated by each algorithm for the same route. It is defined as the difference
between the mileage generated by the control group and the mileage generated by the
experimental group on the same route. A positive difference indicates that the travel cost
generated by the control group is higher than that of the experimental group, while a
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negative difference indicates that the travel cost generated by the control group is lower
than that of the experimental group.

(5) Cost optimization ratio model ∆c

The cost optimization ratio is used to represent the rate of cost reduction of the im-
proved algorithm compared to the control group algorithm. In the comparative experiment,
the cost optimization ratio ∆c is used to measure the rate at which the experimental group
algorithm reduces the route travel cost compared to the control group algorithm. By cal-
culating the cost optimization ratio, the optimization degree of the experimental group
algorithm can be intuitively obtained. The higher the cost optimization ratio is, the higher
the cost reduction rate of the experimental group algorithm compared to the control group
algorithm on a certain travel route. Formula (17) is the constructed cost optimization ratio
model ∆c, in which Sexp is the total distance of ICV route output by the experimental group
and Scon is the total distance of ICV route output by the control group.

∆c =

∣∣Sexp − Scon
∣∣

Scon
× 100% (17)

(6) Algorithm time complexity O(n)

The algorithm time complexity is determined by the algorithm design process and
is used to measure the speed of the algorithm execution. The higher the time complexity
is, the longer time the algorithm will run, and the lower the optimization degree of the
algorithm will be; the lower the time complexity is, the shorter time the algorithm will run,
and the higher the algorithm optimization degree will be. The comparative experiment
uses time complexity to measure the running speed of the experimental group algorithm
and the control group algorithms.

4.2.2. Data Collection

According to the experiment process and method, we collect the following experimen-
tal data.

(1) POIs within Chengdu city. POIs are classified according to their natural attributes
and the results are shown in Table 1. The selection of POIs within the city meets the
following conditions:
1⃝ POIs have feature attributes, including natural attributes. They must have four

feature attributes: “travel cost”, “travel time”, “POI level” and “POI popularity”, and
must belong to one of the natural attributes of “park green land”, “cultural and historical
commemoration”, “leisure shopping center”, and “amusement and theme park”.

2⃝ POIs are distributed within the urban area of Chengdu and are connected by various
levels of urban roads, with strong spatial accessibility. POIs can be reached through local
public transportation without the need for cross-city transportation.

3⃝ POIs have definite spatial attributes, including longitude, latitude, and spatial
distance, etc.

4⃝ It is easy to obtain the POI information and data on the commonly used tourism of-
ficial websites, including the natural attributes, feature attributes, and spatial attributes, etc.

(2) Representative ICV transfer stations. IS(1): Chadianzi Bus Station; IS(2): Tianfu
Square; IS(3): Chengdu East Railway Station; IS(4): Chengdu Railway Station; IS(5):
Chengdu South Railway Station. The five representative ICV transfer stations selected
for the experiment are all the transportation hubs with the highest passenger flow, the
longest operating hours, and located at the important control nodes in Chengdu city.
They are distributed in the western, central, eastern, northern, and southern parts
of Chengdu city, and are the most representative transportation hubs with the most
significant geographical locations. Therefore, the five ICV transfer stations selected
for the experiment can cover all the representative POIs, urban roads, and all the
urban nodes within the experimental range, and their spatial locations are relatively



Symmetry 2024, 16, 159 24 of 39

average to all the POIs. The longitude and latitude coordinates of the ICV transfer
stations have typical spatial attributes, which can be used to quickly calculate the
spatial accessibility with POIs and generate the spatial clusters.

Table 1. POI natural attribute classification.

Natural Attribute GN(i) POIs P(i) within the Research Range

Park and green land GN(1)
P(1): People’s Park; P(9): Tazishan Park; P(11): East
Lake Park; P(16): Wangjianglou Park.

Cultural and historical
commemoration GN(2)

P(2): Sichuan Museum; P(3): Kuanzhai Alley; P(6): Du
Fu Thatched Cottage; P(7): Eastern Suburb Memory;
P(8): Wuhou Temple; P(13): Wenshu Temple; P(14):
Jinsha Site.

Leisure shopping center GN(3) P(4): Chunxi Road; P(10): Jinniu Wanda; P(12): Raffles.

Amusement and theme park GN(4) P(5): Happy Valley; P(15): Guose Tianxiang Park.

(3) The feature attribute requirements for tourists that are input into the ICV decision-
making system are shown in Table 2. Simultaneously, the feature attributes and spatial
attributes of POIs are collected. Randomly select one tourist for the experiment and
input his needs into the ICV decision-making system. To meet the matching algorithm
between the tourist interests and POI feature attributes in POI recommendation, the
demands that the tourist inputs into the ICV decision-making system should meet the
following conditions:

1⃝ Travel cost x1: 0 ≤ x1 ≤ 250, x1 ∈ R;
2⃝ Travel time x2: 0 < x2 ≤ 5, x2 ∈ R;
3⃝ POI level x3: 0 < x3 ≤ 5, x3 ∈ N;
4⃝ POI heat x4: 0 < x4 < 1, x4 ∈ R.

Table 2. The input feature attribute requirements for the ICV decision-making system by the tourist.

Feature Attribute fP(i)
Travel Cost
x1 (¥ Yuan)

Travel Time
x2 (Hour)

POI A-Class
x3 (A-LEVEL)

POI Popularity
x4

Tourist interest fT(i) x1 = 50 x2 = 2 x3 = 4 x4 = 0.92
Disturbance factor δ(i) 0.01 0.1 0.1 0.1

(4) Collect all road nodes between recommended POIs, and road nodes between POIs and
ICV transfer stations. Collect road distances between adjacent road nodes. The process
of collecting road nodes is as follows: 1⃝ Collect and determine all the ICV moving
sub-intervals, and determine the starting and ending points of each sub-interval;
2⃝ Determine two control nodes for the ICV moving sub-interval, with each control

node being an ICV transfer station or a POI; 3⃝ Obtain all the connected roads between
two control nodes in the city map, which can directly or indirectly connect the two
control points; 4⃝ Search for the road intersections from the starting control point to
the ending control point. Encode each intersection when it is searched, and store it
in the sub-interval node database; 5⃝ Repeat the same searching for all sub-intervals;
6⃝ Search for the distance between adjacent nodes in the city map and store it in the

sub-interval node distance database.

4.3. Results and Analysis on POI Spatial Decision Forest and Topological Forest
4.3.1. Results on POI Feature Attribute Recommendation Degree and Spatial
Decision Forest

We use the natural attribute classifications of POIs shown in Table 1 and the tourist
requirements shown in Table 2, combined with the quantitative feature attributes of POIs,
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and calculate the POI feature attribute recommendation degrees ζ(fT(i), fP(i)). The results
are shown in Table 3.

Table 3. The output POI feature attribute recommendation degrees ζ(fT(i), fP(i)).

POI P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8)

ζ(fT(i), fP(i)) 0.6317 0.6317 0.6500 0.6283 0.3557 0.9091 0.6667 0.9091

POI P(9) P(10) P(11) P(12) P(13) P(14) P(15) P(16)

ζ(fT(i), fP(i)) 0.6317 0.6283 0.6317 0.6283 0.6623 0.8333 0.5481 0.6317

According to the constructed spatial decision tree algorithm, the experiment outputs
the spatial decision tree tree·GN(i)

corresponding to each natural attribute classification
GN(i) and the spatial decision forest forest·GN(i)

composed of decision trees, as shown in
Figure 11. The values in the figure represent the feature attribute recommendation degree
ζ(fT(i), fP(i)) of each POI. Figure 11(1) represents the decision tree tree·GN(1)

of the natural
attribute classification GN(1); Figure 11(2) represents the decision tree tree·GN(2)

of the natural
attribute classification GN(2); Figure 11(3) represents the decision tree tree·GN(3)

of the natural
attribute classification GN(3); and Figure 11(4) represents the decision tree tree·GN(4)

of the
natural attribute classification GN(4); the output spatial decision trees form a total spatial
decision forest.
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Figure 11. The spatial decision tree corresponding to each natural attribute classification and the
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(3) represents the natural attribute classification “Leisure shopping center”; (4) represents the natural
attribute classification “Amusement and theme park”.

4.3.2. Results on POI Spatial Topological Forest

The spatial accessibility SA(IS(i),P(i)) of POIs is calculated based on the geographical
coordinates of each ICV transfer station IS(i). The results are shown in Table 4, and Table 5
shows the output topological matrix SA(i,j)

∗ with each ICV transfer station as the seed point,
in which C(i) is the cluster the POI belongs to. Based on the results in Tables 4 and 5 and
the recommendation degrees in Table 3, as well as the spatial decision forest in Figure 11,
the algorithm outputs the topological forest forest·GN(i)

∗ that integrates spatial accessibility
SA(IS(i),P(i)), in which each decision tree tree·GN(i)

still represents one natural classification
GN(i). Figure 12 shows the formed topological forest labeled by the spatial accessibility.
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Table 4. Calculation results on POI spatial accessibility SA(IS(i) ,P(i))
.

POI IS(1) IS(2) IS(3) IS(4) IS(5) POI IS(1) IS(2) IS(3) IS(4) IS(5)

P(1) 0.1493 1.1765 0.1124 0.2273 0.1639 P(9) 0.0763 0.1639 0.5000 0.1235 0.1587
P(2) 0.1818 0.3448 0.0926 0.1852 0.1408 P(10) 0.1587 0.2778 0.1087 1.1905 0.1064
P(3) 0.1639 0.7692 0.1053 0.2326 0.1493 P(11) 0.0826 0.2083 0.1961 0.1190 0.3704
P(4) 0.1220 0.7143 0.1471 0.2381 0.1639 P(12) 0.1020 0.3333 0.1389 0.1370 0.3333
P(5) 0.4348 0.1333 0.0694 0.2128 0.0752 P(13) 0.1493 0.4762 0.1205 0.4348 0.1282
P(6) 0.1818 0.2857 0.0885 0.1695 0.1408 P(14) 0.3448 0.1786 0.0730 0.1613 0.0990
P(7) 0.0877 0.1587 0.2083 0.1786 0.1099 P(15) 0.0543 0.0413 0.0309 0.0415 0.0368
P(8) 0.1299 0.4545 0.1087 0.1613 0.2041 P(16) 0.0870 0.2381 0.2041 0.1266 0.2941

Table 5. The output topological matrix SA(i,j)
∗ and spatial cluster C(i) by POI spatial accessibility.

Cluster POIs Belonging to the Cluster

C(1) ∼ IS(1) P(5) − 0.4348, P(14) − 0.3448, P(15) − 0.0543

C(2) ∼ IS(2)
P(1) − 1.1765, P(2) − 0.3448, P(3) − 0.7692, P(4) − 0.7143,
P(6) − 0.2857, P(8) − 0.4545, P(13) − 0.4762

C(3) ∼ IS(3) P(7) − 0.2083, P(9) − 0.5000
C(4) ∼ IS(4) P(10) − 1.1905
C(5) ∼ IS(5) P(11) − 0.3704, P(12) − 0.3333, P(16) − 0.2941
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Figure 12. The formed topological forest labeled by spatial accessibility. (1) represents the natural
classification “park and green land”; (2) represents the natural classification “Cultural and histori-
cal commemoration”; (3) represents the natural attribute classification “Leisure shopping center”;
(4) represents the natural attribute classification “Amusement and theme park”.

4.3.3. Results Analysis on the POI Feature Attribute Recommendation Degree, Spatial
Decision Forest and POI Spatial Topological Forest

Analyzing the POI feature attribute recommendation degree results in Table 3, when
the tourist inputs the feature attribute requirements to the ICV decision-making system,
the system outputs the POI feature attribute recommendation results. Due to the different
feature attributes of POIs, the calculated recommendation degrees are different. Under the
interest requirement condition of the sample tourist, P(6): Du Fu Thatched Cottage, and P(8):
Wuhou Temple have the highest recommendation degree, both of which are 0.9091. Next
is P(14): Jinsha Site, with a recommendation degree of 0.8333. The POI recommendation
degrees of the majority samples are distributed in the range of 0.6–0.7, with an average value
of 0.6611, indicating that the POIs have strong overall ability to meet the tourist’s interests.
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The recommendation degree variance is 0.0178, and the standard deviation is 0.1333,
indicating that the ability of each sample POI to meet the tourist’s interests is relatively
balanced, with small dispersion. That is to say, all POIs can meet the tourist’s interests,
and there is no apparent difference in function and capacity. The recommendation degree
mode is 0.6317, indicating that the POIs with recommendation degree of 0.6317 appear
most frequently and are relatively concentrated. These POIs have similar ability to meet
the tourist’s interests. By analyzing the distribution, average value, variance, standard
deviation, and mode of recommendation degrees, it can be concluded that the proposed
feature attribute recommendation algorithm has good stability and can objectively express
the relationship between tourists’ interests and the POI feature attributes. Analyzing the
feature attribute decision forest output in Figure 8, each natural classification represents a
decision tree, and the POIs within the same tree have the same natural attributes. The root
node of the tree represents the POI with the highest recommendation degree in the natural
classification. The recommendation degrees of the child nodes of the tree are smaller. The
decision forest of the ICV system provides the tourists with a visual recommendation
schedule, allowing them to directly select the POIs with the highest recommendation
degrees among various natural classifications.

The POI spatial accessibility results in Table 4 show that each POI has different spatial
accessibility for different ICV transfer stations, showing a fluctuating trend. The higher
the spatial accessibility is, the higher the spatial closeness between the POI and the ICV
transfer station will be, and the higher probability of belonging to the cluster where the ICV
transfer station is located will also be. Among all the ICV transfer stations, the ICV transfer
station with the highest spatial accessibility is the transfer station with the highest spatial
closeness with the POI, and the POI belongs to its spatial cluster. Table 5 shows the ICV
transfer station clusters where each POI is located, which are output by the constructed
spatial clustering algorithm. The values after POIs represent their spatial accessibility to the
transfer stations in the cluster they are located in. The results in Tables 4 and 5 demonstrate
that the proposed spatial attribute clustering algorithm has good clustering performance,
which can measure the spatial relationship between the POIs and the ICV transfer stations
and realize the spatial clustering.

4.4. Results and Analysis on Recommendation Degree, Recommendation Degree Decision Forest
and Recommended POI
4.4.1. Results on Recommendation Degree, Recommendation Degree Decision Forest and
Recommended POIs

The experiment sets that the sample tourist has different requirements for the POI
feature attributes and spatial attributes. The interest weight for the feature attribute factor
is 0.6, and the interest weight for the spatial attribute is 0.4. The tourist expects to visit
two POIs in the natural classification of GN(1) “park and green land”, one POI in GN(2)
“cultural and historical commemoration”, and one POI in GN(3) “leisure shopping center”.
According to the results in Tables 3–5, the POI recommendation degrees ζP(i) of the ICV
navigation routes are calculated, and the results are shown in Table 6. According to the
results in Table 6, the experiment outputs the decision trees tree·GN(i)

and the decision forest
forest·GN(i)

∗ containing the clusters C(i) and the recommendation degrees ζP(i) , as shown in
Figure 13, in which each decision tree tree·GN(i)

still represents one natural classification.
According to the results in Table 6 and Figure 13, the POIs recommended by the ICV
decision-making system for the tourists are the POIs at the root nodes of the decision
trees, including P(1): People’s Park, P(9): Tazishan Park, P(8): Wuhou Temple, and P(10):
Jinniu Wanda.
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Table 6. The results on POI recommendation degree ζP(i)
for ICV navigation route.

POI P(1) P(2) P(3) P(4) P(5) P(6) P(7) P(8)

ζP(i)
0.8496 0.5169 0.6977 0.6627 0.3874 0.6597 0.4833 0.7273

POI P(9) P(10) P(11) P(12) P(13) P(14) P(15) P(16)

ζP(i)
0.5790 0.8532 0.5272 0.5103 0.5879 0.6379 0.3506 0.4967
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Figure 13. Decision tree and decision forest including cluster and recommendation degree. (1) rep-
resents the natural classification “Park and green land”; (2) represents the natural classification
“Cultural and historical commemoration”; (3) represents the natural attribute classification “Leisure
shopping center”; (4) represents the natural attribute classification “Amusement and theme park”.

4.4.2. Results Analysis on the Recommendation Degree, Recommendation Degree Decision
Forest and Recommended POI

Analyzing the POI recommendation results for the ICV navigation route in Table 6,
when a tourist inputs the feature attribute weight and the spatial attribute weight to the
ICV decision-making system, the system outputs the POI recommendation results. Due to
the different feature attributes and spatial attributes of POI, the calculated recommendation
degrees are discrepant. Under the interest requirement conditions of the sample tourist,
P(10): Jinniu Wanda has the highest recommendation degree, which is 0.8532. The next is
P(1): People’s Park, with a recommendation degree of 0.8496. The recommendation degrees
of the majority POI samples are distributed in the range of 0.5 to 0.7, with an average
recommendation degree of 0.5955, indicating that these POIs have strong overall ability
to meet the tourist’s interests. The recommendation degree variance is 0.0209, and the
standard deviation is 0.1445, indicating that the ability of each sample POI to meet the
tourist’s interests is relatively balanced, with small dispersion; that is, all POIs can meet
the feature attribute and spatial attribute requirements proposed by the tourist, and there
is no apparent difference in function and capacity. By analyzing the distribution, average
value, variance, and standard deviation of recommendation degrees, it can be concluded
that the proposed POI recommendation algorithm for the ICV navigation route has good
stability and can objectively express the relationship between the tourists’ interests and
the POI attributes, outputting the optimal POIs on the ICV navigation route. Analyzing
the decision forest in Figure 13, each natural classification represents a decision tree, and
the POIs within the same tree have the same natural attributes. The root node of the tree
represents the POI in the natural classification with the highest recommendation degree
of the ICV navigation route. The recommendation degrees of the child nodes are smaller.
When the tourists determine the feature attribute weight and the spatial attribute weight,
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the recommendation degree of each POI varies significantly from Figure 11, indicating
that the POIs on the ICV navigation route are the optimal POIs that both meet the feature
attributes and the spatial attributes, as well as the weight requirements. The decision forest
of the ICV system provides the tourists with a visual recommendation schedule, allowing
them to directly select the POIs with the highest recommendation among various natural
classifications from the decision tree.

4.5. Results and Analysis on ICV Navigation Route
4.5.1. Results on ICV Navigation Route

According to the results, the recommended optimal POIs are P(1): People’s Park,
P(8): Wuhou Temple, P(9): Tazishan Park, and P(10): Jinniu Wanda, as well as the tourist
departure ICV transfer station IS(1): Chadianzi Bus Station, and the destination ICV transfer
station IS(3): Chengdu East Railway Station. In the experiment, the proposed improved
fruit fly optimization algorithm is used to output the fruit fly odor concentration O( fRsub(i,j)

)

in each ICV navigation route sub-interval Rsub(i), and output the iterative value of the fruit
fly odor concentration O( fRsub(i,j)

)
to

in the whole navigation route. The results are shown in
Table 7; “Pa,b,c,d” represents the ICV navigation route “IS(1) − P(a) − P(b) − P(c) − P(d) − IS(3)”.

Table 7. The odor concentration O( fRsub(i,j)
) in each sub-interval and the iterative value of odor

concentration O( fRsub(i,j)
)

to
in the ICV navigation route.

Route
O(fRsub(i,j)

)
O(fRsub(i,j)

)
to Route

O(fRsub(i,j)
)

O(fRsub(i,j)
)

to
R1 R2 R3 R4 R5 R1 R2 R3 R4 R5

P1,8,9,10 0.1235 0.3704 0.1163 0.0885 0.0917 0.7903 P9,1,8,10 0.0541 0.1235 0.3704 0.1639 0.0917 0.8036
P1,8,10,9 0.1235 0.3704 0.1639 0.0885 0.3226 1.0688 P9,1,10,8 0.0541 0.1235 0.2041 0.1639 0.0901 0.6356
P1,9,8,10 0.1235 0.1235 0.1163 0.1639 0.0917 0.6189 P9,8,1,10 0.0541 0.1163 0.3704 0.2041 0.0917 0.8365
P1,9,10,8 0.1235 0.1235 0.0885 0.1639 0.0901 0.5894 P9,8,10,1 0.0541 0.1163 0.1639 0.2041 0.1075 0.6459
P1,10,8,9 0.1235 0.2041 0.1639 0.1163 0.3226 0.9303 P9,10,1,8 0.0541 0.0885 0.2041 0.3704 0.0901 0.8071
P1,10,9,8 0.1235 0.2041 0.0885 0.1163 0.0901 0.6224 P9,10,8,1 0.0541 0.0885 0.1639 0.3704 0.1075 0.7844
P8,1,9,10 0.1031 0.3704 0.1235 0.0885 0.0917 0.7772 P10,1,8,9 0.1099 0.2041 0.3704 0.1163 0.3226 1.1232
P8,1,10,9 0.1031 0.3704 0.2041 0.0885 0.3226 1.0886 P10,1,9,8 0.1099 0.2041 0.1235 0.1163 0.0901 0.6438
P8,9,1,10 0.1031 0.1163 0.1235 0.2041 0.0917 0.6387 P10,8,1,9 0.1099 0.1639 0.3704 0.1235 0.3226 1.0902
P8,9,10,1 0.1031 0.1163 0.0885 0.2041 0.1075 0.6195 P10,8,9,1 0.1099 0.1639 0.1163 0.1235 0.1075 0.6211
P8,10,1,9 0.1031 0.1639 0.2041 0.1235 0.3226 0.9171 P10,9,1,8 0.1099 0.0885 0.1235 0.3704 0.0901 0.7823
P8,10,9,1 0.1031 0.1639 0.0885 0.1235 0.1075 0.5865 P10,9,8,1 0.1099 0.0885 0.1163 0.3704 0.1075 0.7926

Based on the map of Chengdu, as well as the geographical locations of the ICV transfer
stations IS(i) and the recommended POIs, the experiment extracts the coordinates of the
starting station IS(1), terminal station IS(3), and POIs P(1), P(8), P(9), and P(10), and outputs
the trend curves of the three optimal ICV navigation routes. The relationship between
each POI and the ICV transfer station IS(i) in its cluster is labeled. Figure 14(1,2) show
the spatial distributions between the ICV transfer stations and the recommended POIs;
Figure 14(3) shows the sub-interval network composed of the ICV transfer stations and
the recommended POIs; Figure 14(4) shows the optimal ICV navigation route, while
Figure 14(5,6) show the two suboptimal navigation routes.

4.5.2. Results Analysis on ICV Navigation Route

Analyzing the results in Table 7, the proposed improved fruit fly optimization algo-
rithm can find out the optimal fruit fly individual and corresponding odor concentration
function value in each sub-interval, making the ICV path in the sub-interval corresponding
to the optimal fruit fly individual be the shortest, and ultimately minimizing the ICV travel
cost. By outputting the optimal fruit fly individuals within the multiple sub-intervals of
the ICV navigation route, iteratively output the overall odor concentration value of each
feasible ICV navigation route. The overall odor concentration value of each ICV navigation
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route reflects the quality and cost of the ICV route. From the data in Table 7, it can be seen
that in this experiment, the starting point IS(1), terminal point IS(3), as well as the POIs
P(1), P(8), P(9), and P(10), all come from the ICV navigation route. Each ICV navigation
route is composed of five sub-intervals. The odor concentration function values of each
sub-interval output by the improved fruit fly optimization algorithm are different, showing
a fluctuating trend. The total odor concentration of the ICV navigation route generated by
this iteration is also different, showing a fluctuating trend. The results show that the three
ICV navigation routes with the highest odor concentration iteration values are:

1⃝ Optimal ICV navigation route (P10,1,8,9):
IS(1) − P(10) − P(1) − P(8) − P(9) − IS(3), with the odor concentration: 1.1232;
2⃝ Suboptimal ICV navigation route 1 (P10,8,1,9):

IS(1) − P(10) − P(8) − P(1) − P(9) − IS(3), with the odor concentration: 1.0902;
3⃝ Suboptimal ICV navigation route 2 (P8,1,10,9):

IS(1) − P(8) − P(1) − P(10) − P(9) − IS(3), with the odor concentration: 1.0886;
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Figure 14. The spatial relationship between ICV and POI and three optimal ICV navigation routes.
(1,2) show the spatial distributions between ICV transfer stations and recommended POIs; (3) shows
the sub-interval network composed of ICV transfer stations and recommended POIs; (4) shows the
optimal ICV navigation route, while (5,6) show two suboptimal navigation routes.

From the results, it can be concluded that the travel cost incurred by the tourist
traveling along the ICV navigation route “P10,1,8,9” is the lowest, followed by the navigation
routes “P10,8,1,9” and “P8,1,10,9”. The experimental results show that the proposed improved
fruit fly optimization algorithm can find out the fruit fly individual with the lowest travel
cost in the sub-interval of the route, and ultimately output the ICV navigation route with
the lowest travel cost.

Analyzing the visualization results in Figure 14, it can be concluded from Figure 14(1,2)
that the recommended POIs belong to the different ICV transfer station spatial clusters,
which makes the POIs have the feature of approaching the ICV navigation route with the
lowest cost. The constructed fruit fly optimization algorithm is limited to the range of
the optimal spatial distribution, as shown in Figure 14(3); it can thereby further reduce
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the spatial cost of the ICV navigation routes, output the global optimal ICV navigation
route, and effectively reduce the travel cost of ICV. Figure 14(4–6) show the optimal ICV
navigation route and two suboptimal routes respectively. From the analysis of the optimal
route shape and trend, it can be concluded that the route with the lowest ICV travel cost
have the following characteristics:

1⃝ Fluctuate and approach from the starting point to the terminal point along the
virtual connecting line between the starting point and the terminal point;

2⃝ There is no path crossing in sub-interval;
3⃝ There is no closed-loop structure, namely, the sub-interval does not form any

closed path;
4⃝ There is no return route.

4.6. Results and Analysis on the Comparative Experiment
4.6.1. Method and Results of the Comparative Experiment

In the ICV navigation route planning, the ICV decision-making system generally uses
its own electronic map for route planning. The commonly used ICV route maps include
the Gaode Map and the Baidu Map, etc., which use embedded algorithms to search for the
path of ICVs from the starting point to the destination. In the comparative experiment, we
select the Gaode Map (GDA) and the Baidu Map (BDA), which are most commonly used in
ICV navigation route planning, as the control group. The improved fruit fly optimization
algorithm (IFOA-PRA) constructed in this paper is set as the experimental group. Under
the same experimental conditions, The GDA and BDA, respectively, search for the shortest
distance in each sub-interval, calculate the sub-interval weight, and iteratively output
the ICV route weight and the optimal three ICV routes. Compare the three optimal ICV
routes between the experimental group and the control group, and then compare the ICV
route-planning methods from the following aspects: sub-interval weight difference ∆O,
route weight difference ∆Oto, sub-interval mileage difference ∆S, route mileage difference
∆Sto, and cost optimization ratio ∆c.

Other commonly used route-searching algorithms include Dijkstra and Floyd–Warshall,
etc. Set algorithms of the Dijkstra (DIJA) and the Floyd Warhill (FWA) as the control group,
the proposed improved fruit fly optimization algorithm (IFOA-PRA) as the experimen-
tal group. Under the same experimental conditions, the DIJA and the FWA respectively
search for the shortest distance in each sub-interval, calculate the sub-interval weight, and
iteratively output the ICV route weight and the optimal three ICV routes. Compare the
three optimal ICV routes between the experimental group and the control group, and then
compare the ICV route-planning methods from the following aspects: sub-interval weight
difference ∆O, route weight difference ∆Oto, sub-interval mileage difference ∆S, route
mileage difference ∆Sto, cost optimization ratio ∆c, and algorithm time complexity.

(1) The results shown in Table 8 are the comparison of the sub-interval weight O( fRsub(i,j)
)

and the route weight O( fRsub(i,j)
)

to
of the optimal ICV navigation route ICV-G1, and

the suboptimal navigation routes ICV-G2 and ICV-G3 output by the three algorithms.
The results shown in Table 9 are the comparison of the optimal and suboptimal ICV
navigation routes in the sub-interval weight difference ∆O, route weight difference
∆Oto, and cost optimization ratio ∆c, between the control group and the experimental
group. Figure 15 shows the comparison of the sub-interval weight difference ∆O,
route weight difference ∆Oto, and cost optimization ratio ∆c, between the control
group and the experimental group. Figure 15(1) represents the comparison between
the GDA and the PRA. Figure 15(2) represents the comparison between the BDA
and the PRA. Figure 15(3) represents the comparison between the DIJA and the PRA.
Figure 15(4) represents the comparison between the FWA and the PRA. In each figure,
the blue data columns represent the route P10,1,8,9, the brown data columns represent
the route P10,8,1,9, and the green data columns represent the route P8,1,10,9.

(2) The results shown in Table 10 are the comparison of sub-interval mileage S and total
route mileage Sto of the optimal ICV guidance route ICV-G1, and the suboptimal
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guidance routes ICV-G2 and ICV-G3 output by each method of the control group
and the experimental group. The results shown in the Table 11 are the comparisons
of the sub-interval mileage difference ∆S, total route mileage difference ∆Sto, and
cost optimization rate ∆c of the optimal and suboptimal ICV guidance routes output
by each method, between the control group and the experimental group. Figure 16
shows the comparison of sub-interval mileage difference ∆S, route mileage difference
∆Sto, and cost optimization rate ∆c between the control group algorithms and the
experimental group algorithm. Figure 16(1) represents the comparison between the
GDA and the PRA. Figure 16(2) represents the comparison between the BDA and
the PRA. Figure 16(3) represents the comparison between the DIJA and the PRA.
Figure 16(4) represents the comparison between the FWA and the PRA. In each figure,
the blue data columns represent the route P10,1,8,9, the brown data columns represent
the route P10,8,1,9, and the green data column represents the route P8,1,10,9.

(3) Table 12 shows the time complexity comparisons between the route-searching al-
gorithm (PRA), the DIJA, and the FWA. According to the constraints of the urban
geographic space and the tourism scenarios, the number of the sub-interval nodes
is usually within 10, and the number of the POIs visited by the tourists within a
day does not exceed 10. Therefore, the value range of the algorithm nodes is set as
0 < n ≤ 10,n ∈ N. Figure 17 shows the comparisons of the time complexity of the
proposed algorithm (PRA), the DIJA, and the FWA under the different node numbers.
Figure 17(1) shows the comparison curve of time complexity, and Figure 17(2) shows
the comparison chart of the time complexity.

Table 8. The comparison of the sub-interval weight O( fRsub(i,j)
) and route weight O( fRsub(i,j)

)
to

of the
algorithms.

Route
O(fRsub(i,j)

)
O(fRsub(i,j)

)
to

R1 R2 R3 R4 R5

PRA
ICV-G1 P10,1,8,9 0.1099 0.2041 0.3704 0.1163 0.3226 1.1232
ICV-G2 P10,8,1,9 0.1099 0.1639 0.3704 0.1235 0.3226 1.0902
ICV-G3 P8,1,10,9 0.1031 0.3704 0.2041 0.0885 0.3226 1.0886

GDA
ICV-G1 P10,1,8,9 0.1064 0.1887 0.2857 0.1111 0.2857 0.9776
ICV-G2 P10,8,1,9 0.1064 0.1471 0.2857 0.1205 0.2857 0.9454
ICV-G3 P8,1,10,9 0.0943 0.2857 0.1887 0.0806 0.2857 0.9351

BDA
ICV-G1 P10,8,1,9 0.1031 0.1493 0.2564 0.1220 0.2564 0.8871
ICV-G2 P10,1,8,9 0.1031 0.1667 0.2564 0.1000 0.2564 0.8826
ICV-G3 P8,1,10,9 0.0870 0.2564 0.1667 0.0855 0.2564 0.8519

DIJA
ICV-G1 P10,1,8,9 0.1031 0.1887 0.2857 0.1111 0.3226 0.9081
ICV-G2 P10,8,1,9 0.1031 0.1639 0.2857 0.1235 0.3226 0.8957
ICV-G3 P8,1,10,9 0.1031 0.2857 0.1887 0.0806 0.3226 0.8776

FWA
ICV-G1 P10,1,8,9 0.1064 0.2041 0.3704 0.1163 0.3226 1.1197
ICV-G2 P10,8,1,9 0.1064 0.1639 0.3704 0.1220 0.3226 1.0852
ICV-G3 P8,1,10,9 0.1031 0.3704 0.2041 0.0806 0.3226 1.0808

Table 9. The comparison of the optimal and suboptimal ICV navigation routes in sub-interval weight
difference ∆O route weight difference ∆Oto and cost optimization ratio ∆c of the algorithms.

Route
∆O

∆Oto ∆c
R1 R2 R3 R4 R5

PRA-GDA
P10,1,8,9 0.0035 0.0154 0.0847 0.0052 0.0369 0.1456 7.49%
P10,8,1,9 0.0035 0.0168 0.0847 0.0030 0.0369 0.1448 7.62%
P8,1,10,9 0.0088 0.0847 0.0154 0.0079 0.0369 0.1535 10.20%
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Table 9. Cont.

Route
∆O

∆Oto ∆c
R1 R2 R3 R4 R5

PRA-BDA
P10,1,8,9 0.0068 0.0374 0.1140 0.0163 0.0662 0.2406 15.22%
P10,8,1,9 0.0068 0.0146 0.1140 0.0015 0.0662 0.2031 10.19%
P8,1,10,9 0.0161 0.1140 0.0374 0.0030 0.0662 0.2367 14.32%

PRA-DIJA
P10,1,8,9 0.0068 0.0154 0.0847 0.0052 0 0.2151 7.19%
P10,8,1,9 0.0068 0 0.0847 0 0 0.1945 4.59%
P8,1,10,9 0 0.0847 0.0154 0.0079 0 0.2110 6.76%

PRA-FWA
P10,1,8,9 0.0035 0 0 0 0 0.0035 1.05%
P10,8,1,9 0.0035 0 0 0.0015 0 0.0050 1.36%
P8,1,10,9 0 0 0 0.0079 0 0.0078 3.35%
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Figure 15. The comparison of sub-interval weight difference O , route weight difference toO , 

and cost optimization ratio c  between the control group algorithms and the experimental group 

algorithm. (1) represents the comparison between GDA and PRA, (2) represents the comparison 

between BDA and PRA, (3) represents the comparison between DIJA and PRA, and (4) represents 
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Figure 15. The comparison of sub-interval weight difference ∆O, route weight difference ∆Oto,
and cost optimization ratio ∆c between the control group algorithms and the experimental group
algorithm. (1) represents the comparison between GDA and PRA, (2) represents the comparison
between BDA and PRA, (3) represents the comparison between DIJA and PRA, and (4) represents the
comparison between FWA and PRA. In each figure, the blue data columns represent route P10,1,8,9,
the brown data columns represent route P10,8,1,9, and the green data columns represent route P8,1,10,9.
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Figure 16. The comparison of sub-interval mileage difference ∆S, route mileage difference ∆Sto,
and cost optimization rate ∆c between the control group algorithms and the experimental group
algorithm. (1) represents the comparison between GDA and PRA, (2) represents the comparison
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Table 10. The comparison on sub-interval mileage S( fRsub(i,j)
) and route mileage S( fRsub(i,j)

)
to

between
the control group algorithms and the experimental group algorithm.

Route
S(fRsub(i,j)

)
S(fRsub(i,j)

)
to

R1 R2 R3 R4 R5

PRA
ICV-G1 P10,1,8,9 9.0992 4.8996 2.6998 8.5985 3.0998 28.3968
ICV-G2 P10,8,1,9 9.0992 6.1013 2.6998 8.0972 3.0998 29.0972
ICV-G3 P8,1,10,9 9.6993 2.6998 4.8996 11.2994 3.0998 31.6979

GDA
ICV-G1 P10,1,8,9 9.3985 5.2994 3.5002 9.0009 3.5002 30.6992
ICV-G2 P10,8,1,9 9.3985 6.7981 3.5002 8.2988 3.5002 31.4957
ICV-G3 P8,1,10,9 10.6045 3.5002 5.2994 12.4069 3.5002 35.3112

BDA
ICV-G1 P10,8,1,9 9.6993 6.6979 3.9002 8.1967 3.9002 32.3943
ICV-G2 P10,1,8,9 9.6993 5.9988 3.9002 10.0000 3.9002 33.4984
ICV-G3 P8,1,10,9 11.4943 3.9002 5.9988 11.6959 3.9002 36.9893

DIJA
ICV-G1 P10,1,8,9 9.6993 5.2994 3.5002 9.0009 3.0998 30.5996
ICV-G2 P10,8,1,9 9.6993 6.1013 3.5002 8.0972 3.0998 30.4978
ICV-G3 P8,1,10,9 9.6993 3.5002 5.2994 12.4069 3.0998 34.0057

FWA
ICV-G1 P10,1,8,9 9.3985 4.8996 2.6998 8.5985 3.0998 28.6961
ICV-G2 P10,8,1,9 9.3985 6.1013 2.6998 8.1967 3.0998 29.4961
ICV-G3 P8,1,10,9 9.6993 2.6998 4.8996 12.4069 3.0998 32.8054

Table 11. The comparison on the sub-interval mileage difference ∆S, route mileage difference ∆Sto,
and cost optimization rate ∆c between the control group algorithms and the experimental group
algorithm.

Route
∆S

∆Sto ∆c
R1 R2 R3 R4 R5

GDA-PRA
P10,1,8,9 0.2993 0.3999 0.8004 0.4024 0.4004 2.3024 7.49%
P10,8,1,9 0.2993 0.6968 0.8004 0.2016 0.4004 2.3985 7.62%
P8,1,10,9 0.9051 0.8004 0.3999 1.1075 0.4004 3.6133 10.20%

BDA-PRA
P10,1,8,9 0.6001 1.0992 1.2004 1.4015 0.8003 5.1016 15.22%
P10,8,1,9 0.6001 0.5966 1.2004 0.0996 0.8003 3.2971 10.19%
P8,1,10,9 1.7949 1.2004 1.0992 0.3965 0.8003 5.2914 14.32%

DIJA-PRA
P10,1,8,9 0.6001 0.3999 0.8004 0.4024 0.0000 2.2028 7.19%
P10,8,1,9 0.6001 0.0000 0.8004 0.0000 0.0000 1.4005 4.59%
P8,1,10,9 0.0000 0.8004 0.3999 1.1075 0.0000 2.3078 6.76%

FWA-PRA
P10,1,8,9 0.2993 0.0000 0.0000 0.0000 0.0000 0.2993 1.05%
P10,8,1,9 0.2993 0.0000 0.0000 0.0996 0.0000 0.3989 1.36%
P8,1,10,9 0.0000 0.0000 0.0000 1.1075 0.0000 1.1075 3.38%

Table 12. The comparison of time complexity (TC) level between the control group algorithms and
the experimental group algorithm (time unit: nanoseconds).

TC n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

PRA O(n) 1 2 3 4 5 6 7 8 9 10

DIJA O(n2) 1 4 9 16 25 36 49 64 81 100

FWA O(n3) 1 8 27 64 125 216 343 512 729 1000
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Figure 17. The comparison of the time complexity of the proposed algorithm (PRA), DIJA, and FWA
under the different node numbers. (1) shows the comparison curve of time complexity, and (2) shows
the comparison chart of the time complexity. In (1), the blue color represents the FWA, the yellow
color represents the DIJA, the green color represents the PRA. In (2), the blue color represents the
PRA, the yellow color represents the DIJA, the green color represents the FWA.

4.6.2. Analysis of the Comparative Experimental Results

Analyzing the comparative experimental results of Tables 8–11, the proposed im-
proved fruit fly optimization algorithm (PRA) has significant advantages in outputting the
travel cost and weight of ICV navigation routes. The odor weights of the three ICV naviga-
tion routes in each sub-interval are higher than that of the map route-planning methods
GDA and BDA; that is, the travel cost of the PRA method outputting ICV navigation route
is lower than that of the GDA and the BDA. This will finally lead to a higher overall odor
weight and lower travel cost for the ICV navigation route. Compared with the commonly
used route-searching algorithms Dijkstra and Floyd–Warshall, the PRA also has significant
advantages in outputting the travel cost and route weight of the ICV navigation routes. The
odor weight of the three ICV navigation routes in each sub-interval is higher or equivalent
than that of the DIJA and the FWA, and the sub-interval travel cost is lower, ultimately
resulting in the overall odor weight of the ICV navigation routes being higher than that of
the DIJA and the FWA.

(1) For the ICV navigation routes “P10,1,8,9”, “P10,8,1,9”, and “P8,1,10,9”, the PRA has an
overall odor weight 0.1456, 0.1448, and 0.1535 higher than the GDA, respectively,
while the PRA has an overall travel cost 2.3024, 2.3985, and 3.6133 lower than the
GDA, respectively. The cost optimization rates are 7.49%, 7.62%, and 10.20% to the
GDA; the overall odor weight of the PRA is 0.2406, 0.2031, and 0.2367 higher than the
BDA, while the PRA has an overall travel cost 5.1016, 3.2971, and 5.2914 lower than
the BDA, respectively. The cost optimization rates are 15.22%, 10.19%, and 14.32% to
the BDA.

(2) For the ICV navigation routes “P10,1,8,9”, “P10,8,1,9”, and “P8,1,10,9”, the PRA has an
overall odor weight 0.2151, 0.1945, and 0.2110 higher than the DIJA, respectively,
while the PRA has an overall travel cost 2.2028, 1.4005, and 2.3078 lower than the
DIJA, respectively. The cost optimization rates are 7.19%, 4.59%, and 6.76% to the
DIJA. The overall odor weight of the PRA is 0.0035, 0.0050, and 0.0078 higher than
the FWA, while the PRA has an overall travel cost 0.2993, 0.3989, and 1.1075 lower
than the FWA, respectively. The cost optimization rates are 1.05%, 1.36%, and 3.35%
to the FWA.

Analyzing Figure 15, the comparison between the experimental group algorithm and
the control group algorithm in the sub-interval odor weight and the overall odor weight
difference of the ICV navigation route, the following conclusions are obtained:

(1) Comparing the PRA with the GDA, the maximum sub-interval difference occurs in
the third sub-interval of the routes P10,1,8,9 and P10,8,1,9, as well as the second sub-
interval of the route P8,1,10,9, both of which are 0.0847. The maximum reduction in the
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ICV travel cost occurs in the route P8,1,10,9, with the PRA saving 10.20% travel cost
compared to the GDA.

(2) Comparing the PRA with the BDA, the maximum sub-interval difference occurs in
the third sub-interval of the routes P10,1,8,9 and P10,8,1,9, as well as the second sub-
interval of the route P8,1,10,9, both of which are 0.1140. The maximum reduction in the
ICV travel cost occurs in the route P10,1,8,9, with the PRA saving 15.22% travel cost
compared to the BDA.

(3) Comparing the PRA with the DIJA, the maximum sub-interval difference occurs in the
third sub-interval of the routes P10,1,8,9 and P10,1,8,9, as well as the second sub-interval
of the route P8,1,10,9, both of which are 0.0847. The maximum reduction in the ICV
travel cost occurs in the route P10,1,8,9, with the PRA saving 7.19% travel cost compared
to the DIJA.

(4) Comparing the PRA with the FWA, the maximum sub-interval difference occurs in
the fourth sub-interval of the route P8,1,10,9, with a value of 0.0079. The maximum
reduction in the ICV travel cost occurs in the route P8,1,10,9, with the PRA saving 3.35%
travel cost compared to the FWA.

Analyzing Figure 16, the comparison between the experimental group algorithm and
the control group algorithms in terms of the sub-interval mileage difference and the total
mileage difference of the ICV guidance route, the following conclusions are obtained:

(1) Comparing the PRA with the GDA, the maximum sub-interval difference occurs in
the fourth sub-interval of the route P8,1,10,9, with a value of 1.1075. The maximum
reduction in the ICV travel cost occurs in the route P8,1,10,9, with the PRA saving
10.20% travel cost compared to the GDA.

(2) Comparing the PRA with the BDA, the maximum sub-interval difference occurs in the
first sub-interval of the route P8,1,10,9, with a value of 1.7949. The maximum reduction
in the ICV travel cost occurs in the route P10,1,8,9, with the PRA saving 15.22% travel
cost compared to the BDA.

(3) Comparing the PRA with the DIJA, the maximum sub-interval difference occurs in
the fourth sub-interval of the route P8,1,10,9, with a value of 1.1075. The maximum
reduction in the ICV travel cost occurs in the route P10,1,8,9, with the PRA saving 7.19%
travel cost compared to the DIJA.

(4) Comparing the PRA with the FWA, the maximum sub-interval difference occurs in
the fourth sub-interval of the route P8,1,10,9, with a value of 1.1075. The maximum
reduction in the ICV travel cost occurs in the route P8,1,10,9, with the PRA saving 3.35%
travel cost compared to the FWA.

Analyzing Table 12 and Figure 17, it can be concluded that the proposed algorithm
has lower time complexity compared to the Dijkstra and the Floyd–Warshall. From the
analysis of the changing trend, the Floyd–Warshall algorithm has the highest change level
and speed in time complexity, which is the cubic level of nodes, followed by the Dijkstra
algorithm, which is the square level of nodes. From the perspective of algorithm principle,
the proposed algorithm traverses the entire feasible paths by searching all nodes within the
sub-interval. During the flying process of the fruit fly group towards the current optimal
individual, the number of searching times does not exceed the factorial n! of the number of
nodes n. After traversing all the feasible paths, the algorithm outputs the global optimal
solution, so the time complexity does not exceed O(n). The Dijkstra and Floyd–Warshall
algorithms search for the shortest path in a different way. They explore the local optimal
solutions by point-by-point searching, and consume more time. Therefore, the proposed
algorithm has a superior advantage in searching for the global optimal solution compared
to the control group algorithms.

Through comparative experiments, it can be concluded that the proposed algorithm is
easier and definitely able to find the global optimal solution for the ICV navigation routes
compared to the commonly used map route-planning methods and the traditional route-
searching algorithms, which makes the ICV travel route in each sub-interval the shortest
and has the highest odor concentration value, resulting in the highest odor concentration
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value of the final output ICV navigation route. From the perspective of the total cost of the
ICV navigation route, the proposed algorithm is superior to the traditional methods.

5. Conclusions and Future Work
5.1. Conclusions on the Research Work

The combination of the smart tourism and the intelligent connected vehicles to improve
the tourism experience and the tourist satisfaction is one of the hot research topics in the
field of intelligent connected vehicles. To improve tourist satisfaction, an ICV system must
recommend the POIs that best meet tourists’ interests and needs, and guide the ICV to the
destination along the tour route with the lowest travel cost. Therefore, the symmetrical
relationship between the POI attributes and the tourist interests is the key to recommending
POIs; that is, the ICV decision-making system must use the tourist interests as the standard
to match the POIs that meet both the feature attributes and the spatial attributes, so as to
create a symmetrical relationship between the tourist interests and the POI attributes. Based
on this idea, we construct a navigation route-planning model for the tourism intelligent
connected vehicle based on the symmetrical spatial clustering and the improved fruit fly
optimization algorithm.

Firstly, a POI feature attribute clustering algorithm based on the spatial decision forest
is constructed, which utilizes the principle of symmetry to match the tourist’s interests
with the POI feature attributes. It is then used as an embedded algorithm in the ICV
decision-making system to achieve the optimal POI feature attribute recommendation.
Secondly, we construct a POI spatial attribute clustering algorithm based on the SA-AGNES,
with the ICV transfer stations as seed points and the spatial accessibility as the objective
function, to achieve the spatial modeling of the POI and ICV cluster. By determining
the POI feature attributes weight and the spatial attribute weight based on the tourists, a
POI recommendation algorithm for the ICV navigation route is constructed based on the
attribute weights, and the POIs on the ICV navigation route are output. On this basis, we
construct a tourism ICV navigation route model based on an improved fruit fly optimization
algorithm, with the ICV transfer stations and the POIs as nodes, and output the navigation
route with the lowest travel cost under the geospatial constraints. Finally, we design
the validation experiment and comparative experiment, which prove that the proposed
algorithm can accurately output the POIs that match the tourists’ interests, and can find out
the ICV navigation route with the lowest travel cost. Compared with the commonly used
map route-planning methods and the traditional route-searching algorithms, our algorithm
has better performance in searching for the global optimal solutions, and can find out the
shortest path in each sub-interval of the ICV navigation route, then minimize the total
travel cost of the ICV navigation route. Compared to the three optimal ICV navigation
routes output by the traditional methods, the proposed algorithm can reduce the travel
costs by 15.22% at most, which can also effectively reduce the energy consumption of the
ICV system, and improve the efficiency of sight-seeing and traveling for tourists.

5.2. Limitations and Future Work

The proposed algorithm has certain prerequisites; for instance, the input basic interest
indicators, tourist locations, ICV transfer station locations, POI feature attributes, POI
spatial attributes, and urban geospatial data, etc. Since the intelligent ICV system and
the tourism recommendation system are two complex systems, the complexity of their
combination is much higher. Therefore, our research is on a tourism ICV guidance route
decision-making system under certain constraints, and it is difficult to consider and cover
all the conditions of the ICV system, recommendation system, and tourism activities. Thus,
it has certain application limitations. Firstly, the location selection of the ICV transfer station
plays a decisive role in the POI clustering results and the spatial decision-making of the POI
routes. Our work does not involve research on the impact of the ICV location selection on
the POI route recommendation results. Secondly, the tourist interests are still the focus and
core of tourism research. Different preferences of the tourists for the POI feature attributes
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and spatial attributes may lead to different POI and route recommendation results. There
is still a need for in-depth research on the weight of the tourist interests.

In response to the limitations of our research work, we will further explore the inte-
gration of the intelligent connected vehicles (ICV) and the smart tourism services from the
following two aspects in future research. Firstly, we will further study the site selection
problem of the ICV transfer stations. Combining the urban geospatial constraints and
the POI spatial distributions, we will construct the model using the optimal geospatial
locations of the ICV transfer stations to optimize the spatial range and the functional area
of the cluster where the ICV transfer stations are located. Secondly, we will further study
the relationships between the selection of the POI feature attribute weights and the spatial
attribute weights by the tourists, and the final output ICV guidance routes. By constructing
a control variable model, the impact of the different tourist needs and weight selections on
the final recommended POIs and ICV guidance route results will be studied. It is necessary
to find out the internal mechanism of the weight function model acting on the ICV guidance
routes for better serving the optimization of the ICV decision-making systems.

5.3. Application Directions

Based on this future work, the proposed algorithm model has the following application
prospects. Firstly, developing the decision-making system specifically for the ICV intelligent
navigation and POI recommendation. After renting an ICV from the ICV transfer station,
tourist passengers can obtain the POI recommendations and the optimal route navigation
by inputting their travel needs. This guides tourists to visit the POIs while saving the
travel costs. Secondly, it is beneficial to further expand the application scope of the ICV
intelligent navigation system, expanding the target POI to other user-interested goals, such
as applying to the ICV navigation systems for hotel recommendations and navigation,
hospital recommendations and navigation, and cinema recommendations and navigation,
etc. Thirdly, designing and developing electronic maps with comprehensive functions
such as the ICV system operation, target recommendation, route navigation, and POI
navigation, etc., which can be applied to the urban geographic information systems and
urban map systems, providing services for urban tourism, cargo transportation, and public
transportation, etc.
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