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R.; Císař, P.; Ziaei, M.M.; Štys, D.

Symmetry Breaking in the U-Net:

Hybrid Deep-Learning Multi-Class

Segmentation of HeLa Cells in

Reflected Light Microscopy Images.

Symmetry 2024, 16, 227. https://

doi.org/10.3390/sym16020227

Academic Editors: João Ruivo Paulo,

Cristina P. Santos, Gabriel Pires,

Michel Planat and Sergei D.

Odintsov

Received: 22 November 2023

Revised: 6 January 2024

Accepted: 5 February 2024

Published: 13 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Symmetry Breaking in the U-Net: Hybrid Deep-Learning
Multi-Class Segmentation of HeLa Cells in Reflected Light
Microscopy Images
Ali Ghaznavi 1,* , Renata Rychtáriková 1 , Petr Císař 1 , Mohammad Mehdi Ziaei 1,2 and Dalibor Štys 1
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Abstract: Multi-class segmentation of unlabelled living cells in time-lapse light microscopy images is
challenging due to the temporal behaviour and changes in cell life cycles and the complexity of these
images. The deep-learning-based methods achieved promising outcomes and remarkable success
in single- and multi-class medical and microscopy image segmentation. The main objective of this
study is to develop a hybrid deep-learning-based categorical segmentation and classification method
for living HeLa cells in reflected light microscopy images. A symmetric simple U-Net and three
asymmetric hybrid convolution neural networks—VGG19-U-Net, Inception-U-Net, and ResNet34-U-
Net—were proposed and mutually compared to find the most suitable architecture for multi-class
segmentation of our datasets. The inception module in the Inception-U-Net contained kernels with
different sizes within the same layer to extract all feature descriptors. The series of residual blocks
with the skip connections in each ResNet34-U-Net’s level alleviated the gradient vanishing problem
and improved the generalisation ability. The m-IoU scores of multi-class segmentation for our datasets
reached 0.7062, 0.7178, 0.7907, and 0.8067 for the simple U-Net, VGG19-U-Net, Inception-U-Net, and
ResNet34-U-Net, respectively. For each class and the mean value across all classes, the most accurate
multi-class semantic segmentation was achieved using the ResNet34-U-Net architecture (evaluated
as the m-IoU and Dice metrics).

Keywords: categorical segmentation; neural network; cell detection; microscopy image segmentation;
U-Net; tissue segmentation; semantic segmentation; bright-field microscopy cell segmentation; cell analysis

1. Introduction

Cell detection and segmentation are fundamental processes in microscopy cell image
analysis. These are challenging tasks due to the complexity of these images. On the other hand,
the information from the segmented living cells can play an essential role in further analysis,
such as observing and estimating cell behaviour, their number, and their dimensions. Recently
developed artificial intelligence (AI) methods have achieved promising outcomes in this field.
The machine learning (ML) segmentation methods for cell analysis can be categorised as
traditional machine learning or recently developed deep learning (DL) methods.

1.1. Cell Culture Segmentation with Traditional Machine Learning Methods

The number of traditional cell detection–segmentation ML methods has grown rapidly
because of the low performance of simple techniques, such as threshold-based [1], region-
based [2], or morphological approaches [3,4] when processing such complex images. The
traditional ML methods can be further classified as supervised or unsupervised.
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The supervised methods use training data to generate a mathematical function or a
model to map a new data sample [5]. Trained and optimised parameters using the graph-
based Supervised Normalized Cut Segmentation (SNCS) with loosely annotated images
separate overlapping and curved cells better than the traditional image processing meth-
ods [6]. Mah et al. [7] proposed a classification method using Fast Random Forest (FRF) and
Trainable WEKA Segmentation for extracting the Interstitial cells of Cajal networks in 3D
confocal microscopy images. The proposed method represents better performance than the
Decision Table and Naïve Bayes classification methods in terms of accuracy and F-measure
metric. However, the method showed higher computational costs due to the FRF’s structure.
A method combining the Support Vector Machine (SVM) and the Histogram of Oriented
Gradients extracted and classified the feature descriptors as cells or non-cells in bright-field
microscopy data. The method was sensitive to the training iterations, which is a crucial
step in eliminating false positive detections [8]. A Logistic Regression classification with
intensity values of 25 focal planes as features, followed by the binary erosion with a large
circular structuring element, counted the cells in bright-field microscopy images. However,
the method showed mis-segmentation and a low recall rate [9].

The training data for the unsupervised ML algorithms need not be labelled or scored
a priori [10]. Unsupervised segmentation using the Markov Random Field considered
an image as a series of planes based on Bit Plane Slicing. The planes were used as initial
labelling for an ensemble of segmentations. The robust cell segmentation was achieved with
pixel-wise voting. However, this method was too sensitive to the confidence threshold [11].
A combination of a Scale-Invariant Feature Transform, a self-labelling, and two clustering
methods segmented unstained cells in bright-field micrographs. The method was fast and
accurate but sensitive to the feature selection to avoid overfitting [12]. A self-supervised
(i.e., a kind of unsupervised) learning approach combined unsupervised initial coarse
segmentation (K-means clustering) followed by supervised segmentation refinement (SVM
pixel classifier) to separate white blood cells. However, the unsupervised part of the method
generates a rough segmentation result. In the case of complex datasets, the supervised part
of the method cannot work efficiently due to fuzzy boundaries [13].

1.2. Cell Culture Segmentation with Deep Learning Methods

In recent years, a subset of new machine learning techniques—deep learning (DL)
methods—has been developed to solve cell segmentation problems with higher accuracy
and performance. The deep neural networks have integrated low-/medium-/high-level
features and classifiers into a comprehensive multi-layer structure. The depth of the
network, or the number of layers stacked, determines the “levels” of features [14].

Mask RCNN with a Shape-Aware Loss generated the HeLa cell’s segmentation masks
with a good performance [15]. A Convolutional Blur Attention (CBA) network for nuclei
segmentation in standard datasets [16,17] with an acceptable aggregated Jaccard index con-
sisted of down- and up-sampling procedures. The reduced number of trainable parameters
reasonably decreased the computational cost [18]. The input images of a convolutional net-
work can be of different custom sizes so that they can be trained end-to-end and pixel-to-pixel
to produce an output of the appropriate size. Effective inference and learning can achieve
successful semantic segmentation in complex microscopic and medical images [19,20].

A U-Net architecture containing a contracting path to obtain context and a symmetric
expanding path for precise localisation showed strong data augmentation in the training
process. It was optimised when applied to small datasets and performed efficiently in
semantic segmentation of photon microscopy (phase contrast and DIC) images [21]. A
Feedback U-Net with the convolutional Long Short-Term Memory network, working on the
Drosophila cell image dataset and mouse cell image dataset, generally showed a low level
of accuracy, depending on the segmented class (cytoplasm, cell membrane, mitochondria,
synapses) [22]. A Residual Attention U-Net-based method segmented living HeLa cells
in bright-field light microscopy data with a high IoU metric. The method combined the
self-attention mechanism (to highlight the remarkable features and suppress activations
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in the irrelevant image regions) and the residual mechanism (to overcome the vanishing
gradient problem [23]. Multi-class cell segmentation in fluorescence images combining U-Net
(a deeper network) with ResNet34 (a residual mechanism) achieved a good value of IoU
score [24]. A two-step U-Net method segmented HeLa cells in microscopy images. The first
U-Net localised the position of each cell. The second U-Net was trained with the first U-Net
to determine the cell boundaries [25]. A fully automated U-Net-based algorithm recognised
different classes (colonies, single, differentiated, and dead) of human pluripotent stem cells
from each other with a satisfying m-IoU value in phase contrast images [26].

1.3. Our Motivation for a New Image Segmentation Method

In segmentation, especially of tiny cells, the traditional ML methods struggle with
microscopy images with complex backgrounds [7,8]. The traditional ML methods have also
not been very efficient in training the multi-class segmentation models in large time-lapse
image series. Compared with the traditional ML methods, some Convolution Neural
Networks (CNNs) architectures require many manually labelled training datasets and
higher computational costs [19]. Deep learning methods have shown better results in
segmentation tasks than other methods.

The main goal of our research is to develop and compare variants of a fully convo-
lutional network as the encoder part of the original U-Net architecture and find the most
accurate categorical segmentation algorithm. The U-Net was chosen since it is one of the
most promising methods for semantic segmentation [21]. Later, the encoder part of the
U-Net architecture was modified and replaced with a VGG-19, Inception, and ResNet34
encoder architecture and was examined to find the most suitable architecture for multi-class
segmentation. We used unique telecentric bright-field reflected light microscopy multi-class
labelled images of the cells to be automatically classified according to their morphological
shapes to predict their cell cycle phases.

We captured image series of HeLa cells to test the algorithms. The HeLa is a cell line
of human Negroid cervical epithelioid carcinoma that is used in tissue culture laboratories
as the gold standard. Each image contains HeLa cells in different cell cycle states. The raw
microscopy data are specific for their high pixel resolution in rgb mode and require pre-
processing steps to reduce optical vignetting and camera noise. The data show unlabelled
in-focus and out-of-focus living cells in their physiological state.

2. Materials and Methods
2.1. Cell Preparation and Microscope Specification

The cells were prepared as written in [23], Section 2.1. The European Collection of Cell
Cultures with Cat. No. 93021013 of the human HeLa cell line was selected and prepared
for time-lapse experiments. The cells were cultivated overnight with low optical density
conditions at 37 °C, 5% CO2, and 90% relative humidity. The nutrient solution includes
Dulbecco’s modified Eagle medium (87.7%) with high glucose (>1 g L−1), fetal bovine
serum (10%), antibiotics and antimycotics (1%), L-glutamine (1%), and gentamicin (0.3%;
all provided by Biowest, Nuaille, France). The HeLa cells were maintained in a Petri dish
with a cover glass bottom and lid at a room temperature of 37 °C.

Several time-lapse image series experiments on living HeLa cells growing on a glass
Petri dish were collected using a high-resolved reflected light microscope with the light
source and the microscope objective located on the same side when the light refracted or
emitted from the specimen is analysed, giving the bright image with a dark background.
This microscope was designed by the Institute of Complex Systems (ICS, Nové Hrady,
Czech Republic) and was built by Optax (Prague, Czech Republic) and ImageCode (Brloh,
Czech Republic) in 2021. The microscope has a simple construction of the optical path.
The sample is illuminated by a Schott VisiLED S80-25 LED Brightfield Ringlight. The light
reflected from a sample goes through a telecentric measurement objective TO4.5/43.4-48-F-
WN (Vision & Control GmbH, Shul, Germany) to an Arducam AR1820HS 1/2.3-inch 10-bit
RGB camera with a chip of 4912 × 3684 pixel resolution. The software (developed by the
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ICS) controls the capture of the primary signal (raw image with a theoretical pixel size of
113 nm) with a camera exposure of 998 ms.

2.2. Data Preparation and Pre-Processing

Several time-lapse experiments were completed with HeLa cells using a reflected
bright-field microscope (Section 2.1). The microscope control software calibrated the
microscope optical path and corrected all image series using the algorithm proposed in [27]
to avoid image background inhomogeneities and noise.

The calibration step was followed by converting the raw image representations to 8-bit
colour (rgb) images of a quarter number of pixels [28] in order to preserve the information
maximally and ensure mutual comparability of the images through the time-lapse series. The
green channel on a typical camera sensor has a larger transparency, and its intensities dominate
the signal (Figure 1). The background noise in converted 8-bit rgb images was minimised at
preserving the texture details [29]. Afterwards, different time-lapse series were cropped to the
1024× 1024 pixel size, giving the main dataset with 650 images (accessible at [30]).

Figure 1. Examples of the train sets and corresponding ground truths. The image size is 512 × 512.
The images in the left column visualise primary data from the camera sensor where, without any
white balancing, the green intensity channel dominates (see Section 2.2). The green and red classes in
the right column represent the roundish sharp cells and the migrating unclear cells, respectively.
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For multi-class segmentation, one of three cell states was assigned to each cell manually
using Apeer platform [31]: (1) a background class containing no cells, (2) a cell class
containing larger dilated adhered or migrating cells with unclear borders by which we
anticipate they are growing, and (3) a cell class including roundish cells with sharper
borders when the cells are assumed in their early stage of the life cycle, having no division
state yet, or at the beginning of the division. Identifying the proportion of cells in mitosis
holds significance across various biomedical endeavours, including biological research
and medical diagnosis [32]. Figure 1 depicts a sample of the resized dataset and relevant
generated mask classes as ground truth of the size of 512 × 512 pixels. The manually
segmented images were part of training (80%), testing (20%), and evaluation (20% of the
training set) sets in the proposed neural network architectures.

2.3. The Neural Network Model Architectures
2.3.1. U-Net

The U-Net [21] is well-known as a deep neural network for semantic image segmentation.
The U-Net architecture is based on encoder–decoder layers. The U-Net combines many shal-
low and deep feature channels. In this research, a five-“level” simple U-Net was implemented
as the first method for multi-class segmentation purposes. The extracted deep features served
for object localisation, whereas the shallow features were used for precise segmentation.

The first input layer accepts rgb 512 × 512-sized training set images. Each level of
the proposed U-Net contains two 3 × 3 convolutions. Batch normalisation follows each
convolution, and “ReLU” is used as an activation function. Each encoder “level” in the
down-sampling (encoder) part (Figure 2A) consists of a 2 × 2 max-pooling operation
with a stride of two. The max-pooling process obtains the highest value within the 2 × 2
region. The convolutions lead to double the number of feature channels by completing the
down-sampling in each level of the encoder section.

Figure 2. The simple U-Net model architecture. (A) The encoder section. (B) The decoder section.

In each level (from bottom to top) within the up-sampling (decoder) part (Figure 2B),
the dimensions of the feature maps were multiplied by two in both height and width.
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In the concatenation step, the encoder section’s feature maps were integrated with the
high-resolved shallow and deep semantic features. After concatenation, the channel sizes of
the output feature maps are double the dimensions of the input feature maps. The “softmax”
activation function in the top, 1 × 1 convolution-sized output decoder layer predicts the
occurrence of each pixel in each of the three classes. We obtained the same input and output
layer sizes by utilising padding in the convolution process. Each of those classes, achieved
by the softmax activation, represents the probability of belonging each pixel into each class.
In the final step, the “argmax” operation assigned each pixel to the class, where the highest
probability value was achieved. This computational result, combined with the Categorical
Focal Loss function, generated the energy function of the proposed U-Net architecture.

2.3.2. The VGG19-U-Net

Many modified artificial neural networks, such as AlexNet [33], ZFNet [14], and
VGG [34], have been developed as hybrids with the U-Net to simplify U-Net. In this study,
a VGG-Net architecture replaced the U-Net encoder path. In this way, we combined two
powerful architectures to improve the categorical segmentation of our unique microscopy
dataset. The VGG-Net was proposed by Simonyan and Zisserman [34] from Oxford’s Visual
Geometry Group (VGG). A VGG16 proved to be one of the most efficient classification
networks. However, a VGG19 performed even more effectively than VGG16 [35]. The
VGG19 comprises a network with a deeper topology and smaller convolution kernels to
simulate a perceptual field of view. This architecture is designed to reduce the number of
trainable parameters and decrease computational costs compared with the simple U-Net.
Figure 3 represents the VGG19-U-Net proposed in this study. The left side of the network
(Figure 3A) shows the architecture of the VGG19 encoder section with 16 convolution
layers, 3 fully connected layers, and 5 MaxPool layers in 5 blocks. The convolution blocks at
each level are followed by a 2 × 2 max-pooling operation with a stride of two to extract the
maximal value in the 2 × 2 area. The proposed VGG19 network initiates with 64 channels
in its first layer, and the channel numbers were doubled in each subsequent layer up to
512 channels. The right side of the network (Figure 3B) is a schema of the decoder part
with five blocks. A concatenation step between each VGG19 encoder layer and each U-Net
decoder layer (Figure 3) combines the feature maps from the encoder part with the high-
resolution deep semantic and shallow features from the decoder part. The last decoder
layer has a convolution size of 1 × 1 and predicts the probability values for each pixel and
each of the three classes using the “softmax” activation function.

2.3.3. The Inception-U-Net

The complexity of the U-Net network about the number of trainable parameters leads
to higher runtime and computational costs (Table 1). On the other hand, in image analysis,
applying fixed kernel size in all convolution layers can make it difficult to extract all
feature descriptors of different sizes. For example, in microscopy image analysis, some
(tiny) features are at the local level, and some (larger) are at the global level. The network
cannot extract the representative features for big objects when the small kernel is selected in
convolution operations. If the kernel size is big, the network will miss extracting the features
representative at the pixel level. In other words, the larger kernel can extract a global feature
representation over a large image area, and the smaller kernel has been considered for
detecting area-specific features. Google’s inception deep learning method [36], known as
the Inception architecture, was selected to build a hybrid Inception-U-Net architecture
(Figure 4) to improve segmentation results in our datasets further.
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Figure 3. The hybrid VGG19-U-Net architecture. (A) The VGG19 encoder part. (B) The U-Net decoder part.

The inception module is well known for its computational efficiency by integrating
different sizes of convolutions. The inception module applies kernels of different sizes
within the same architecture layer and becomes wider (instead of deeper) with the layers
(Figure 4B). The convolution layers were replaced with an inception module (Figure 4A)
in all five levels of the encoder and decoder sections of the original U-Net structure. The
inception module consists of different sizes of 3 × 3 convolutions, 1 × 1 convolutions,
3 × 3 max-pooling, and cascaded 3 × 3 convolutions. The number of filters at each convo-
lution layer was doubled within the encoder side. The output feature map size (height and
width) was reduced by half on the last encoder layer.

The up-sampling (decoder) architecture section (Figure 4A, left side) was also equipped
with an inception module at each level. The skip connection linked the encoder and decoder
section to enhance the performance of the prediction. The encoder spatial feature maps
are concatenated with the decoder feature maps. The rectified linear unit (ReLU) was
selected as an activation function for each layer to perform batch normalisation in each
inception module. At the last layer, a 1 × 1 convolution layer together with the “softmax”
activation function generated three segmentation classes of the feature maps for the given
input image. Each pixel was assigned to one class according to the highest probability
value achieved among the classes. The Categorical Focal Loss function has been considered
an energy function for this Inception-U-Net.
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Figure 4. (A) The Inception-U-Net architecture. (B) The internal architecture of one inception module.

2.3.4. The ResNet34-U-Net

To further improve the categorical segmentation of our datasets, the Residual Convolu-
tional Neural Network (ResNet) [37] was joined to the U-net. Neural networks with deeper
architecture are more effective for complex classification and segmentation tasks. However,
during the training process, the vanishing gradient problem appears in the very deep CNN.
Moreover, a high number of CNN layers makes the training process slower, and the calculated
value of the backpropagation derivative becomes increasingly insignificant. Thus, the model’s
accuracy gets saturated and rapidly declines instead of improving. The series of residual
blocks with the skip connections were implemented into the CNN to alleviate the gradient
vanishing and improve the network’s generalisation ability during the training process. The
skip connections were added to the deep neural networks to bypass one or more layers and
update the gradient values from one or more previous layers into the following layers.

The ResNet34-U-Net architecture used in our study (Figure 5) has 34 layers and
4 residual convolution steps with a total of 16 residual blocks (red and purple arrows). The
first convolution layer has 64 filters with a kernel size of 7 × 7, followed by a max-pooling
layer. Each residual block consists of two 3 × 3 convolution layers followed by the ReLU
activation function and batch normalisation with the identity shortcut connection.
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Figure 5. The hybrid ResNet34-U-Net architecture.

After the first 7 × 7 convolution layer, the feature map size halved to 256 × 256. At the
first residual level, three residual convolution blocks were applied to the achieved feature
maps, and the output size of the feature maps was halved to 128 × 128. Four residual
convolution blocks in the second residual step decreased the size of the output feature
maps to 64 × 64. Six residual convolution blocks in the third residual step gave a feature
map size of 32 × 32. The last residual step consists of three residual convolution blocks to
achieve a feature map with a size of 16 × 16.

The up-sampling section of the network (Figure 5) gets the input with the feature map
size of 16 × 16 with 512 channels and a 2 × 2 up-convolution step with a stride of two.
The decoder section has the same structure as the simple U-Net architecture. After passing
the U-Net decoder part, the “softmax” activation function was employed to achieve the
probability map across three different classes for each pixel of the input images. Afterwards,
each pixel was assigned to a certain class according to the highest probability value selected
by the “argmax” function.

With the usage of the ResNet34, the number of trainable parameters decreased signifi-
cantly compared with the VGG19-Net and the simple U-Net. Thus, the runtime for training
the model was shortened.
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2.4. Training Models

The implementation platform for this research was based on Python 3.9. The deep
learning framework was Keras with the Tensorflow backend [38]. All CNN architectures
were first developed and completed on a personal computer and then transferred to the
Google Colab Pro+ premium cluster account to train the most stable models. The Google
Colab Pro+ cluster is equipped with an NVIDIA Tesla T4 or the NVIDIA Tesla P100 GPU
with 16 GB of GPU VRAM, 52 GB of RAM, and two vCPUs [39].

The basic dataset included under-focused, over-focused, and focused images (650 im-
ages total) from various time-lapse series. Portions of the basic dataset were randomly
selected to train the model (416 images, 64%) and validate the process (104 images, 16%)
to avoid over-fitting. The rest 130 images (20%) were used to test and evaluate the model
after training.

All images were normalised (see the pre-processing step in Section 2.2) and resized
to 512 × 512 pixels suitable for inputting the designed neural networks. The optimised
hyperparameter values (Table 2) correspond to training the most stable CNN models.
The ReLU was selected as the activation function for all architecture. The early stopping
hyperparameter was used to prevent overfitting during model training. A patient value
was set at 30. The batch size was set to the maximal value of eight due to the complexity
of the CNN structures and GPU-VRAM limitation. The Adam algorithm was chosen to
optimise the neural networks. The learning rate was set to 10−3 for all proposed CNN
models. The suitable number of object classes was set as 3 (Section 2.2). The best number-of-
steps-per-epoch value equals 52 (achieved after dividing the length of the trainset of value
416 by the batch size of value 8). The number of epochs when all CNN models converged
and were well-trained was 200.

Table 1. Number of the trainable parameters and the computational time for the U-Net models.

Network Run Time # Training Parameters

U-Net 3:33′:29′′ 31,402,639
VGG19-U-Net 1:44′:38′′ 31,172,163
Inception-U-Net 1:05′:47′′ 18,083,535
ResNet34-U-Net 0:56′:22′′ 24,456,444

Table 2. Hyperparameter settings for training all proposed models.

Hyperparameters Name Value

Activation function ReLU
Learning rate 10−3

Number of classes 3
Batch size 8
Epochs number 200
Early stop 30
Step per epoch 52
γ for loss function 2

Categorical image segmentation entails classifying pixels into either cell classes or the
background class. During training progress, all segmented cell images were compared to
the GT to minimise the difference between these two as much as possible by using the Dice
loss. One of the well-known loss functions used for categorical segmentation which is an
extension of the cross entropy loss is the Categorical Focal Loss [40].

The Categorical Focal Loss is more efficient for the multi-class classification of imbal-
anced datasets, when some classes are determined easily, whereas others are not. During
training progress, the loss function down-weights easy classes and focuses training on hard-
to-classify classes. Thus, the focal loss reduces the loss value for “well-classified” examples
(e.g., roundish sharp cells) and increases the loss for hard-to-classify objects (e.g., migrated
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vanish cells) by tuning the right value of the focusing parameter γ in the categorical focal
loss function. In summary, the categorical focal loss turns the model’s attention towards
the difficult-to-classify pixels to achieve more precise classification results.

2.5. Evaluation Metrics

The common evaluation metrics were used to assess all categorical semantic segmen-
tation models (Equations (1)–(5)). The TP, FP, FN, and TN correspond to the true positive,
false positive, false negative, and true negative metric, respectively, [41]. The metrics were
calculated across all test sets within each class and reported as mean values across all classes
(Tables 3 and 4).

Table 3. m-IoU values for the classes. C1—background, C2—divided and unclear cells, C3—roundish
and sharp cells, green—the highest m-IoU value for the relevant class.

Network m-IoU C1 m-IoU C2 m-IoU C3 m-IoU

U-Net 0.9894 0.4839 0.6452 0.7062
VGG19-Net 0.9885 0.5489 0.6160 0.7178
Inception-Net 0.9915 0.6614 0.7194 0.7907
ResNet 34-Net 0.9911 0.6911 0.7378 0.8067

Table 4. The metric results evaluating the U-Net models. The green values display the highest
accuracy in segmentation for the corresponding metric.

Network Accuracy Precision Recall m-IoU m-Dice

U-Net 0.9869 0.7897 0.8833 0.7062 0.8104
VGG19-U-Net 0.9865 0.8051 0.8614 0.7178 0.8218
Inception-U-Net 0.9904 0.8684 0.8905 0.7907 0.8762
ResNet 34-U-Net 0.9909 0.8795 0.8975 0.8067 0.8873

The overall pixel accuracy (Acc) indicates the percentage of image pixels correctly
assigned to segmented cells:

Acc =
TP + TN

TP + FP + FN + TN
(1)

Precision (Pre) measures the ratio of correctly segmented cell pixels in the results that
match the Ground Truth (GT). This metric is identified as a positive predictive value and
holds significance in segmentation performance as it is sensitive to over-segmentation:

Pre =
TP

TP + FP
(2)

Recall (Recl) denotes the percentage of cell pixels in the GT identified correctly during
the segmentation process. This metric represents the percentage of annotated objects in the
GT that were identified as positive predictions:

Recl =
TP

TP + FN
(3)

The combination of Pre and Recl provides another crucial metric known as the F1 score,
used to assess the segmentation outcome. The F1-score or Dice similarity coefficient evaluates
the alignment and level of detail between the predicted segmented area and the GT and
considers the false alarms and missed values for each class. The accuracy of the segmentation
boundaries was evaluated by this metric [42] and takes precedence over the Acc metric:

Dice =
2 × Pre × Recl

Pre + Recl
(4)
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The Jaccard similarity index, or Intersection over Union (IoU), says what the correlation
between the prediction and GT is [19,43] and represents the overlap and union area ratio
for the predicted and GT segmentation:

IoU =
TP

TP + FP + FN
(5)

3. Results

The models were trained for 200 epochs with assessing the training/validation loss
and the Jaccard criterion (Figure 6). The values of the hyperparameters provided in Table 2
were utilised to obtain optimal training performance and stability. Then, the performances
of the trained models were assessed and evaluated using the test datasets and the metrics in
Equations (1)–(5) (Table 4).

Figure 6. Training/validation plots for the loss criterion (left) and the Jaccard criterion (right) for the
simple U-Net (1st row), VGG19-U-Net (2nd row), Inception-U-Net (3rd row), and ResNet34-U-Net
(4th row).

The computational cost is one of the critical factors in training high-performance
models based on the lowest computational resources. The four described methods differ
significantly in runtime, the number of trainable parameters, and network structures
(Table 1). Training the simple U-Net took the longest runtime with the highest number of
training parameters. The VGG19-U-Net was trained well in a significantly shorter time
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due to the network structure; the number of training parameters was slightly lower than
in the simple U-Net. The Inception-U-Net runtime was even faster than the previous two
methods. This runtime reduction was followed by a further significant decrease in the
number of trainable parameters and higher segmentation performance. The last—ResNet34-
U-Net method—achieved the shortest computational cost with the best segmentation
performance.

Figure 7 presents the segmentation results for the U-Net-based models proposed in this
paper. At the same conditions, the simple U-Net achieved a lower categorical segmentation
performance than the other models (when the evaluation metrics are compared). The
simple U-Net was inefficient in classifying the cell pixels into the suitable classes and
suffered from wrongly segmented cells into the wrong classes (Figure 7, yellow circle).
Applying the VGG19-U-Net improved the categorical segmentation performance in terms
of the evaluation metrics (Tables 3 and 4). The cells segmented wrongly by the simple
U-Net were improved slightly, but wrong classifications still occurred (Figure 7, purple
circle). The Inception-U-Net was applied to our datasets as the third hybrid CNN method.
This significantly improved the multi-class segmentation results in terms of evaluation
metrics (Tables 3 and 4). However, this method suffers from over-segmentation in all classes
(Figure 7, black circle). The hybrid ResNet34-U-Net was employed to further improve the
object segmentation and classification (Tables 3 and 4). This method achieved mean class
accuracies (MCA) of 0.9916 (for the background), 0.9915 (for the divided and unclear cells),
and 0.9895 (for the roundish and sharp cells). The confusion matrix (Figure 8) illustrates
the related true and predicted classes for the segmentation results.

Figure 7. Test image, ground truth, prediction, and 8-bit visualisation of the segmentation results
for the U-Net, VGG19-U-Net, Inception-U-Net, and ResNet34-U-Net. The yellow and white circles
highlight the wrongly classified and segmented cells. The black circle highlights a different, smoother
segmentation result achieved by the ResNet34-U-Net. The image size is 512 × 512.
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Figure 8. The confusion matrix for the ResNet34-U-Net. Classes: C1—background, C2—divided and
unclear cells, and C3—roundish and sharp cells. The columns represent the predicted classes, the
rows represent the true classes. Data are presented in % of classified pixels.

Table 3 shows the mean value of the IoU metric for all combinations of class and
method. Achieving a higher IoU value for the class of divided unclear cells (C2) was
challenging for all methods. The ResNet34-U-Net achieved the highest m-IoU value in
all classes.

4. Discussion

The light microscope enables observing living cells in their most natural possible
states. However, analysing live cell behaviour in an ordinary light transmission (bright-
field) microscope over time is difficult for these technical and biological reasons: (1) The cell
morphology and position change significantly depending on the life cycle. (2) Illumination
conditions are unstable over image and time. (3) The field of view is small to ensure
sufficient statistics on cell behaviour. (4) The images of observed cells are insufficiently
spatially resolved and distorted by microscope optics. (5) The traditional image processing
methods, including machine learning approaches, have shown sensitivity to the number of
training iterations, mis-segmentation, and low computational and runtime performance
and recall rate.

Therefore, we enhanced the method described in [23] and developed a microscopic
technique with a connecting deep-learning multi-class image segmentation to obviate
these complications: (1) Locating the object-sided telecentric objective on the side of the
light source (reflection mode) enables us to capture "simple", high-resolved, and low-
distorted images on a black background (similar to fluorescence images). (2) Calibrating
the microscope optical path balanced the intensities in the whole images for following
processing by the CNNs. (3) The larger field of view provides a satisfactory number of cells
per snapshot to evaluate cell behaviour. (4) The images of individual cells were segmented
and categorised according to their current physiological state.

In the studied neural networks, the symmetric element is the U-Net, composed of
two mutually, more or less, symmetric parts: a contracting path to capture the image
context vs. an expanding path for precise localisation [21].This symmetry is suitable for
image segmentation [44]. The encoder part of the U-Net was replaced with another, more
effective, asymmetrical architecture—VGG19, Inception, or ResNet-34—originally designed
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for image classification. Both image classification and image segmentation require feature
extraction [45].

In the symmetric architecture (U-Net), neurons perform similarly during forward and
backward propagation in the convolutional blocks at each level of the network. However,
the demand is a network to learn various and more representative features. This requires
asymmetric behaviour by enhancing the encoder section performance using the VGG19,
ResNet34, or Inception. In this way, we can extract more representative area-specific
features together with global features. The hybrid architecture of the U-Net allows more
exacting categorical segmentation over microscopy images.

The microscope and relevant image data used in this study are unique. No similar
research on categorical segmentation of light reflection microscopy data has ever been
performed before. Thus, comparing the results achieved in this study with the literature is
hard. The results for the proposed hybrid U-Net-based models could only be compared
with similar described methods (Table 5).

Table 5. Values of the evaluation metrics of the CNNs designed for microscopy and medical applica-
tions. Comparison with the literature. Green highlights the highest segmentation accuracy value for
each metric.

Models IoU Dice Acc

prop. U-Net 0.7062 0.8104 0.9869
prop. VGG19-U-Net 0.7178 0.8218 0.9865
prop. Inception-U-Net 0.7907 0.8762 0.9904
prop. ResNet34-U-Net 0.8067 0.8873 0.9909
Self-Attention U-Net [46] - 0.799 -
U-Net [26] 0.777 0.753 -
U-Net [47] - 0.618 -
U-Net+ [48] 0.567 - -
VGG16-U-Net [49] - - 0.961
VGG19-U-Net [50] - 0.8715 0.8764
Inception-U-Net [51] - 0.887 -
Inception-U-Net [24] - 0.95 -
ResNet34-U-Net [52] 0.6915 - -
SMANet [53] 0.665 0.769 -
DMMN-M3 [54] 0.706 - 0.870 - -

A simple U-Net structure was the first proposed model. Its final m-IoU score (mean
value of all categorical segmentation classes) was 0.7062. The hyperparameter optimisation
is expected to lead to a better value of the m-IoU (Table 2).

Sugimoto et al. [46] reached a m-Dice score of 0.799 for multi-class segmentation of
cancer and non-cancer cells over the medical PD-L1 dataset. Nishimura et al. [47] applied
a U-Net-based weakly supervised method on various microscopy datasets and reached
an average m-Dice segmentation score of 0.618. Piotrowski et al. [26] applied a U-Net-
based multi-class segmentation method over human-induced pluripotent stem cell images
and achieved segmentation IoU and Dice accuracy scores of 0.777 and 0.753, respectively.
Long [48] achieved the m-IoU score of 0.567 in single-class semantic segmentation of
bright-field, dark-field, and fluorescence images using the enhanced U-Net (U-Net+).

The U-Net encoder part was replaced with the VGG19 architecture to enhance the
multi-class segmentation result. The final VGG19-U-Net was optimised for our dataset to
decrease trainable parameters in the convolution layers and improve the computational
costs and segmentation performance using a dipper network topology and a smaller
convolution kernel. In this way, the categorical segmentation accuracy increased to 0.7178
for the m-IoU score in the testing phase. Pravitasari et al. [49] applied a VGG16-U-Net
with transfer learning to single-class semantic segmentation of brain tumours in magnetic
resonance images and achieved an accuracy of 0.961. Nillmani et al. [50] applied a VGG19-
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U-Net to X-ray images for single-class segmentation of COVID-19 infections and achieved
accuracy and Dice scores of 0.8764 and 0.8715, respectively.

In the next step, we replaced Google’s inception architecture for the U-Net encoder
and made a hybrid Inception-U-Net network. The inception module contained kernels
of various sizes in the same layer to make the network topology wider instead of deeper
and extract more representative features. The m-IoU metric for categorical segmentation
increased significantly to 0.7907. The number of trainable parameters was reduced. The
computational costs were improved efficiently. Haichun et al. [51] proposed an Inception-
U-Net for single-class segmentation of brain tumours and achieved the m-Dice score of
0.887 in the testing phase. Sunny et al. [24] applied an Inception-U-Net to categorical
segmentation of fluorescence microscopy datasets and achieved an average Dice metric
over all segmentation classes of 0.95.

The model performance was further improved using a hybrid ResNet34-U-Net archi-
tecture. The series of residual blocks with the skip connection was implemented into the
CNN architecture during the training process to overcome the vanishing gradient and gen-
eralisation ability in very deep neural networks. It increased the m-IoU to 0.8067 after the
multi-class segmentation. Sunny et al. [24] built up a ResNet34-U-Net, which showed the
m-IoU of 0.6915 in the cross-validation phase of fluorescence microscopy multi-class image
segmentation. Gao et al. [53] applied a selected Multi-Scale Attention Network (SMANet)
for multi-class segmentation in pancreatic pathological images and achieved m-Dice and
m-IoU scores of 0.769 and 0.665. Ho et al. [54] proposed Multi-Encoder Multi-Decoder
Multi-Concatenation (DMMN-M3) deep CNN for multi-class segmentation in two different
image sets of breast cancer and reached an m-IoU score of 0.870 and 0.706.

5. Conclusions

The main objective of this research was to develop an efficient algorithm to segment
living HeLa cells and classify them according to their shapes and life cycle stages. We
selected the HeLa aggressive cancer cells because they can proliferate rapidly with a
replication rate of up to two times in 24 h [55]. Its replication rate and ubiquity in cell
culture laboratories make HeLa an efficient and appropriate living cell line for research,
industrial, and medical applications. However, the methods described in this study can
be employed to analyse other tissue cell lines. Deep learning approaches to reflected
light microscopy data analysis delivered efficient and promising outcomes. This research
involved variants of hybrid U-Net-based CNN architecture: a simple U-Net, VGG19-U-Net,
Inception-U-Net, and ResNet34-U-Net.

The longest training time, the highest number of trainable parameters, and the lowest
categorical segmentation performance were observed for the simple U-Net (Table 1). On the
contrary, the hybrid ResNet34-U-Net showed the best run time and categorical segmenta-
tion performance (Table 4). The computational cost and the number of trainable parameters
of the inception network are lower than in the U-Net. Thus, the inception networks are
better utilisable for bigger datasets. However, running the inception network requires a
higher computational GPU memory.

The Residual Convolutional Neural Network (ResNet) was applied as a hybrid with
the U-Net to overcome the gradient vanishing and improve the generalisation ability
during training. Using a series of residual blocks with skip connection in each level of the
ResNet34-U-Net network resulted in better categorical segmentation. The skip connections
in each level of the deep neural networks bypass one or more layers and continuously
update the gradient values from one or more previous layers into the layers ahead.

The categorical segmentation gradually improves from simple U-Net to ResNet34-U-
Net (as evaluated using performance metrics, Table 4). The ResNet34 encoder network
achieved the best categorical segmentation by integrating the residual learning structure
to overcome the gradient vanishing with the U-Net as a hybrid ResNet34-U-Net method.
However, weakly supervised multi-class semantic segmentation methods need to be further
studied to be able to generate the ground truth for any huge datasets. Ensemble-learning ap-



Symmetry 2024, 16, 227 17 of 19

proaches applied in the prediction step could also help achieve more accurate segmentation
results using hybrid CNN architectures.

These segmentation methods are potentially applicable to observing and predicting cell
behaviour in time-lapse experiments during their life cycles and 3D visualisation of the cell.

Author Contributions: Conceptualisation, A.G., R.R., P.C., M.M.Z. and D.Š.; methodology, A.G.
and M.M.Z.; validation, A.G.; formal analysis, A.G.; resources, R.R. and D.Š.; data curation, A.G.;
writing—original draft preparation, A.G. and R.R.; writing—review and editing, A.G., R.R., P.C.,
M.M.Z. and D.Š.; visualisation, A.G.; supervision, R.R. and D.Š. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic (project CENAKVA, LM2018099) and the project GAJU 114/2022/Z.

Data Availability Statement: The implemented methods and trained models are hosted on the
GitHub [56] and other data on the Dryad [30].

Acknowledgments: The authors would like to thank their lab colleagues Šárka Beranová and Pavlína
Tláskalová (both from the ICS USB), Jan Procházka (from the USB), and Guillaume Dillenseger (from
the FS USB) for their support.

Conflicts of Interest: The authors declare no conflicts of interest, or known competing financial
interests, or personal relationships that could have appeared to influence the work reported in
this paper.

References
1. Tang, J.R.; Mat Isa, N.A.; Ch’ng, E.S. A Fuzzy-c-Means-Clustering Approach: Quantifying Chromatin Pattern of Non-neoplastic

Cervical Squamous Cells. PLoS ONE 2015, 10, e0142830. [CrossRef]
2. Rojas-Moraleda, R.; Xiong, W.; Halama, N.; Breitkopf-Heinlein, K.; Dooley, S.; Salinas, L.; Heermann, D.W.; Valous, N.A. Robust

Detection and Segmentation of Cell Nuclei in Biomedical Images Based on a Computational Topology Framework. Med. Image
Anal. 2017, 38, 90–103. [CrossRef]

3. Wang, Z. A Semi-Automatic Method for Robust and Efficient Identification of Neighboring Muscle Cells. Pattern Recogn. 2016,
53, 300–312. [CrossRef]

4. Buggenthin, F.; Marr, C.; Schwarzfischer, M.; Hoppe, P.S.; Hilsenbeck, O.; Schroeder, T.; Theis, F.J. An Automatic Method
for Robust and Fast Cell Detection in Bright Field Images from High-Throughput Microscopy. BMC Bioinform. 2013, 14, 297.
[CrossRef]

5. Russell, S.J. Artificial Intelligence: A Modern Approach, 3rd ed.; Prentice Hall: Hoboken, NJ, USA, 2010.
6. Huang, X.; Li, C.; Shen, M.; Shirahama, K.; Nyffeler, J.; Leist, M.; Grzegorzek, M.; Deussen, O. Stem Cell Microscopic Image

Segmentation Using Supervised Normalized Cuts. In Proceedings of the 2016 IEEE International Conference on Image Processing
(ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 4140–4144. [CrossRef]

7. Mah, S.A.; Avci, R.; Du, P.; Vanderwinden, J.M.; Cheng, L.K. Supervised Machine Learning Segmentation and Quantification of
Gastric Pacemaker Cells. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, Montreal, QC, Canada, 20–24 July 2020; pp. 1408–1411. [CrossRef]

8. Tikkanen, T.; Ruusuvuori, P.; Latonen, L.; Huttunen, H. Training Based Cell Detection from Bright-Field Microscope Images.
In Proceedings of the 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, 7–9
September 2015; pp. 160–164. [CrossRef]

9. Liimatainen, K.; Ruusuvuori, P.; Latonen, L.; Huttunen, H. Supervised Method for Cell Counting from Bright Field Focus Stacks.
In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16
April 2016; pp. 391–394. [CrossRef]

10. Hinton, G.; Sejnowski, T. Unsupervised Learning: Foundations of Neural Computation; MIT Press: Cambridge, MA, USA, 1999.
11. Antal, B.; Remenyik, B.; Hajdu, A. An Unsupervised Ensemble-Based Markov Random Field Approach to Microscope Cell Image

Segmentation. In Proceedings of the 2013 International Conference on Signal Processing and Multimedia Applications (SIGMAP),
Reykjavik, Iceland, 29–31 July 2013; pp. 94–99. [CrossRef]

12. Mualla, F.; Schöll, S.; Sommerfeldt, B.; Maier, A.; Steidl, S.; Buchholz, R.; Hornegger, J. Unsupervised Unstained Cell Detection by
SIFT Keypoint Clustering and Self-labeling Algorithm. In Medical Image Computing and Computer-Assisted Intervention (MICCAI
2014): Proceedings of the 17th International Conference, Boston, MA, USA, 14–18 September 2014; Lecture Notes in Computer Science;
Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R., Eds.; Springer: Cham, Switzerland, 2014; Volume 8675, pp. 377–384.
[CrossRef]

13. Zheng, X.; Wang, Y.; Wang, G.; Liu, J. Fast and Robust Segmentation of White Blood Cell Images by Self-supervised Learning.
Micron 2018, 107, 55–71. [CrossRef]

http://doi.org/10.1371/journal.pone.0142830
http://dx.doi.org/10.1016/j.media.2017.02.009
http://dx.doi.org/10.1016/j.patcog.2015.12.009
http://dx.doi.org/10.1186/1471-2105-14-297
http://dx.doi.org/10.1109/ICIP.2016.7533139
http://dx.doi.org/10.1109/EMBC44109.2020.9176445
http://dx.doi.org/10.1109/ISPA.2015.7306051
http://dx.doi.org/10.1109/ISBI.2016.7493290
http://dx.doi.org/10.5220/0004612900940099
http://dx.doi.org/10.1007/978-3-319-10443-0_48
http://dx.doi.org/10.1016/j.micron.2018.01.010


Symmetry 2024, 16, 227 18 of 19

14. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Neural Networks. In Computer Vision (ECCV 2014): 13th
European Conference, Zurich, Switzerland, 6–12 September 2014; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2014; Volume 8689; pp. 818–833. [CrossRef]

15. Lin, S.; Norouzi, N. An Effective Deep Learning Framework for Cell Segmentation in Microscopy Images. In Proceedings of
the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5
November 2021; pp. 3201–3204. [CrossRef]

16. Kumar, N.; Verma, R.; Anand, D.; Sethi, A. Multi-Organ Nuclei Segmentation Challenge. Available online: https://monuseg.
grandchallenge.org/ (accessed on 5 May 2021).

17. Caicedo, J.C.; Goodman, A.; Karhohs, K.W.; Cimini, B.A.; Ackerman, J.; Haghighi, M.; Heng, C.; Becker, T.; Doan, M.; McQuin, C.;
et al. Broad Bioimage Benchmark Collection. Available online: https://bbbc.broadinstitute.org/BBBC038 (accessed on 5 May 2021).

18. Thi Le, P.; Pham, T.; Hsu, Y.C.; Wang, J.C. Convolutional Blur Attention Network for Cell Nuclei Segmentation. Sensors 2022,
22, 1586. [CrossRef] [PubMed]

19. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [CrossRef]

20. Ben-Cohen, A.; Diamant, I.; Klang, E.; Amitai, M.; Greenspan, H. Fully Convolutional Network for Liver Segmentation and
Lesions Detection in Deep Learning and Data Labeling for Medical Applications. In Proceedings of the Deep Learning and Data
Labeling for Medical Applications: 1st International Workshop (LABELS 2016), the 2nd International Workshop (DLMIA 2016), Held in
Conjunction with MICCAI 2016, Athens, Greece, 21 October 2016; Lecture Notes in Computer Science; Carneiro, G., Mateus, D., Peter,
L., Eds.; Springer: Cham, Switzerland, 2016; Volume 10008, pp. 77–85. [CrossRef]

21. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image
Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015;
Lecture Notes in Computer Science; Navab, N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer: Cham, Switzerland, 2015;
Volume 9321, pp. 234–241. [CrossRef]

22. Shibuya, E.; Hotta, K. Cell Image Segmentation by Using Feedback and Convolutional LSTM. Vis. Comput. 2021, 38, 3791–3801.
[CrossRef]

23. Ghaznavi, A.; Rychtáriková, R.; Saberioon, M.; Štys, D. Cell Segmentation from Telecentric Bright-Field Transmitted Light
Microscopy Images Using a Residual Attention U-Net: A Case Study on HeLa line. Comp. Biol. Med. 2022, 147, 105805. [CrossRef]
[PubMed]

24. Sunny, S.P.; Khan, A.I.; Rangarajan, M.; Hariharan, A.; Birur N, P.; Pandya, H.J.; Shah, N.; Kuriakose, M.A.; Suresh, A. Oral
Epithelial Cell Segmentation from Fluorescent Multichannel Cytology Images Using Deep Learning. Comput. Methods Programs
Biomed. 2022, 227, 107205. [CrossRef]

25. Bakir, M.E.; Yalim Keles, v.H. Deep Learning Based Cell Segmentation Using Cascaded U-Net Models. In Proceedings of the 2021
29th Signal Processing and Communications Applications Conference (SIU), Istanbul, Turkey, 9–11 June 2021; pp. 1–4. [CrossRef]

26. Piotrowski, T.; Rippel, O.; Elanzew, A.; Nießing, B.; Stucken, S.; Jung, S.; König, N.; Haupt, S.; Stappert, L.; Brüstle, O.; et al.
Deep-Learning-Based Multi-Class Segmentation for Automated, Non-invasive Routine Assessment of Human Pluripotent Stem
Cell Culture Status. Comp. Biol. Med. 2021, 129, 104172. [CrossRef] [PubMed]
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