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Abstract: Ridge regression is one of the most popular shrinkage estimation methods for linear models.
Ridge regression effectively estimates regression coefficients in the presence of high-dimensional
regressors. Recently, a generalized ridge estimator was suggested that involved generalizing the
uniform shrinkage of ridge regression to non-uniform shrinkage; this was shown to perform well
in sparse and high-dimensional linear models. In this paper, we introduce our newly developed
R package “g.ridge” (first version published on 7 December 2023) that implements both the ridge
estimator and generalized ridge estimator. The package is equipped with generalized cross-validation
for the automatic estimation of shrinkage parameters. The package also includes a convenient tool
for generating a design matrix. By simulations, we test the performance of the R package under
sparse and high-dimensional settings with normal and skew-normal error distributions. From the
simulation results, we conclude that the generalized ridge estimator is superior to the benchmark
ridge estimator based on the R package “glmnet”. Hence the generalized ridge estimator may be the
most recommended estimator for sparse and high-dimensional models. We demonstrate the package
using intracerebral hemorrhage data.

Keywords: cross-validation; high-dimensional data; intracerebral hemorrhage; least squares estimator;
mean square error; penalized regression; R package; shrinkage estimator; sparse model

1. Introduction

In linear regression, the least squares estimator (LSE) may not be suitable to estimate
regression coefficients if the number of regressors p is higher than the sample size n (i.e.,
p > n). Ridge regression [1,2] is an effective alternative for high-dimensional (p > n) data,
and is widely employed in such data encountered in genetics [3,4], medical studies [5],
electromagnetic signals [6], grain yields [7], and others.

Hoerl and Kennard [1] originally proposed the ridge estimator to reduce the problem
in multicollinearity. Later, the ridge estimator was naturally adopted to high-dimensional
(p > n) problems [8,9] as a way to avoid overfitting phenomena.

Ridge regression is a shrinkage estimator that shrinks all regression coefficients uni-
formly toward zero [1,9–11]. This approach is particularly suitable for modeling microar-
rays or single-nucleotide polymorphism (SNP) data, where many coefficients are close
to zero (sparse models). For instance, Cule et al. [12] applied the ridge estimator to high-
dimensional SNP data and performed significance testing for selecting an informative
subset of SNPs. Similar applications of ridge regression to high-dimensional data have
been performed by Whittaker et al. [13], Cule and De Lorio [14], and Yang and Emura [15].
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Unlike ordinary ridge regression that shrinks all regression coefficients uniformly, the
generalized ridge regression allows different degrees of shrinkage under multiple shrinkage
parameters [1,16–18]. Loesgen [18] demonstrated that multiple shrinkage parameters
in the generalized ridge estimator arise naturally from prior uncertainty (variance) for
regression coefficients. Shen et al. [19] and Hofheinz and Frisch [20] adopted this idea
and proposed a generalized ridge estimator for high-dimensional SNPs where multiple
shrinkage parameters are estimated preliminarily. Readers are referred to a review paper
of Yüzbaşı et al. [21] for more information about generalized ridge regression.

However, multiple shrinkage parameters are difficult to estimate for high-dimensional
cases. To overcome this difficulty, Yang and Emura [15] suggested reducing the number
of shrinkage parameters for the case of p > n in their formulation of a generalized ridge
estimator. The idea behind their approach was to assign two different weights (1 or 0.5)
for shrinkage parameters via preliminary tests [22–26]. While this approach has sound
statistical performance in sparse and high-dimensional models, no software packages were
implemented for the generalized ridge estimator.

This paper introduces our R package “g.ridge” (https://cran.r-project.org/package=
g.ridge, accessed on 5 February 2024) that implements both the ridge estimator of Hoerl
and Kennard [1] and the generalized ridge estimator of Yang and Emura [15]. The package
is equipped with generalized cross-validation for the automatic estimation of shrinkage
parameters. The package also includes a convenient tool for generating a design matrix. By
simulations, we test the performance of the R package with sparse and high-dimensional
models, and normal and skew-normal distributions for error terms. We conclude that the
generalized ridge estimator is superior to the benchmark ridge estimator based on the R
package “glmnet”. Hence the generalized ridge estimator may be the most recommended
estimator for sparse and high-dimensional models. We illustrate the package via the
intracerebral hemorrhage dataset.

The remainder of this paper is structured as follows. Section 2 reviews the ridge and
generalized ridge estimators. Section 3 introduces the proposed R package. Section 4 tests the
package via simulations. Section 5 gives a real data example. Section 6 concludes the paper.

2. Ridge Regression and Generalized Ridge Regression

This section introduces the ridge regression method proposed by Hoerl and Ken-
nard [1] and the generalized ridge regression proposed by Yang and Emura [15].

2.1. Linear Regression

Consider a linear regression model (y = Xβ + ε) where

y =

y1
...

yn

, X =

xT
1
...

xT
n

 =

x11 · · · x1p
...

. . .
...

xn1 · · · xnp

, β =

β1
...

βp

, ε =

ε1
...

εn

;

X is a design matrix, xT
i =

(
xi1, . . . , xip

)
is the transpose of a vector xi, β is a vector of

regression coefficients, and ε is a vector of errors with E[ε] = 0. In some cases, we assume
Cov[ε] = σ2 In, where In is the identity matrix of dimension n. The assumption of the
covariance is necessary to obtain the standard error (SE) of regression coefficients and test
their significance. Assume that X is standardized such that ∑n

i=1 xij = 0 and ∑n
i=1 x2

ij = c for
j = 1, ..., p, where c is n or n − 1. Also, we assume that X does not include the intercept term
(see Section 3.3 for details). These settings for X are usually imposed in ridge regression [9].

If XTX is invertible (non-singular), the LSE is defined as

β̂LSE =
(

XTX)−1XTy.

Clearly, the LSE is not available when XTX is singular, especially when p > n.

https://cran.r-project.org/package=g.ridge
https://cran.r-project.org/package=g.ridge
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2.2. Ridge Regression

The ridge estimator is an alternative to LSE, and can be computed even when p > n.
Hoerl and Kennard [1] originally defined the ridge regression estimator as

β̂(λ) =
(

XTX + λIn)
−1XTy,

where λ > 0 is called the shrinkage parameter. A diagonal matrix λIn added to XTX makes
all the components of β̂(λ) shrink toward zero. Theorem 4.3 of Hoerl and Kennard [1]
shows that there exists λ > 0, such that the ridge estimator yields a strictly smaller mean
squared error (MSE) compared to that of the LSE.

Golub et al. [8] suggested choosing λ on the basis of the predicted residual error
sum of squares, or Allen’s PRESS [17] statistics. Golub et al. [8] proposed the rotation-
invariant version of the PRESS statistics, and called it the generalized cross-validation
(GCV) criterion [8]. The GCV function defined by Golub et al. [8] is

V(λ) =
1
n
||{In − A(λ})y||2/

[
1
n

Tr{In − A(λ)}
] 2

. (1)

where A(λ) = X
(
XTX + λIn

)
XT is a “hat matrix”. The GCV estimator of λ is defined as

λ̂ = argmin
λ≥0

V(λ).

Therefore, the resultant ridge estimator is

β̂
(
λ̂
)
=

(
XTX + λ̂In)

−1XTy.

The GCV theorem [8] justifies the above ridge estimator under the p > n setup. Note
that the GCV criterion is different from the cross-validation criterion that is adopted in
the R package “glmnet”. There are many other criteria for choosing λ [14,27–31], most of
which are not applicable or justified for the p > n setup. Therefore, we will adopt the GCV
criterion for the following discussions.

2.3. Generalized Ridge Regression

Yang and Emura [15] suggest relaxing the uniform shrinkage to the non-uniform
shrinkage to yield the generalized ridge regression. For this purpose, Yang and Emura [15]
replaced the identity matrix In with the diagonal matrix Ŵ(∆) (defined later), and proposed

β̂(λ, ∆) =
{

XTX + λŴ(∆)}−1XTy,

where λ > 0 is a shrinkage parameter and ∆ ≥ 0 is called the “threshold” parameter. The
diagonal components of Ŵ(∆) were suggested to be larger values (stronger shrinkage) for
the components β closer to zero, yielding Ŵ(∆) = diag

{
ŵ1(∆), ..., ŵp(∆)

}
, where

ŵj(∆) =
{

1/2 if zj ≥ ∆,
1 if zj < ∆

where zj = β̂0
j /SD

(
β̂0

)
, and SD

(
β̂0

)
=

{
∑

p
j=1

(
β̂0

j − ∑
p
j=1 β̂0

j /p )2 /(p − 1)
}1/2

for

j = 1, ..., p, and β̂0 =
(

β̂0
1, ..., β̂0

p

)T
, defined as β̂0

j = XT
j y/XT

j Xj, where Xj is the j-th

column of X. Note that β̂0 is called the “compound covariate estimator” [32].



Symmetry 2024, 16, 223 4 of 15

The optimal value of (λ, ∆) is estimated by the modified GCV function defined as

V(λ, ∆) =
1
n
||{In − A(λ, ∆)}y||2/

[
1
n

Tr{In − A(λ, ∆)}
] 2

, (2)

where A(λ, ∆) = X
{

XTX + λŴ(∆)}−1XT . Then, estimators
(
λ̂, ∆̂

)
are defined as

(λ̂, ∆̂) = argmin
λ≥0, ∆≥0

V(λ, ∆).

The computation of
(
λ̂, ∆̂

)
is not difficult. Given ∆, the function V(λ, ∆) is continuous

in λ, and hence it is easily minimized using any optimization scheme, such as the R function
“optim(.)”, to obtain λ̂(∆). In a sparse (β ≈ 0) and high-dimensional (p > n) model, the
histogram of β̂0

j /SD
(

β̂0
)

, j = 1, ..., p, is well approximated by N(0, 1). This implies

that
∣∣∣β̂0

j

∣∣∣/SD
(

β̂0
)

falls in the range [0, 3] with nearly 99.73%, and hence a search range of

∆ ∈ [0, 3] suffices. Since V
(
λ̂(∆), ∆

)
is discontinuous in ∆, a grid search was suggested on

a grid D = {0, 3/100, ..., 300/100}.
Finally, the generalized ridge estimator is defined as

β̂
(
λ̂, ∆̂

)
=

{
XTX + λ̂Ŵ

(
∆̂
)
}−1XTy.

Also, the error variance can be estimated by

σ̂2 =
∥∥∥y − Xβ̂

(
λ̂, ∆̂

)∥∥∥2
/ν,

where ν = Tr
{

In − A
(
λ̂, ∆̂

)}2
and A

(
λ̂, ∆̂

)
= X

{
XTX + λ̂Ŵ

(
∆̂
)}−1XT.

2.4. Significance Test

Ridge and generalized ridge estimators provide methods to test the following null
hypothesis:

H0j: β j = 0 vs. H1j: β j ̸= 0,

for j = 1, ..., p. One can perform significance tests, allowing one to access p-values of
all the p regressors [12,14,15]. Since the resultant tests are similar between the ridge and
generalized ridge estimators, we will explain the tests based on the generalized ridge
estimator below.

Let β̂ j
(
λ̂, ∆̂

)
be the j-th component of β̂

(
λ̂, ∆̂

)
. As in Cule et al. [12] and Yang and

Emura [15], we define a Z-value of Zj = β̂ j
(
λ̂, ∆̂

)
/SE

{(
λ̂, ∆̂

)}
, where SE

{
β̂ j
(
λ̂, ∆̂

)}
is the

square root of the j-th diagonal of

Cov
{

β̂
(
λ̂, ∆̂

)}
= σ̂2

{
XTX + λ̂Ŵ

(
∆̂
) }−1

XTX
{

XTX + λ̂Ŵ
(
∆̂
)}−1

.

We define the p-value as Pj = 2
{

1 − Φ
(∣∣Zj

∣∣)}, where Φ(.) is the cumulative distri-
bution function of N(0, 1). One can then select a subset of regressors by specifying a
significance level.

3. R Package: g.ridge

We implemented the methods of Section 2 in the R package “g.ridge”. This section ex-
plains two functions: “X.mat” for generating data and “g.ridge(.)“ for performing regression.
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3.1. Generating Data

The design matrix X and response vector y are necessary to perform linear regres-
sion (Section 2.1). Therefore, following Section 5 of Yang and Emura ([15], p. 6093), we
implemented a convenient R function that generates X with three independent blocks:

X =

xT
1
...

xT
n

 =

 x11 · · · x1q
...

. . .
...

xn1 · · · xnq

∣∣∣∣∣∣∣
x1,q+1 · · · x1,q+r

...
. . .

...
xn,q+1 · · · xn,q+r

∣∣∣∣∣∣∣
x1,q+r+1 · · · x1p

...
. . .

...
xn,q+r+1 · · · xnp

,

= [ First block| Second block| Third block],

(3)

where the first block consists of q ≥ 0 correlated regressors (correlation = 0.5), the second
block consists of r ≥ 0 correlated regressors (correlation = 0.5), and the third block consists
of p − q − r > 0 independent regressors. That is,

Corr(xij, xik) =


0.5 if j, k ∈ {1, ..., q},
0.5 if j, k ∈ {q + 1, ..., q + r},
0 otherwise.

The design matrix mimics the “gene pathway” for two blocks of correlated gene
expressions often used in simulation studies [33–36]. The values q = 0 and r = 0 give a
design matrix with all independent columns.

The marginal distributions of p regressors follow N(0, 1), which is achieved by

xT
i =

(
1√
2
(zi1 + ui), ... ,

1√
2

(
ziq + ui

)∣∣∣∣ 1√
2

(
zi,q+1 + vi

)
, ...,

1√
2

(
zi,q+r + vi

) ∣∣∣∣ zi,q+r+1, ..., zip

)
,

where zi1, ..., zip and ui, vi all independently follow N(0, 1) for i = 1, ..., n.
Figure 1 shows an example for generating design matrices using “X.mat(.)”. One can

simply input n, p, q, and r into “X.mat(.)” by noting the constraint q + r < p.

Figure 1. Examples for generating design matrices using “X.mat(.)” [15].
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3.2. Performing Regression

The ridge and generalized ridge estimators can be computed by the R function
“g.ridge(.)” whose input requires a design matrix X and a response vector y. Specifically,
the command “g.ridge(X, Y, method = “HK”, kmax = 500)” can calculate β̂

(
λ̂
)
, where

“HK” stands for “Hoerl and Kennard”, and “kmax = 500” means the range 0 ≤ λ ≤ 500
for estimating λ. The output displays λ̂ ∈ [0, 500] and β̂

(
λ̂
)
. Similarly, the command

“g.ridge(X, Y, method = “YE”, kmax = 500)” can calculate β̂
(
λ̂, ∆̂

)
, where “YE” stands for

“Yang and Emura”. The output also displays the plot of V(λ) against λ ∈ [0, 500] and its
minimizer λ̂ ∈ [0, 500] (the plot of V

(
λ, ∆̂

)
for the generalized ridge).

The R function “g.ridge(.)” can also compute the SE of β̂, Z-value and p-value for
significance tests (Section 2.4), and the estimate of the error variance, σ̂2 (Section 2.3). As in
the typical practice of ridge regression, one should use the centered responses “Y-mean(Y)”
rather than “Y” (this will be explained in Section 3.3). Also, if “X” were not generated by
“X.mat”, the scaled design matrix “scale(X)” would be recommended rather than “X” itself.

Figure 2 shows the code and output for the ridge estimator. The output shows λ̂ = 31.66314,
β̂
(
λ̂
)
= (0.581485036, . . . 0.083260387), SE, Z-value, p-value, and σ̂2 = 1.778618. The output

also displays the GCV function V(λ) against λ ∈ [0, 200], showing its minimum at λ̂ = 31.66314.
In the code, we changed “kmax” from the default value (500) to 200 for a better visualization of
the plot. In many cases, users will need to try different values of “kmax” to reach a desirable
plot for the GCV function. Appendix A explains another function, “GCV(.)”, that is used for
internally computing the GCV function V(λ).

Figure 2. Cont.
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Figure 2. The R code and output for calculating the ridge estimator using “g.ridge(.)”. The red circle
in the graph shows the minimum value at λ̂ = 31.66314.

The output of the generalized ridge estimator is similar to that of the ridge estimator.
The only difference is an additional parameter estimate ∆̂ ∈ [0, 3], shown at “delta$”.

3.3. Technical Remarks on Centering and Standardization

We assume that X is standardized and does not have a column for an intercept term
(Section 2.1). If X is generated by “X.mat”, it is already standardized, and hence there is no
need to perform standardization. However, in other cases, X has to be standardized, e.g., by
the R command “scale(X)”. By assumption, the design matrix X does not include a column
of ones (for an intercept) since one can always use the reduced model y − (∑n

i=1 yi/n)1 =
Xβ + ε derived from the intercept model y = β01 + Xβ + ε (β0 is estimated by ∑n

i=1 yi/n),
where 1 is a vector of ones. This means that β̂0 = ∑n

i=1 yi/n is applied to estimate β0.

4. Simulations

We conducted simulation studies to test our R package “g.ridge”. The goals of the
simulations are to show that the generalized ridge estimators in our package exhibit (a) su-
perior performance over the ridge estimator in the R function “glmnet(.)” and (b) sound
performance under normally and non-normally distributed errors (a skew-normal distribu-
tion will be considered). The Supplementary Materials include the R code to reproduce the
results of the simulation studies.

4.1. Simulation Settings

We generated X by “X.mat” with n = 100, p ∈ {50, 100, 150, 200}, and q = r = 10
based on Equation (3). Given X, we set y = Xβ + ε, with β defined by a sparse model of

β = (

q︷ ︸︸ ︷
b/q, ..., b/q,

r︷ ︸︸ ︷
d/r, ..., d/r,

p−q−r︷ ︸︸ ︷
0, ..., 0)T,

for four cases: (I) b = d = 5; (II) b = d = 10; (III) b = 5, d = −5; (IV) b = 10, d = −10.
Errors ε were generated independently from the normal distribution or the skew-normal
distribution [37]; both distributions had a mean of zero and standard deviation of one, and
the skew-normal distribution had a slant parameter of ten (alpha = 10 in the R function
“rsn(.)”). Figure 3 shows the remarkable difference between the two distributions. The
skew-normal distribution was not previously examined in the simulation setting of Yang
and Emura [15].
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Figure 3. The histogram of the normal and skew-normal distributions (the slant parameter was ten;
alpha = 10 in the R function “rsn(.)”). Both distributions have a mean of 0 and standard deviation of 1.

For a given dataset (X, y), we computed β̂, which can be (i) the ridge estimator by the
R function “g.ridge(.)”, (ii) the generalized ridge estimator by the R function “g.ridge(.)”,
or (iii) the ridge estimator by the R function “glmnet(.)”. Based on 500 replications (on
random errors ε), the performances of the three proposed estimators were compared by the
total mean squared error (TMSE) criterion, defined as

TMSE
(

β̂
)
= E

[∥∥∥β̂ − β
∥∥∥2

]
= E

[
∑p

j=1

(
β̂ j − β j

)2
]
,

where E[.] was performed by a Monte Carlo average over 500 replications.

4.2. Simulation Results

Table 1 compares the TMSE among the three estimators: (i) the ridge by “g.ridge(.)”,
(ii) the generalized ridge by “g.ridge(.)”, and (iii) the ridge by “glmnet(.)”. We see that
the generalized ridge estimator is superior to the ridge estimator since the former has
smaller TMSE values for all cases. Also, the generalized ridge estimator is superior to the
“glmnet(.)” estimator for cases of p ∈ {100, 150, 200}, while this is not the case for p = 50.
This conclusion holds consistently across the four parameter settings (I)–(IV) and two error
distributions (normal and skew-normal). In conclusion, the generalized ridge estimator in
the proposed R package seems to be the most recommended estimator for data with sparse
and high-dimensional settings.
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Table 1. The total mean squared error (TMSE) of the three estimators: (i) the ridge by “g.ridge(.)”,
(ii) the generalized (g-) ridge by “g.ridge(.)”, and (iii) the ridge by “glmnet(.)”. The TMSE is computed
by a Monte Carlo average over 500 replications.

Error
Distribution Regression Coefficients p (i) ridge (ii) g-ridge (iii) glmnet

Normal (I) b = d = 5 50 0.463 0.385 0.306
100 0.950 0.682 2.182
150 1.146 0.658 1.996
200 1.520 0.920 2.199

(II) b = d = 10 50 0.855 0.681 0.545
100 2.151 1.562 8.688
150 3.008 1.482 7.904
200 4.929 2.687 8.691

(III) b = 5 and d = −5 50 0.602 0.539 0.388
100 0.990 0.628 2.025
150 1.219 0.703 2.132
200 1.589 0.953 2.226

(IV) b = 10 and d = −10 50 1.541 1.290 0.737
100 2.398 1.580 8.046
150 3.231 1.614 8.434
200 4.651 2.770 8.804

Skew-normal (I) b = d = 5 50 0.440 0.361 0.294
100 0.957 0.670 2.182
150 1.162 0.678 2.000
200 1.500 0.910 2.197

(II) b = d = 10 50 0.821 0.655 0.527
100 2.285 1.705 8.691
150 3.021 1.509 7.905
200 4.883 2.673 8.686

(III) b = 5 and d = −5 50 0.576 0.519 0.376
100 0.974 0.622 2.029
150 1.233 0.721 2.137
200 1.582 0.949 2.243

(IV) b = 10 and d = −10 50 1.504 1.273 0.720
100 2.449 1.508 8.054
150 3.224 1.616 8.453
200 4.618 2.731 8.860

Note: We set the sample size n = 100 for all cases.

5. Data Analysis

This section analyzes a real dataset to illustrate the generalized ridge estimator in the
proposed package. We retrospectively analyzed a dataset from patients with intracerebral
hemorrhage who were hospitalized at Saiseikai Kumamoto Hospital, Kumamoto city, Japan.
The data collection was conducted in accordance with the Declaration of Helsinki, and the
protocol was approved by the Ethics Committee of Saiseikai Kumamoto Hospital on 29 March
2023. Saiseikai Kumamoto Hospital is a regional tertiary hospital that serves patients with
stroke in southern Japan and provides acute care in a comprehensive stroke care unit.

Outcome variables (y) are the changes in blood volume (in mL) from the initial value
to the follow-up value, which were measured by CT scans. Excluding patients with less
than 10 mL blood volume at the initial CT scans and other reasonable inclusion/exclusion
criteria, we arrive at n = 172 patients. Regressor variables (X) consist of p = 35 continuous
measurements, including histological variables (e.g., age), vital signs (e.g., blood pressure,
mmHG; respiratory rate, times/minute), and blood measurements (e.g., albumin, g/dL;
Gamma-glutamyl transpeptidase (Gamma-GT), IU/L; lactate dehydrogenase, IU/L; pro-
thrombin time, second; blood platelet count, 10−3/µL; C-reactive protein, mg/dL). The
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responses and regressors are centered and standardized before fitting the linear model, as
explained in Sections 2.1 and 3.3.

Table 2 shows estimates for regression coefficients to compare their values between
the ridge and generalized ridge estimators. Due to the limited space, we only show
regression coefficients with p < 0.05 (5% significance). An interesting difference is found
in the number of significant regressors: six regressors for the generalized ridge estimator
and five regressors for the ridge estimator. That is, C-reactive protein was significant by the
generalized ridge estimator and was not by the ridge estimator. A study conducted in a
large population in China reported that a high C-reactive protein level was an independent
risk factor for severe intracerebral hemorrhage [38]. The selection of C-reactive protein as a
variable associated with increased hematoma volume may reflect the tendency of patients
with severe intracerebral hemorrhage to have easier hematoma expansion. Hence, detecting
the significance by the generalized ridge estimator provides an important advantage for
this data example. Besides C-reactive protein, other estimated coefficients are convincing
for the generalized ridge estimator. For instance, the most significant regressor is lactate
dehydrogenase (also the most significant for the ridge estimator). This variable was
previously reported as an important predictor of hematoma expansion [39].

Figure 4 displays scatter plots for centered responses y − (∑n
i=1 yi/n)1 against the

predictors Xβ̂ based on the ridge estimator and generalized ridge estimator. While both
predictors captured the variability in the changes in blood volume (response variables),
this was not fully explained by the predictors since some residual errors remain. Figure 5
depicts the residuals y− (∑n

i=1 yi/n)1− Xβ̂ constructed by the generalized ridge estimator.
We observe that the residuals are asymmetric around zero. The asymmetry in the errors
does not yield any problem as the generalized ridge estimator was shown to work well
under asymmetric errors (Section 4).

Therefore, we have demonstrated that the generalized ridge estimator in the proposed
R package provides statistically and biologically sound conclusions in real data analysis.

Figure 4. Centered responses y− (∑n
i=1 yi/n)1 against the predictors Xβ̂ based on the ridge estimator

and generalized ridge estimator applied to the intracerebral hemorrhage dataset. The red lines were
obtained by least squared estimation.
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Table 2. Fitted results for estimated regression coefficients (only with p-value < 0.05) sorted by
p-values applied to a dataset on patients with intracerebral hemorrhage.

Ridge Generalized Ridge
^
βj

SE p-Value ^
βj

SE p-Value

Lactate dehydrogenase 0.122 0.047 0.008 0.145 0.055 0.008
Gamma-GT 0.116 0.048 0.016 0.143 0.056 0.010

Respiratory rate −0.120 0.052 0.020 −0.140 0.059 0.018
Prothrombin time 0.077 0.036 0.031 0.083 0.040 0.038

Blood platelet count −0.100 0.049 0.040 −0.114 0.056 0.044
C-reactive protein None None >0.05 0.112 0.057 0.049

Figure 5. The residuals y− (∑n
i=1 yi/n)1− Xβ̂ for the generalized ridge estimator applied to a dataset

on patients with intracerebral hemorrhage.

6. Conclusions

This paper introduced the new R package “g.ridge” that can perform the ridge and
generalized ridge regression methods. We showed that the generalized ridge estimator in
the proposed package performs better than the widely used ridge estimator in the “glmnet”
package. Furthermore, the ridge and generalized ridge estimators in the proposed package
can deal with asymmetric error distributions. With an abundance of sparse and high-
dimensional data [36,40–44] and asymmetrically distributed data [45–48], the proposed
package may provide a reliable statistical tool for statisticians and data scientists.

We now compare our R package with some existing R packages for ridge regression.
The “bigRR” package (https://cran.r-project.org/package=bigRR, accessed on 5 February
2024) implements the generalized ridge estimator developed by Shen et al. [19]. This
package uses a different estimator for shrinkage parameters from the estimator in our
package (Section 2.3). However, the bigRR package was already removed from the
CRAN. The R package “genridge” is designed for the ridge estimator with a single
shrinkage parameter, and hence it actually cannot calculate the generalized ridge es-
timator of multiple shrinkage parameters. Similarly, the R package “penalize” (https:
//cran.r-project.org/package=penalized, accessed on 5 February 2024) has the “optL2(.)”

https://cran.r-project.org/package=bigRR
https://cran.r-project.org/package=penalized
https://cran.r-project.org/package=penalized
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function to perform ridge regression with a single shrinkage, which does not allow multiple
shrinkage parameters. In the same manner, an R package “lmridge” [49] was developed to
compute the ridge estimator, allowing 25 different ways to estimate the single shrinkage
parameter. In summary, these existing R packages are insufficient for using the generalized
ridge estimator with multiple shrinkage parameters.

While our simulation study demonstrated the high estimation accuracy of the gen-
eralized ridge estimator, the computation time was not fast. For a single simulation run,
computation took about 3 s (p = 50), 6 s (p = 100), 12 s (p = 150), and 24 s (p = 200).
This means that the time grows steeply as the dimensions increase. In order to analyze
very-high-dimensional regressors, such as SNPs, the package needs to be improved for
computational efficiency.

The generalized ridge estimator considered in this article may be extended to logistic
regression, Poisson regression, and Cox regression. Such extensions have not been explored
yet. The extensions may require some efforts for formulating an estimation algorithm
and efficient cross-validation criterion [50], performing extensive simulation studies, and
developing a software package to fully justify the advantages and usefulness over the usual
ridge estimator that is widespread via the “glmnet” package.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym16020223/s1, the R code for simulations
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Appendix A. GCV Function

The GCV functions are defined as V(λ) and V(λ, ∆) in Equations (1) and (2), respec-
tively. The ridge estimator uses V(λ) while the generalized ridge estimator uses V(λ, ∆) for
estimating shrinkage parameters. To compute V(λ) and V(λ, ∆), we made an R function
“GCV(X,Y,k,W)”, where “X” is a design matrix, “Y” is a response vector, and “k” is actually
λ (because “lambda” is a long name). Note that “W” can be any square matrix of dimension
p to allow for general use. Thus, what we actually compute in “GCV(X,Y,k,W)” is

V(k, W) =
1
n

∣∣∣∣∣∣∣∣{In − A(k, W)}y
∣∣∣∣|2 /

[
1
n

Tr{In − A(k, W)}
]2

, (A1)

where A(k, W) = X
{

XTX + kW}−1XT for any symmetric matrix W. However, we normally
use W = In for the ridge or W = Ŵ(∆) for the generalized ridge, as defined in Section 2.3.

https://www.mdpi.com/article/10.3390/sym16020223/s1
https://www.mdpi.com/article/10.3390/sym16020223/s1
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Figure A1 shows the R code for using “GCV(X,Y,k,W)”. The default for “W” is W = In,
and therefore “GCV(X,Y,k=1)” can compute

V(1, In) =
1
n

∣∣∣∣∣∣∣∣{In − A(1, In)}y
∣∣∣∣|2 /

[
1
n

Tr{In − A(1, In)}
]2

for A(1, In) = X
{

XTX + In}−1XT , or equivalently,

V(1) =
1
n

∣∣∣∣∣∣∣∣{In − A(1)}y
∣∣∣∣|2 /

[
1
n

Tr{In − A(1)}
]2

for A(1) = X
{

XTX + In}−1XT .

Figure A1. An example using “GCV(X,Y,k,W)”.
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