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Abstract: In this paper, we propose a new class of micro-electromechanical oscillators. Some inves-
tigations based on Melnikov’s approach are applied for identifying some chaotic possibilities. We
demonstrate also some specialized modules for investigating the dynamics of these oscillators. This
will be included as an integral part of a planned much more general Web-based application for scien-
tific computing. It turns out that the theoretical apparatus for studying the circuit implementation
(design, fabricating, etc.) of the considered differential model for large parameter values is extremely
complex and requires a serious investigation. This is the reason to offer this model to the attention
of specialists working in this scientific direction. Some open problems related to the use of existing
computer algebraic systems for the study of this class of oscillators for large values of n, m and N are
also posed. In general, the entire article is subordinated to this frank conversation with the readers
with the sole purpose being the professional upgrading of the specialized modules provided for this
purpose in subsequent licensed versions of CAS.

Keywords: hypothetical micro-electromechanical oscillator; Melnikov’s method

MSC: 34C37

1. Introduction

The micro-electromechanical oscillators are important apparatus that have a large
usage in many different real life fields which need very fine clock synchronization. We can
mention the telecommunications, video transfers, GPS systems, the work of all microproces-
sors and many others. This wide applicability leads to a necessity of further investigations
of their theoretical foundations as well as the possible implementation in the practice.

A variety of micro-electromechanical oscillators is governed by a version of the Math-
ieu equation that harbors both linear and cubic nonlinear time-varying stiffness terms—the
subharmonic resonance is investigated in [1]; the possible chaotic behavior generated by
such models is studied in [2], etc. An application of the oscillator dynamics to the filtering
problem is provided in [3]. The time-varying capacitors are included in the study of [4] to
investigate the nonlinear dynamics of a micro-electromechanical system. A comprehensive
study devoted on the topic can be found in [5].

Various results related to hetero/homoclinic bifurcation, optimal control in the non-
linear dynamics, higher-order Melnikov analysis of homo/hetero clinic bifurcation in
mechanical oscillators, and bifurcation and chaos in a single d.o.f. mechanical system can
be found in [6–13].
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In [14], the authors study the dynamics of a class of hypothetical micro-electromechanical
oscillator of the form

dx
dt

= y

dy
dt

= bx −
[ n

2 ]−1

∑
i=0

bixn−2i − ϵ

αy + (1 + cos(ωt))

ax +
[m

2 ]−1

∑
i=0

aixm−2i

.

(1)

In the present article, we suggest a new trigonometric class of micro-electromechanical
oscillators and study their dynamics. The first important task we investigate is the possible
chaotic behavior of our model. Here, we use the method proposed by Melnikov in [15].
It gives us an analytic tool for establishing the existence of transfer homoclinic points of
the Poincare map for a periodic orbit of a perturbed dynamical system. Some analytical
conditions are obtained. Also, the effects of all free parameters in the planar differential
system are analyzed.

Our second task is to consider the performance these new models produce. Several
simulations are composed, and the generated results are discussed in the light of the theo-
retical and practical significance they lead. We demonstrate also some specialized modules
for investigating the dynamics of these hypothetical oscillators. The derived results can be
used as an integral part of a much more general application for scientific computing—for
some details, see [14,16–18]. Other dynamic models can be found in [19–26].

Last but not least, some open problems related to the use of existing computer algebraic
systems for the study of this class of oscillators for large values of n, m and N are also posed.

In the proposed article (for the first time), “friendly fire” is directed at the thousand-
strong army of collaborators (full-time and voluntary) of companies creating CAS and
Web-based applications (with paid or free access) for scientific computing.

The plan of the paper is as follows. We state our model in Section 2. Our results
in the light of Melnikov’s approach can be found in Section 3. Some open problems are
discussed in Section 4. Some simulations are presented in Section 5. An alternative to
control the chaotic behavior under probability distributed parameters ai, i = 0, 1, . . . ,

[m
2
]
,

bi, i = 0, 1, . . . ,
[ n

2
]
, gj, j = 1, 2, . . . , N is given in Section 5.1. A special case is considered in

Section 6. In Section 7, we will focus on some difficulties the user encounters when using
Computer Algebraic Systems for scientific computing. We conclude in Section 8.

2. The Model

We consider the following new class of micro-electromechanical oscillators

dx
dt

= y

dy
dt

= bx −
[ n

2 ]−1

∑
i=0

bixn−2i − ϵ

αy +
N

∑
j=1

gj sin(jωt)

ax +
[m

2 ]−1

∑
i=0

aixm−2i

,

(2)

where 0 ≤ ϵ < 1, n and m are odd, N is an integer, and the coefficients a, b, α, ai,
i = 0, 1, . . . ,

[m
2
]
, bi, i = 0, 1, . . . ,

[ n
2
]
, gj, j = 1, 2, . . . , N are real numbers.

Let us consider, for example, the case n = m = 3. We can fix without community
restriction b and b0 at b = b0 = 1. For ϵ = 0, the resulting Hamiltonian of the system (2) is

H(x, y) =
1
2

y2 − 1
2

x2 +
1
4

x4.

There is a saddle point at the origin, centers at (±1, 0), and a double homoclinic orbit
given by (see Figure 1)
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x0(t) = ±
√

2sech t

y0(t) = ∓
√

2sech t tanh t.
(3)

We refer to [14,27–30] for more details. The potential energy V(x) = − 1
2 x2 + 1

4 x4 is shown
in Figure 2.

Figure 1. Double homoclinic orbit [27].

Figure 2. Potential energy V(x).

3. Results in the Light of the Melnikov’s Approach

The Melnikov function gives a measure of the leading order distance between the
stable and unstable manifolds when ϵ ̸= 0 and can be used to tell where the stable and
unstable manifolds intersect transversely. By definition, the homoclinic integral of Melnikov
is given by

M(t0) =
∫ ∞

−∞
y0(t)

αy0(t) +
N

∑
j=1

gi sin(jω(t + t0))

ax0(t) +
[m

2 ]−1

∑
i=0

aixm−2
0 (t)

 dt, (4)

where the functions x0(t) and y0(t) are defined by Equation (3). From a numerical point
of view, the task of finding a root of M(t0) is more interesting given that the parameters
appearing in the proposed differential model are subject to a number of restrictions of a
physical and practical nature.

3.1. The Case n = m = 3 and N = 1

Suppose that n = m = 3 and N = 1. We compute the integral of Melnikov replacing
formulas (3) in Equation (4):
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M(t0) =
∫ ∞

−∞
y0(t)

(
αy0(t) + g1 sin(ω(t + t0))

(
ax0(t) + a0x3

0(t)
))

dt

=
∫ ∞

−∞
(−

√
2sech t tanh t)

(
α(−

√
2sech t tanh t)+

+g1 sin(ω(t + t0))
(

a
√

2sech t) + a0(
√

2sech t)3
))

dt

= 4
3 α − 1

6 g1πω2(6a + a0(4 + ω2))csch
(

πω
2
)

cos(t0ω),

(5)

Thus, we obtain the following statement.

Proposition 1. If m = n = 3 and N = 1, then the Melnikov function M(t0) has a root which is
calculated from the nonlinear equation

4
3

α − 1
6

g1πω2(6a + a0(4 + ω2))csch
(πω

2

)
cos(t0ω) = 0. (6)

For example, for α = 1.39627, a0 = 1.2, a = 1, ω = 2.2, and g1 = 0.7, the root of the
nonlinear Equation (6) is t0 ≈ 0.0003209 with multiplicity two (see Figure 3).

Figure 3. The nonlinear Equation (6): (a) for α = 1.39627, a0 = 1.2, a = 1, ω = 2.2, g1 = 0.7, M(t0)

has root t0 ≈ 0.0003209 with multiplicity two; (b) for α = 1.39627, a0 = 1.15, a = 1, ω = 2.5, q1 = 0.6,
M(t0) has no roots.

Remark 1. If M(t0) = 0 and dM(t0)
dt0

̸= 0 for some t0 and some sets of parameters, then chaos
occurs. This Melnikov criterion for the appearance of the intersection between the perturbed and
unperturbed separatrixes leads to the following condition for chaotic behavior

g1 >

∣∣∣∣ P
Q

∣∣∣∣,
where

P = −1
6

πω2(6a + a0(4 + ω2))csch
(πω

2

)
Q =

4
3

α.

It is important to note that a large region of parameter space will satisfy this inequality.

3.2. The Case n = m = 3 and N = 2

Similarly to Proposition 1, we can prove the following proposition when n = m = 3
and N = 2.
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Proposition 2. If m = n = 3 and N = 2, then the Melnikov function M(t0) has a root which is a
solution of the nonlinear equation

M(t0) = − 1
6 e−2it0ωcsch(πω)

(
eit0ω(1 + e2it0ω)g1πω2(6a + a0(4 + ω2))cosh

(
πω
2
)

+4((1 + e4it0ω)g2πω2(3a + 2a0(1 + ω2))− 2αe2it0ωsinh(πω))
)
= 0.

(7)

3.3. The Case n = m = 3 and N = 3

The same approach leads to the following statement when n = m = 3 and N = 3.

Proposition 3. If m = n = 3 and N = 3, then the root of Melnikov function (4) can be obtained
via the nonlinear equation

M(t0) = − 1
24(1+2cosh(πω))

e−3it0ωcsch
(

πω
4
)
sech

(
πω
4
)
sech

(
πω
2
)
×

(
(1 + e2it0ω)πω2(6a

(
e2it0ω(2g1 − 9g3) + 9g3 + 9e4it0ωg3

)
+

+a0
(
9g3(4 + 9ω2) + 9e4it0ωg3(4 + 9ω2)+

+e2it0ω
(
2g1(4 + ω2)− 9g3(4 + 9ω2)

))
)
)
cosh

(
πω
2
)
+

+eit0ω
(
8(1 + e4it0ω)g2πω2(3a + 2a0(1 + ω2))cosh(πω)+

+eit0ω(1 + e2it0ω)g1πω2(6a + a0(4 + ω2))cosh
( 3πω

2
)
+

+4((1 + e4it0ω)g2πω2(3a + 2a0(1 + ω2))−

−2αe2it0ωsinh(πω)− 2αe2it0ωsinh(2πω)
))))

= 0.

(8)

For example, for α = 1.7, a0 = 0.8, a = 1, ω = 0.75, g1 = 0.7, g2 = 0.3, and g3 = 0.1,
the root of the nonlinear Equation (8) is t0 ≈ 0.144 (see Figure 4).

Figure 4. The nonlinear Equation (8): (a) for α = 1.7, a0 = 0.8, a = 1, ω = 0.75, g1 = 0.7, g2 = 0.3,
g3 = 0.1, M(t0) has root t0 ≈ 0.144; (b) for α = 1.95, a0 = 0.7, a = 1, ω = 0.6, g1 = 0.8, g2 = 0.4,
g3 = 0.15, M(t0) has no roots.

4. Open Problems

Problem 1. The reader can consider the corresponding approximation problem for arbitrarily
chosen n, m and N.

For n > 3, the study of the critical levels of the Hamiltonian H(x, y) is very complicated.
In this regard, we recommend the study of Gavrilov and Iliev [31]. Note that even with the
weakened choice n = 3 and m, N sufficiently large numbers, some difficulties (of a user
nature) are encountered when calculating the Melnikov integrals using known Computer
Algebraic Systems.
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Problem 2. The Melnikov function M(t0) can be evaluated via the method of residuals.

Modern computer algebraic systems for scientific calculations provide this opportunity
for the users. The upgrade of the Web application planned by us foresees the use of an
algorithm (hidden to the user) to define the limit of the type |Im(ω)| ≤ Const. For example,
see Proposition 3, we calculate M(t0) but with a pre-set limit by us: |Im(ω)| ≤ 2

3 .

5. Some Simulations

Here, we will focus on some interesting simulations.
Example 1 . For the given n = m = 3, N = 3, a = 1, α = 2.7, a0 = −1.2, b = b0 = 1,

ϵ = 0.01, ω = 2.2, g1 = 0.7, g2 = 0.8, and g3 = 0.9 the simulations on the system (2) for
x0 = 0.9; y0 = 0.7 are depicted in Figure 5.

Figure 5. (a) x-time series; (b) y-time series; (c) phase space; (Example 1).
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Example 2. For a given n = m = 5, N = 4, a = 1, α = 2.9, a0 = −3.35, a1 = −2.2,
b = b0 = b1 = 1, ϵ = 0.01, ω = 2.1, g1 = 0.9. g2 = 1.1, g3 = 1.6, and g4 = 2.5, the
simulations on the system (2) for x0 = 0.7; y0 = 0.6 are depicted in Figure 6.

Example 3. For a given n = m = 7, N = 4, a = 1, α = 2.9, a0 = −3.35,
a1 = −3.35, a2 = −1.5, b = 0.1, b0 = 0.3, b1 = 0.01, b2 = 0.2, ϵ = 0.01, ω = 2.1,
g1 = 0.9. g2 = 1.1, g3 = 1.6, and g4 = 2.5, the simulations on the system (2) for x0 = 0.7;
y0 = 0.6 are depicted in Figure 7.

Figure 6. (a) x-time series; (b) y-time series; (c) phase space; (Example 2).
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Figure 7. (a) x-time series; (b) y-time series; (c) phase space; (Example 3).

Problem 3. The task of researching the schematic implementation (design, fabrication, etc.) of the
considered differential model can be considered open.

Note that one of the possibilities for conducting qualitative experimental studies for
fabricated micro-electromechanical oscillator systems of type (2) and verifying their chaotic
behavior is the use of some classical methods from the field of approximation theory,
particularly from the direction approximations with constraints.

The characteristic restrictions for this class of oscillators, more precisely on the y-
component of the differential model solution, are visualized in Figure 8.

Let us present one more example. With the fixed values of the parameters from
Example 3, but with the special choice of the parameters gi of the form: gi = 0.9 − 0.2(i − 1);



Symmetry 2024, 16, 253 9 of 18

i = 1, 2, 3, 4 (or a similar uniform network), a relatively good hit in the restriction fork is
achieved (see Figure 9a).

Figure 8. Possible restrictions.

Figure 9. (a) y-time series (with restriction); (b) phase space; (Example 3).

5.1. Parameters Generated by a Probability Distribution

An alternative to control the mentioned chaotic behavior is to study this class of
oscillators under probability distributed parameters ai, i = 0, 1, . . . ,

[m
2
]
, bi, i = 0, 1, . . . ,

[ n
2
]
,

gj, j = 1, 2, . . . , N. Of course, many distributions can be considered, but we focus mainly
on two examples—binomial and truncated geometric. The first one is proposed since its
asymptotic behavior is the normal distribution, which may be the most used in all practical
fields. In addition, the truncated geometric distribution is suggested, because the original
geometric distribution is the unique discrete one which exhibits the property memoryless—a
necessary feature for many real-life fields. This way, the values of ai, bi, and gi can be
calculated through the probability mass functions of the mentioned above distributions—
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we denote them by pbin and pTG. If we assume that their support is {0, 1, 2, . . . , M}, then
they are

pbin(k) =
(

M
k

)
pk(1 − p)M−k, k ∈ {0, 1, 2, . . . , M}, 0 < p < 1

pTG(k) =
p(1 − p)k

1 − (1 − p)M+1 , k ∈ {0, 1, 2, . . . , M}, 0 < p < 1.
(9)

Thus, the necessary coefficients ai, bi, and gi can be set to be equal to the corresponding
values pbin(k) or pTG(k).

6. An Example with a Relatively Large Number of Terms: n = 5, m = 5

We suppose now that n = m = 5, and consider the model (2) for b < 0, b1 < 0, b0 > 0.
For ϵ = 0, the resulting Hamiltonian of the system (2) is

H(x, y) =
1
2

y2 − 1
2

bx2 +
1
4

b1x4 +
1
6

b0x6.

The potential energy

V(x) = −1
2

bx2 +
1
4

b1x4 +
1
6

b0x6

is shown in Figure 10. In [32], the authors study the resonant oscillation and the homoclinic
bifurcation in a ϕ6—Van der Pol oscillator. Following the ideas given in [32], we obtain
the Hamiltonian system for ϵ = 0 for our model (2) through a pair of heteroclinic orbits
defined as (Figure 11b)

xhet = ±
√

2x1sinh
( γ

2 t
)√

−ξ + cosh(γt)

yhet = ±
√

2γx1(1 − ξ)cosh
( γ

2 t
)

2(−ξ + cosh(γt))
3
2

and a pair of symmetric homoclinic trajectories connected each unstable point to itself
given by (Figure 11a)

xhom = ±
√

2x1cosh
( γ

2 t
)√

ξ + cosh(γt)
;

yhom = ±
√

2γx1(ξ − 1)sinh
( γ

2 t
)

2(ξ + cosh(γt))
3
2

,

where

δ = b2
1 + 4bb0

ρ =

√
b1 −

√
δ

b1 +
√

δ

ξ =
5 − 3ρ2

2ρ2 − 1

x1 =

√
− 1

2b0
(b1 +

√
δ)

γ = x2
1

√
2b0(ρ2 − 1).
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These results are presented in Figure 11. We refer to [32–35] for more details. Next, we
present a few more illustrative examples.

Figure 10. Potential energy V(x) for b = −1, b1 = −0.7, b0 = 0.1.

Figure 11. For b = −0.4, b1 = −0.7, b0 = 0.1 (a) homoclinic orbits; (b) heteroclinic orbits.

Example 4. For a given n = m = 5, N = 4, a = 1, α = 0.1, a1 = 0.1, a0 = 0.05, b = −0.4,
b0 = 0.1, b1 = −0.4, ϵ = 0.01, ω = 1.1, g1 = 0.9, g2 = 0.6, g3 = 0.3, and g4 = 0.01, the
simulations on system (2) for x0 = 0.6; y0 = 0.2 are depicted in Figure 12.

Example 5. With the fixed values of the parameters from Example 5, but with
the special choice of the parameters gi of the form: g1 = 1.7, g2 = 1.5, g3 = 1.3,
g4 = 1, and g5 = 0.7, the simulations on system (2) for x0 = 0.7; y0 = 0.2 are depicted in
Figure 13.

We have to note that the calculation of homoclinic and heteroclinic Melnikov integrals
as well as the corresponding criterion for the chaos occurrence in the dynamical system (for
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n = m = 5, N ≥ 4) are problematic tasks for users. For other problems of a computational
nature, see [35].

Figure 12. (a) x-time series; (b) y-time series; (c) phase space; (Example 4).
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Figure 13. (a) x-time series; (b) y-time series; (c) phase space; (Example 5).

7. Some Difficulties That the User Encounters When Using Computer Algebraic
Systems for Scientific Calculation

Here, we will focus only on those difficulties that the user encounters when calculating
homoclinic Melnikov integrals.

First of all, we will note that the user (who is not necessarily to be a professional
mathematician) can hardly find out what option to choose for the mandatory field in
the existing specialized module (for example, in CAS Mathematica) for calculating the
above-mentioned integrals. Usually, this requirement is related to the imposed constraint
(for the class of dynamical models) of type |Im(ω)| ≤ Const (see Section 4). The upgrade
of the Web application planned by us foresees the use of an algorithm (hidden for the user)
to define the limit of the above-mentioned constraint.
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In a number of cases, a comment message appears (after a long pause) of the type:
“No more memory available”, or ”SystemException[MemoryAllocationFailure, . . . ]”, which
is not particularly useful information for the nonprofessional user.

We note that when calculating the mentioned integrals for large values of the parame-
ters in the considered differential model, the following comment message often appears:
“A very large output was generated. Here is a simple of it:”. In this situation, the user’s
hands are tied again.

We will give one more example (our unpublished result) related to studying the
dynamics of an extended escape model of the form:

dx
dt

= y

dy
dt

= −x + x2 − ϵ

(
A

n

∑
p=1

y|y|p−1 +
N

∑
j=1

gj sin(jωt)

) (10)

where 0 ≤ ϵ < 1, A is the damping level, p ≥ 1 is the damping exponent, and N is the
integer. In particular, we consider the following model

dx
dt

= y

dy
dt

= −x + x2 − ϵ

(
Ay|y|p−1 +

N

∑
j=1

gj sin(jωt)

)
,

(11)

The following statement is valid.

Proposition 4. If p = 2 and N = 3, then the roots of Melnikov function M(t0) are given as
solutions of the equation

M(t0) = 1
60 e−3it0ω

(
32
√

2Ae3it0ω + 15
√

2e2it0ωg1ωPolyGamma[0, 1
4 − iω

4 ]

+15
√

2e4it0ωg1ωPolyGamma[0, 1
4 − iω

4 ]− 15
√

2e2it0ωg1ωPolyGamma[0, 3
4 − iω

4 ]

−15
√

2e4it0ωg1ωPolyGamma[0, 3
4 − iω

4 ] + 15
√

2e2it0ωg1ωPolyGamma[0, 1
4 + iω

4 ]

+15
√

2e4it0ωg1ωPolyGamma[0, 1
4 + iω

4 ]− 15
√

2e2it0ωg1ωPolyGamma[0, 3
4 + iω

4 ]

−15
√

2e4it0ωg1ωPolyGamma[0, 3
4 + iω

4 ] + 30
√

2eit0ωg2ωPolyGamma[0, 1
4 − iω

2 ]

+30
√

2e5it0ωg2ωPolyGamma[0, 1
4 − iω

2 ]− 30
√

2eit0ωg2ωPolyGamma[0, 3
4 − iω

2 ]

−30
√

2e5it0ωg2ωPolyGamma[0, 3
4 − iω

2 ] + 30
√

2eit0ωg2ωPolyGamma[0, 1
4 + iω

2 ]

+30
√

2e5it0ωg2ωPolyGamma[0, 1
4 + iω

2 ]− 30
√

2eit0ωg2ωPolyGamma[0, 3
4 + iω

2 ]

−30
√

2e5it0ωg2ωPolyGamma[0, 3
4 + iω

2 ] + 45
√

2g3ωPolyGamma[0, 1
4 − 3iω

4 ]

+45
√

2e6it0ωg3ωPolyGamma[0, 1
4 − 3iω

4 ]− 45
√

2g3ωPolyGamma[0, 3
4 − 3iω

4 ]

−45
√

2e6it0ωg3ωPolyGamma[0, 3
4 − 3iω

4 ] + 45
√

2g3ωPolyGamma[0, 1
4 + 3iω

4 ]

+45
√

2e6it0ωg3ωPolyGamma[0, 1
4 + 3iω

4 ]− 45
√

2g3ωPolyGamma[0, 3
4 + 3iω

4 ]

−45
√

2e6it0ωg3ωPolyGamma[0, 3
4 + 3iω

4 ]
)
= 0.

(12)

where PolyGamma[n, z] gives the nth derivative of the digamma function ψ(n)(z), i.e.,

ψ(0)(z) = Γ
′
(z)

Γ(z) and Γ(z) =
∫ ∞

0
tz−1e−t dt (see, for example, [36]).

For example, the equation M(t0) = 0 (for p = 2; N = 3; A = 1.01; ω = 0.35;g1 = 0.5;
g2 = 0.95; g3 = 0.8) is depicted in Figure 14.
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Figure 14. The equation M(t0) = 0 (Proposition 5.) for fixed parameters: (a) p = 2, N = 3, A = 1.01,
ω = 0.35, g1 = 0.5, g2 = 0.95, g3 = 0.8; (b) A = 0.1, ω = 0.9, g1 = 0.01, g2 = 0.02, g3 = 0.015, M(t0)

has no roots.

Of course, the user can make some simplifications in Equation (12) himself. But
naturally, the question arises as to why, for example, the existing HarmonicNumber[n]
operator (in the specified programming environment) was not used (automatically) to
obtain a compact record. The examples we can cite are many and varied. This necessitates
the professional upgrading of the existing specialized modules.

8. Concluding Remarks

We have investigated in this paper a generalized differential model for micro-
electromechanical oscillators in the light of Melnikov’s approach. The derived results
can be used to estimate the associated total energy potential of the considered differential
system. Nonstandard numerical methods connected to deriving the roots of the nonlinear
equation M(t0) = 0 can be found in [37–39]. In some cases (when generating chaos in
dynamical systems via x|x|), M(t) is of polynomial type. Numerical methods for solving
polynomial equations can be found in [40–44]. Some dynamic modules implemented in
CAS Wolfram Mathematica for investigating the dynamics of some new hypothetical oscil-
lators have been demonstrated. A cloud version that requires only a browser and internet
connection is offered for some of them. They will be an integral part of the above-mentioned
Web-based application for scientific computing. Let us note that the theoretical appara-
tus for studying the circuit implementation (design, fabricating, etc.) of the considered
differential model is extremely complex and requires a serious investigation before being
adapted for its possible inclusion in our planned Web platform. Other interesting problems
are posed in the article [45]. Questions related to the computer and hardware modeling of
periodically forced oscillators discussed in Section 6, especially for large values of N, can
be considered open.

In a number of cases, Melnikov’s function M(t) can be used to approximate rectangular-
type signals (see Figure 15) as well as to synthesize digital filters. Melnikov’s function M(t)
as a typical emitting diagram is depicted in Figure 16. For some details, see [46]. Such
reviews will also be the subject of our planned Web application.

Our planned platform implements the following: the Melnikov functions of higher
kind for analysis of homo/heteroclinic bifurcation in mechanical systems; bifurcation
diagrams; and chaos in a nonautonomous system. Some of these algorithms are based
on known classical and more recent research [6–13,20]. These modules are improving on
similar ones realized in computer algebraic systems designed for scientific calculations.

We fully understand that the construction of such an ambitious Web-based platform
for scientific computing can only be realized with the active participation of specialists
from various branches of scientific knowledge.

Future investigations. We have plans to explore modified escape oscillators of the form:
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dx
dt

= y

dy
dt

= −Poly(x)− ϵ

(
A

n

∑
p=1

y|y|p−1 +
N

∑
j=1

gj sin(jωt)

)
,

where 0 ≤ ϵ < 1, A is the damping level, p ≥ 1 is the damping exponent, N is the inte-
ger and Poly(x) = {P(x), H(x), T(x), U(x)} where P(x), H(x), T(x), U(x) are Legendre,
Hermite, Chebyshev (first kind) and Chebyshev (second kind) polynomials, respectively.

We envisage the study of such interesting dynamic models to be implemented in the
Web application cited above.

Figure 15. Melnikov function M(t) (thick) for α = 1.95, a0 = 0.76, a = 1, ω = 0.6, g1 = 0.8, g2 = 0.4,
g3 = 0.15 in interval [0,10] (see Proposition 3).

Figure 16. Melnikov function M(t) for A = 0.011, ω = 0.9, g1 = −0.01, g2 = −0.02, g3 = −0.03 in
interval [−5, 5] (see Proposition 4).
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