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Abstract: A new generalized definition of Mersenne numbers is proposed of the form
(
an − (a − 1)n),

called global generalized Mersenne numbers and noted GMa,n with base a and exponent n positive
integers. The properties are investigated for prime n and several theorems on Mersenne numbers
regarding their congruence properties are generalized and demonstrated. It is found that for any
a, (GMa,n − 1) is even and divisible by n, a and (a − 1) for any prime n > 2, and by (a(a − 1) + 1)
for any prime n > 5. The remaining factor is a function of triangular numbers of (a − 1), specific
for each prime n. Four theorems on Mersenne numbers are generalized and four new theorems
are demonstrated, showing first that GMa,n ≡ (1 or 7)(mod 12) depending on the congruence of
a(mod 4); second, that (GMa,n − 1) are divisible by 10 if n ≡ 1(mod 4) and, if n ≡ 3(mod 4),
GMa,n ≡ (1 or 7 or 9)(mod 10), depending on the congruence of a(mod 5); third, that all factors ci of
GMa,n are of the form (2n fi + 1) such that ci is either prime or the product of primes of the form
(2nj + 1), with fi, j natural integers; fourth, that for prime n > 2, all GMa,n are periodically congruent
to (±1 or ± 3)(mod 8) depending on the congruence of a(mod 8); and fifth, that the factors of a
composite GMa,n are of the form (2n fi + 1) with fi ≡ u(mod 4) with u = 0, 1, 2 or 3 depending on
the congruences of n(mod 4) and of a(mod 8). The potential use of generalized Mersenne primes in
cryptography is shortly addressed.
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1. Introduction

It is known that if a Mersenne number of the form Mn = (2n − 1) is prime, then
n is prime. The reciprocal is not true, as, for example, for n = 11, M11 is composite,
M11 = 2047 = 23 · 89 (for review, see, e.g., [1–3]). There are 51 Mersenne prime numbers
known [4]. The largest appears for n = 82589933 , M82589933 = (2 82589933 −1), and has
24862048 digits.

Due to their intensive use in cryptography, several generalizations of Mersenne num-
bers have been proposed, first by Crandall [5] of the form (2n − C) where C is a small odd
natural integer number; then by Solinas [6–8] of the form (2n + ϵ32m3 + ϵ22m2 + ϵ12m1 + ϵ0)
which generalized also Fermat numbers and where ϵi = −1, 0 or +1, mi and n are multiple
of s, the length of a computer word (e.g., s = 32); and finally, further generalized [9]
in the form

(
2n + ∑k

i=1[ϵi2mi ] + ϵ0

)
with n, k and mi being natural integers, 1 ≤ k < n,

1 ≤ mi < n and ϵi = −1, 0 or +1. Hoque and Saikia proposed [10,11] another definition
of generalized Mersenne numbers as Mp,q = (pq − p + 1), where p, q are positive integers.
Deng introduced [12] a different definition of generalized Mersenne primes, which is of the
form R(k, p) = (pk − 1)/(p − 1), where k, p and R(k, p) are prime numbers.
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We propose here another generalized definition of Mersenne numbers of the form
(an − (a − 1)n) with a and n natural integers. Although the name generalized Mersenne
number is already in use for pseudo-Mersenne numbers of the form proposed by Cran-
dall [5], Solinas [6–8], and others, we propose to call them global generalized Mersenne
numbers, or in short, generalized Mersenne (GMa,n) numbers (see also [13]), referring to
the fact that both the base a and the exponent n can take any integer values > 1.

This new generalization of Mersenne numbers is unrelated to previous ones as there
are major differences in the form, the bases a and the exponents n (with the notations of
this paper). The generalization of Crandall considers a fixed base 2 and a small odd natural
integer as the second term; the generalization of Solinas has also a fixed base 2 and a
multiple algebraic sum with only composite exponents n. The generalization of Hoque and
Saikia has a variable base p and a similar second term (p − 1), but without exponentiation.
The generalization proposed by Deng is even more different, with a prime base p and a
form as a polynomial in p of degree (k − 1).

In this paper, we explore the properties of global generalized Mersenne numbers, and
more specifically those GMa,n obtained for prime exponents n. Generalized Mersenne num-
bers are defined in Section 2.1. Section 2.2 gives several decompositions of GMa,n. Several
theorems on congruence of Mersenne numbers are generalized for GMa,n in Section 2.3.
Congruence properties of GMa,n and of their factors are investigated in Section 2.4. The
density of Mersenne primes and the potential use of generalized Mersenne primes in
cryptography are shortly discussed in Section 3. Conclusions are drawn in Section 4.

2. Materials and Methods
2.1. Global Generalized Mersenne Numbers

Mersenne numbers can be seen as the difference of the nth power of the first two
successive integers

Mn = (2n − 1) = (2n − 1n). (1)

By extension, global generalized Mersenne (GM) numbers, noted GMa,n, are defined
as the difference of the nth power of two successive integers

GMa,n = (an − (a − 1)n) (2)

and indexed by the base a and the exponent n, with a ≥ 2 and n ≥ 2 natural integers.
It is easy to show, like for Mersenne numbers, that generalized Mersenne numbers

can only be primes if n itself is prime. Indeed, if n is composite, n = rs with r and s
natural positive integers, then all GMa,n = (ars − (a − 1)rs) are binomial numbers, having
(ar − (a − 1)r) or (as − (a − 1)s) as integer factor. Therefore, in the rest of this paper, we
will consider only the cases of n being prime as we want to investigate the properties of
generalized Mersenne primes.

Table 1 shows the first 25 GMa,n numbers for the first five primes n = 2, 3, 5, 7, 11, with
GMa,n prime and composite numbers shown, respectively, in bold and italic characters.

For n = 2, (2) yields all the odd integers GMa,2 = 2a− 1. For n = 3, the first four GMa,3
numbers are prime for a = 2 to 5; further numbers are composite or prime without any
seemingly regular pattern. For n = 5 and 7 and a = 2, GM2,5 and GM2,7 are the Mersenne
primes M5 and M7. For 3 ≤ a ≤ 19, interesting patterns occur in the two GMa,5 and GMa,7
series. For a = 3 and 4, GMa,5 and GMa,7 are oppositely prime and composite. For a = 5,
GMa,5 and GMa,7 are both composites. For a = 6 to 12, GMa,5 and GMa,7 are oppositely
primes and composites again, with a series of composite GMa,5 and prime GMa,7 for a = 7
to 10. For a = 13 to 19, GMa,5 and GMa,7 are composites or primes for same values of a.
For larger values of a, regular patterns between GMa,5 and GMa,7 disappear and reappear
for certain ranges of values of a. For n = 11, the first four GMa,11 are composite (the fifth
Mersenne number M11 = 2047 is not prime). Among the first 25 GMa,11, the values for
a = 6, 8, 10 and 14 yield prime numbers.
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It is observed that for odd values of n with n ≡ 1(mod 4), the series of GMa,n numbers
generated for successive values of the base a have 1 as the last digit, while for odd values
of n with n ≡ 3(mod 4), the series of the last digit of GMa,n numbers are repetitions of the
sequence 1, 7, 9, 7, 1, respectively, for bases a ≡ k(mod 5), with k, respectively 1, 2, 3, 4, 0.
This is demonstrated further in Section 2.3.3.

Table 1. First 25 GMa,n numbers for n = 2, 3, 5, 7, 11.

a n = 2 n = 3 n = 5 n = 7 n = 11

2 3 7 31 127 2047

3 5 19 211 2059 175099

4 7 37 781 14197 4017157

5 9 61 2101 61741 44633821

6 11 91 4651 201811 313968931

7 13 127 9031 543607 1614529687

8 15 169 15961 1273609 6612607849

9 17 217 26281 2685817 22791125017

10 19 271 40951 5217031 68618940391

11 21 331 61051 9487171 185311670611

12 23 397 87781 16344637 457696700077

13 25 469 122461 26916709 1049152023349

14 27 547 166531 42664987 2257404775627

15 29 631 221551 65445871 4600190689711

16 31 721 289201 97576081 8942430185041

17 33 817 371281 141903217 16679710263217

18 35 919 469711 201881359 29996513771599

19 37 1027 586531 281651707 52221848818987

20 39 1141 723901 386128261 88309741101781

21 41 1261 884101 521088541 145477500542221

22 43 1387 1069531 693269347 234040800869107

23 45 1519 1282711 910467559 368491456502599

24 47 1657 1526281 1181645977 568871385255097

25 49 1801 1803001 1517044201 862504647846601

The cause of these patterns, or lack of it, in the distributions of composite and prime
generalized Mersenne numbers is tantalizing. The beginning of an answer is given in the
next sections.

2.2. Decomposition of Generalized Mersenne Numbers

It is known that all Mersenne numbers and their factors can be written in the form

Mn = 2nq + 1 (3)

with q and n positive natural integer and n prime (see e.g., [1,14,15]). All generalized
Mersenne numbers can also be written in a similar form as demonstrated in the follow-
ing theorem.
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Theorem 1. For a and n natural integers, n > 2, all generalized Mersenne numbers can be
written as

GMa,n = 2nQn(a) + 1 (4)

for all prime exponents n > 2 and for all bases a, and where Qn(a) is a polynomial in a of degree
n − 1.

Proof. Let a and n be natural integers, n prime, n > 2. Applying Fermat’s little theorem
to an and to (a − 1)n yields immediately that GMa,n ≡ 1(mod n) and, as all GMa,n (2) are
always odd as the difference of the powers of consecutive integers a and (a − 1) is always
odd, then GMa,n ≡ 1(mod 2n). Therefore, the polynomial Qn(a) takes integer values for
integral a. To find the expression of this polynomial and to show that its degree is n − 1, (2)
is developed as follows. Posing

dn
i =

(n
i
)

n
=

(n − 1)!
i!(n − i)!

(5)

with
(n

i
)

the binomial coefficient, writing △ for convenience for the triangular number of

(a − 1), △ = △(a − 1) = a(a−1)
2 , and noting that the exponent n is odd, developing (2)

yields successively

GMa,n =

(
an −

(
an +

n−1

∑
i=1

[
(−1)i(n

i )an−i
]
− 1

))
=

n−1

∑
i=1

[
(−1)i+1(n

i )an−i
]
+ 1

= n
n−1

∑
i=1

[
(−1)i+1dn

i an−i
]
+ 1 = n

n−1
2

∑
i=1

[
(−1)i+1dn

i

(
an−i − ai

)]
+ 1

= n

n−1
2

∑
i=1

[
(−1)i+1dn

i ai
(

an−2i − 1
)]

+ 1

= n

n−1
2

∑
i=1

[
(−1)i+1dn

i ai(a − 1)
n−1−2i

∑
j=0

[
an−1−2i−j

]]
+ 1

= na(a − 1)

n−1
2

∑
i=1

[
(−1)i+1dn

i

n−1−2i

∑
j=0

[
an−2−i−j

]]
+ 1

= 2n△
n−2

∑
i=1

[
S(1)

i an−2−i
]
+ 1 (6)

where, for 1 ≤ i ≤ n−1
2 ,

S(1)
i =

i

∑
j=1

[
(−1)j+1dn

j

]
(7)

and for n+1
2 ≤ i ≤ n − 2,

S(1)
i =

n−1

∑
j=i+1

[
(−1)jdn

j

]
= S(1)

n−1−i. (8)

Relation (6) shows that the positive integer function Qn(a) depends only on the variable a
and is a polynomial in a of degree n − 1.

Note that the polynomial Qn(a) does not have integer coefficients as the triangular
number △ = a(a−1)

2 is a factor in front of the polynomial. However, the polynomial Qn(a)
takes integer values for all integers a. Note also that dn

i (5) always take integer values, as
shown by Ram [16] (see also [17]).
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One can characterize further the polynomial Qn(a) for higher values of n in Theorem 2.

Theorem 2. For a and n natural integers, n > 2, all generalized Mersenne numbers can be
written as

GMa,n = 2n
(
△Q′

n(2△)
)
+ 1 (9)

for all prime exponents n ≥ 3, and as

GMa,n = 2n
(
△(2△+ 1)Q′′

n(2△)
)
+ 1 (10)

for all prime exponents n ≥ 5 and for all bases a, where Q′
n(2△) and Q′′

n(2∆) are polynomi-
als in the variable △(a − 1) only, the triangular number of (a − 1), and of degrees

( n−3
2
)

and( n−5
2
)
, respectively.

Proof. Let a, n, i, j, J, k be natural integers, with n prime, n > 2 and i < n.
We show first that GMa,n is a polynomial in △(a − 1).

GMa,n = an − (a − 1)n

=

(
1
2
+

(
a − 1

2

))n
+

(
1
2
−
(

a − 1
2

))n

= 2
(n−1)/2

∑
k=0

(n
2k)

(
1
2

)n−2k(
a − 1

2

)2k
(the odd terms cancel)

= 2
(n−1)/2

∑
k=0

(n
2k)

(
1
2

)n−2k(
a2 − a +

1
4

)k
(11)

which is clearly a polynomial in △ = a2−a
2 .

We show now that Q′
n(2△) and Q′′

n(2∆) are polynomials of degrees
( n−3

2
)

and
( n−5

2
)
,

respectively. Continuing from (6) the development of the polynomial (2) in (n−1)
2 succes-

sive iterations, one obtains an expression of GMa,n as a polynomial of degree (n−1)
2 in △ in

the form

GMa,n = 2n△

 n−3
2

∑
i=0

[
(2△)iS(i+1)

n−2(i+1)

]+ 1 = 2n△

 n−3
2

∑
i=0

(2△)i

(
n−i−2
i

)
i + 1

+ 1. (12)

The polynomial Qn(a) in (4) can be deduced as a function of △ from (12)

Qn(a) = △

 n−3
2

∑
i=0

[
(2△)iS(i+1)

n−2(i+1)

]. (13)

The polynomial Q′
n(2△) in (9) can be deduced from (13)

Q′
n(2△) =

n−1
2

∑
k=1

[
(2△)k−1S(k)

n−2k

]
=

n−1
2

∑
k=1

(2△)k−1

(
n−k−1
k−1

)
k

. (14)

For n ≥ 5, factoring the right side of (12) by (2△+ 1) yields GMa,n = 2n△(2△+ 1)Q′′
n(2△)

+ 1, with the polynomial Q′′
n(2△)

Q′′
n(2△) =

n−5
2

∑
i=0

(2△)i
n−5

2 −i

∑
j=0

[
(−1)

n−5
2 −i+jS(

n−1
2 −j)

2j+1

] (15)
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or inversely, by inverting the sums,

Q′′
n(2△) = (−1)

n−5
2

n−5
2

∑
j=0

(−1)jS(
n−1

2 −j)
2j+1

n−5
2 −j

∑
i=0

[
(−2△)i

] (16)

and where

S(
n−1

2 −j)
2j+1 =

(
n−1

2 +j
2j

)
(2j + 1)

. (17)

Therefore, the general form of all GMa,n can be written as in (9) and (10) for n prime,
respectively n ≥ 3 and n ≥ 5, where the polynomials Q′

n(2△) and Q′′
n(2△) of the variable

△(a − 1) have degrees, respectively
( n−3

2
)

and
( n−5

2
)
.

Note that polynomials Q′
n(2△) and Q′′

n(2△) take integer values as coefficients S(k)
n−2k =

(n−k−1
k−1 )

k in (12), and S(
n−1

2 −j)
2j+1 =

(
n−1

2 +j
2j

)
(2j+1) in (17) are always integers, as shown by Catalan [18]

(see also [17]).
Note furthermore that for large values of the exponent n, the calculation of GMa,n

becomes quickly intractable as nth powers become difficult to compute. The development
given in Theorem 2 for odd prime values of n gives an alternate method to calculate GMa,n

by reducing the degree of the polynomial (2) from n to
(

n−1
2

)
, and by using the new

variable △(a − 1), the triangular number of (a − 1), instead of the variable a.
For very large values of a and n, the value of a GMa,n is dominated by the first term in

the polynomial (12), and can therefore be approximated by

GMa,n ≈ nan−1 (18)

for a ≫ 1 and n prime ≫ 1, with the approximation growing better for increasingly larger
values of a and n, and even better for a ≫ n.

For the first six odd prime values of the exponent n, the polynomial expression of
GMa,n gives, with further factorization,

GMa,3 = 2 · 3△+ 1 (19)

GMa,5 = 2 · 5△(2△+ 1) + 1 (20)

GMa,7 = 2 · 7△(2△+ 1)2 + 1 (21)

GMa,11 = 2 · 11△(2△+ 1)[2△(2△+ 1)(2△+ 3) + 1] + 1 (22)

GMa,13 = 2 · 13△(2△+ 1)2{(2△+ 1)[(2△+ 1)(2△+ 3)− 4] + 2}+ 1 (23)

GMa,17 = 2 · 17△(2△+ 1){(2△+ 1)[(2△+ 1)((2△+ 1){(2△+ 1) ] [(2△+ 1)(2△+ 6)− 9] + 1}+ 6)− 4] + 1}+ 1 (24)

etc., where, to recall, △ is written for △(a − 1) and where several factorizations are possible
for n ≥ 13. As a further example, Table 2 show the first ten values of GMa,n for prime
exponents n from 3 to 11, with the decomposition (19)–(22) in integer factors of (GMa,n − 1).
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Table 2. Decomposition of generalized Mersenne numbers GMa,n for 2 ≤ a ≤ 10.

GMa,3 = 2 · 3 · △+ 1 Decomposition of (GMa,3 − 1)

7 2 · 3 · 1 + 1 prime

19 2 · 3 · 3 + 1 prime

37 2 · 3 · 6 + 1 prime

61 2 · 3 · 10 + 1 prime

91 2 · 3 · 15 + 1 7 · 13 = (2 · 3 + 1)
(
22 · 3 + 1

)
127 2 · 3 · 21 + 1 prime

169 2 · 3 · 28 + 1 132 =
(
22 · 3 + 1

)2

217 2 · 3 · 36 + 1 7 · 31 = (2 · 3 + 1)(2 · 3 · 5 + 1)

271 2 · 3 · 45 + 1 prime

GMa,5 2 · 5 · △ · (2△+ 1) + 1 Decomposition of (GMa,5 − 1)

31 2 · 5 · 1 · 3 + 1 prime

211 2 · 5 · 3 · 7 + 1 prime

781 2 · 5 · 6 · 13 + 1 11 · 71 = (2 · 5 + 1)(2 · 5 · 7 + 1)

2101 2 · 5 · 10 · 21 + 1 11 · 191 = (2 · 5 + 1)(2 · 5 · 19 + 1)

4651 2 · 5 · 15 · 31 + 1 prime

9031 2 · 5 · 21 · 43 + 1 11 · 821 = (2 · 5 + 1)
(
22 · 5 · 41 + 1

)
15961 2 · 5 · 28 · 57 + 1 11 · 1451 = (2 · 5 + 1)

(
2 · 52 · 29 + 1

)
26281 2 · 5 · 36 · 73 + 1 41 · 641 =

(
23 · 5 + 1

)(
27 · 5 + 1

)
40951 2 · 5 · 45 · 91 + 1 31 · 1321 = (2 · 5 · 3 + 1)

(
23 · 5 · 3 · 11 + 1

)
GMa,7 2 · 7 · △ · (2△+ 1)2 + 1 Decomposition of (GMa,7 − 1)

127 2 · 7 · 1 · 32 + 1 prime

2059 2 · 7 · 3 · 72 + 1 29 · 71 =
(
22 · 7 + 1

)
(2 · 7 · 5 + 1)

14197 2 · 7 · 6 · 132 + 1 prime

61741 2 · 7 · 10 · 212 + 1 29 · 2129 =
(
22 · 7 + 1

)(
24 · 7 ∗ 19 + 1

)
201811 2 · 7 · 15 · 312 + 1 29 · 6959 =

(
22 · 7 + 1

)(
2 · 72 ∗ 71 + 1

)
543607 2 · 7 · 21 · 432 + 1 prime

1273609 2 · 7 · 28 · 572 + 1 prime

2685817 2 · 7 · 36 · 732 + 1 prime

5217031 2 · 7 · 45 · 912 + 1 prime

GMa,11 2 · 11△(2△+ 1)[2△(2△+ 1)(2△+ 3) + 1] + 1

2047 2 · 11 · 1 · 3[2 · 1 · 3 · 5 + 1] + 1

175099 2 · 11 · 3 · 7[2 · 3 · 7 · 9 + 1] + 1

4017157 2 · 11 · 6 · 13[2 · 6 · 13 · 15 + 1] + 1

44633821 2 · 11 · 10 · 21[2 · 10 · 21 · 23 + 1] + 1

313968931 2 · 11 · 15 · 31[2 · 15 · 31 · 33 + 1] + 1

1614529687 2 · 11 · 21 · 43[2 · 21 · 43 · 45 + 1] + 1

6612607849 2 · 11 · 28 · 57[2 · 28 · 57 · 59 + 1] + 1

22791125017 2 · 11 · 36 · 73[2 · 36 · 73 · 75 + 1] + 1

68618940391 2 · 11 · 45 · 91[2 · 45 · 91 · 93 + 1] + 1

GMa,11 Decomposition of (GMa,11 − 1)

2047 23 · 89 = (2 · 11 + 1)
(
23 · 11 + 1

)
175099 232 · 331 = (2 · 11 + 1)2(2 · 11 · 3 · 5 + 1)

4017157 23 · 174659 = (2 · 11 + 1)(2 · 11 · 17 · 467 + 1)

44633821 6359 · 7019 = (2 · 11 · 172 + 1)(2 · 112 · 29 + 1)

313968931 prime

1614529687 89 · 18140783 = (23 · 11 + 1)(2 · 11 · 19 · 43399 + 1)

6612607849 prime

22791125017 23 · 990918479 = (2 · 11 + 1)(2 · 11 · 45041749 + 1)

68618940391 prime
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2.3. Congruence Properties of Generalized Mersenne Numbers
2.3.1. Corollary on Congruence of Generalized Mersenne Numbers

We start first with a corollary of Theorem 2.

Corollary 1. For all natural integer bases a ≥ 2, all generalized Mersenne numbers are such that

GMa,n ≡ 1(mod 2n) (25)

GMa,n ≡ 1(mod a) (26)

GMa,n ≡ 1(mod (a − 1)) (27)

for all natural integer prime exponents n ≥ 3 and

GMa,n ≡ 1(mod (a(a − 1) + 1)) (28)

GMa,n ≡ 1
(

mod
(

a(a − 1)
(

a2 − a + 1
)))

(29)

for all natural integer prime exponents n ≥ 5.

Proof. Let a and n be natural integers with a ≥ 2 and n prime, n ≥ 3. Relation (25)
was already used in the proof of Theorem 1. Relations (26) and (27) are deduced directly
from (9); (28) and (29) are deduced from (10) as polynomials Q′

n(2△) and Q′′
n(2△) take

integer values.

Note that for n = 2, GMa,2 ≡ ±1(mod 4) obviously as GMa,2 are all odd natural integers.

2.3.2. Generalization of a First Theorem on Congruence of Mersenne Numbers

Several theorems are known on the congruence of Mersenne numbers and their factors
(see e.g., [1,14]). These can easily be extended to generalized Mersenne numbers.

With notations of this paper, a first theorem on Mersenne numbers states that if n is
odd, n ≥ 3, then Mn ≡ 7(mod 12). This theorem is generalized as follows:

Theorem 3. For all natural integer bases a ≥ 2, and for all natural integer prime exponents n ≥ 3,
all generalized Mersenne numbers are such that

GMa,n ≡ 1(mod 6) (30)

and more precisely,

GMa,n ≡ 1(mod 12) if a ≡ 0(mod 4) or 1(mod 4) (31)

GMa,n ≡ 7(mod 12) if a ≡ 2(mod 4) or 3(mod 4). (32)

Proof. Let a, n, r, α, β be natural integers with a ≥ 2, 0 ≤ α ≤ 2, 0 ≤ β ≤ 3, and n prime,
n ≥ 3.

(i) Writing a ≡ α(mod 3) and taking the congruence modulo 3 of GMa,n (2) yields
GMa,n ≡ (αn − (α − 1)n)(mod 3) ≡ 1(mod 3) for α = 0 to 2. As all GMa,n are odd, all
GMa,n must be congruent to 1 modulo 6.

(ii) Writing a ≡ β(mod 4) and taking the congruence modulo 4 of GMa,n (2) yields
GMa,n ≡ (αn − (α − 1)n)(mod 4) ≡ 1(mod 4) for α = 0 and 1, and GMa,n ≡ 3(mod 4) for
α = 2 and 3. As all GMa,n are odd and congruent to 1 modulo 6, it yields (31) and (32).

2.3.3. Theorem on Congruence of Generalized Mersenne Numbers

A new theorem on generalized Mersenne numbers is proposed as follows.
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Theorem 4. For all natural integer bases a ≥ 2, and for natural integer prime exponents n ≥ 3,
all generalized Mersenne numbers are such that if n ≡ 1(mod 4),

GMa,n ≡ 1(mod 10) (33)

and, if n ≡ 3(mod 4),

GMa,n ≡ 1(mod 10) if a ≡ 0(mod 5) or 1(mod 5) (34)

GMa,n ≡ 7(mod 10) if a ≡ 2(mod 5) or 4(mod 5) (35)

GMa,n ≡ 9(mod 10) if a ≡ 3(mod 5). (36)

Proof. Let a, n, r, α be natural integers with a ≥ 2, 0 ≤ α ≤ 4, and n prime, n ≥ 3.
Writing a ≡ α(mod 5) and taking the congruence modulo 5 of GMa,n (2) yields GMa,n ≡
(αn − (α − 1)n)(mod 5).

(i) For the first case n ≡ 1(mod 4) and writing n = 4r + 1, (33) is immediate as
GMa,n ≡

(
α4r+1 − (α − 1)4r+1

)
(mod 5) ≡ 1(mod 5) for the five cases of α = 0 to 4. As all

GMa,nare odd, all GMa,(4r+1) must be congruent to 1 modulo 10.
(ii) For the second case n ≡ 3(mod 4) and writing n = 4r + 3, one has GMa,n ≡(

α4r+3 − (α − 1)4r+3
)
(mod 5), yielding GMa,(4r+3) ≡ 1(mod 5) for α = 0 and 1,

GMa,(4r+3) ≡ 2(mod 5) for α = 2 and 4, and GMa,(4r+3) ≡ −1(mod 5) for α = 3. As
all GMa,nare odd, it follows that (34) to (36) hold.

2.4. Congruence Properties of Generalized Mersenne Numbers and Their Factors
2.4.1. Generalization of a Second Theorem on Mersenne Numbers

For generalized Mersenne composites, let us note generally their positive natural
integer factors ci such as

GMa,n = ce1
1 ce2

2 ...cei
i ... (37)

where ei are positive natural integer exponents. A theorem on factors of Mersenne numbers
states, with the notations in this paper, that if n is an odd prime and if ci divides Mn, then
ci ≡ 1(mod n) and ci ≡ ±1(mod 8).

The first part is not only obviously true for all Mn by (3), but can be generalized
to ci ≡ 1(mod 2n). The second part is also obviously correct for factors ci of Mersenne
numbers Mn, noting that first, all Mn ≡ −1(mod 8) for n ≥ 3; second, at least one of the
factors ci of the Mersenne number Mn = GM2,n must be congruent to −1 modulo 8; and
third, that the sum of exponents ei of factors ci which are congruent to the −1 modulo 8
must be odd. This is, however, no longer correct for all GMa,n with a > 2.

This theorem can be generalized in two steps. The first part is generalized in the
following theorem.

Theorem 5. For all natural integer bases a ≥ 2, if n is an odd prime and if a positive natural
integer ci divides GMa,n, then

ci ≡ 1(mod 2n). (38)

Proof. Let a, b, n, m, i, k, ci, fi, f ′i , λi, ri, p, q be natural integers with a ≥ 2, n prime, n ≥ 3,
m > 1, k > 0, ci ≥ 1, p prime, q > 0 and 1 ≤ i ≤ q.

Proving this theorem is equivalent to show that all prime integer factors of GMa,n are
of the form

ci = 2n fi + 1. (39)
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Let us assume first the contrary, i.e., that the prime integer factors ci of GMa,n are
not of the form (39). For q factors ci (the case where their exponents ei ̸= 1 can be treated
similarly), one has from (9) and (25)

GMa,n = c1c2. . . cq = 2nQn(a) + 1 ≡ 1(mod 2n). (40)

Let us then write generally
ci = 2n f ′i + λi (41)

with the condition that the product

λ1λ2. . . λq ≡ 1(mod 2n) (42)

i.e., that all λi is such that λi ≡ 1(mod 2n) or that an even number of λi are such that
λi ≡ −1(mod 2n), which means that there exist natural integers ri such as λi = 2nri + 1 or
λi = 2nri − 1. Then, one can write the factors ci as

ci = 2n
(

f ′i + ri
)
+ 1 or ci = 2n

(
f ′i + ri

)
− 1. (43)

Let us now assume that an even number of prime factors are of the form ci = 2n fi − 1.
But this is not possible, as it was proven (see [14], p. 267, Nr 2) that all prime factors
of (am − bm), with a > b and m > 1, are of the form (mk + 1). This is simply shown
considering that if a prime p divides (am − bm), and if p does not divide a and b, then by
Fermat’s theorem, p divides

(
ap−1 − 1

)
and

(
bp−1 − 1

)
and then also

(
ap−1 − bp−1) and

therefore m divides (p − 1), i.e., p = mk + 1.
For b = (a − 1), m = n prime and k = 2 fi, it is seen directly that n divides (ci − 1)

if ci is of the form (39). Therefore, all prime integer factors of GMa,n are of the form (39).
Furthermore, composite factors of GMa,n are also obviously of the form (39), being the
product of prime factors of the form (39).

Note that for n = 2, all factors ci of GMa,2 are obviously such that ci ≡ ±1(mod 4).
The second part of the generalization of the theorem on factors of Mersenne numbers

needs to specify the congruence of GMa,n modulo 8, as in the following theorem.

Theorem 6. For all natural integer bases a ≥ 2 and all prime integer exponents n ≥ 3, all GMa,n
are such that

GMa,n ≡ 1(mod 8) if a ≡ 0(mod 8) or 1(mod 8) (44)

GMa,n ≡ −1(mod 8) if a ≡ −1(mod 8) or 2(mod 8) (45)

GMa,n ≡ 3(mod 8) if a ≡ −2(mod 8) or 3(mod 8) (46)

GMa,n ≡ −3(mod 8) if a ≡ −3(mod 8) or 4(mod 8) (47)

and the factors ci of GMa,n are such that ci ≡ ±1(mod 8) or ±3(mod 8) such that their product
satisfy above relations.

Proof. Let a, n, α be natural integers with a ≥ 2, n prime, n ≥ 3 and 0 ≤ α < 8. The proof
of the first part of this theorem is immediate. Consider a ≡ α(mod 8); one has for α even,
an ≡ 0(mod 8) and for α odd, an ≡ α(mod 8). It yields directly relations (44) to (47). The
second part of the theorem on the congruence of factors ci of GMa,n is then obvious.

The factorization of the first composites GMa,n is indicated in Table 2 for n primes,
3 ≤ n ≤ 11. It is seen that all the factors ci of composites GMa,n are of the form (39) and
are either GMa,n ≡ ±1(mod 8) or ±3(mod 8) such that their products satisfy relations (44)
to (47).
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Composite GMa,n can be written generally in function of their prime integer factors,
from (37) and (39),

GMa,n = ce1
1 ce2

2 ...cei
i ... = (2n f1 + 1)e1(2n f2 + 1)e2 ...(2n fi + 1)ei ... (48)

In the case of more than two prime integer factors and for exponents ei ̸= 1, a
composite GMa,n can also be written in all generality as the product of two factors not
necessarily primes and with their exponents ei = 1, as any combination of products of
factors ci of the form (39) will be of the same form (39):

GMa,n = c1c2 = (2n f1 + 1)(2n f2 + 1). (49)

Therefore, a corollary of the above Theorem 7 is as follows.

Corollary 2. For all natural integer bases a ≥ 2 and all prime integer exponents n ≥ 3, a natural
integer ci = (2n fi + 1) divides a GMa,n if and only if the integer function Qn(a) associated to the
GMa,n is such that

Qn(a) ≡ fi(mod ci) (50)

for all factors ci and where fi are natural integers.

Proof. Let a, n, r be natural integers with a ≥ 2, n prime, n ≥ 3.
Relation (50) obviously holds whether GMa,n is prime or composite. For two factors

like in (49), one has

GMa,n = 2nQn(a) + 1 = (2n f1 + 1)(2n f2 + 1) = 2n( f2c1 + f1) + 1

yielding immediately (50). If GMa,n is prime, then f2 = 0 and f1 = Qn(a).
Conversely, if the integer function Qn(a) is such that (50) holds with c1 = (2n f1 + 1),

then it exists an integer r such as

Qn(a) = rc1 + f1 (51)

yielding

2nQn(a) + 1 = 2nrc1 + 2n f1 + 1 = (2n f1 + 1)(2nr + 1) = c1c2 = GMa,n (52)

meaning that c1 divides GMa,n for an appropriate choice of the integer r, which is here f2
in the second factor c2 of GMa,n. This relation (50) is true whether the factors c1 and c2 are
composites or primes of the form (39).

From Table 2, it is seen that the integers f1, f2, ..., fi, ... in (48) for a particular prime
exponent n are increasing from one composite number to the next for increasing values of
the base a, and can be found in function of the integer functions Qn(a).

2.4.2. Generalization of a Third Theorem on Mersenne Numbers (Euler Theorem)

Another theorem on Mersenne numbers was stated by Euler in 1750. With the nota-
tions in this paper, it reads as follows: if n is prime, n ≡ 3(mod 4), then (2n + 1) divides Mn
if and only if (2n + 1) is a prime; in this case, if n > 3, then Mn is composite. This means
that for n ≡ 3(mod 4) and prime, Mn = GM2,n has the factor c1 = (2n f1 + 1) with f1 = 1,
and that c1 in this case is prime. This is exactly the case for n = 3 and M3 = GM2,3 = 7;
n = 11 and M11 = GM2,11 = 2047 = 23 · 89; and so on. This can be generalized for all
GMa,n for odd primes n, irrespective of n being congruent to 3(mod 4) or not, in a following
theorem, showing that a natural integer ci divides GMa,n if and only if ci = (2n fi + 1) is
prime or a composite formed by the product of primes of the form (2nj + 1) for some
natural integer values of fi and with j natural integers.
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It is important to realize that not all integer values of fi will do, only those that
render the factor ci prime or composite of the form (2n fi + 1) will be acceptable. All other
integer values of fi are excluded and are called excluded values. The following Lemma is
demonstrated, giving the form that factors ci cannot take and the form of excluded values
of fi.

Lemma 1. For all natural integer bases a ≥ 2 and all prime integer exponents n ≥ 3, a natural
integer ci = (2n fi + 1) divides a GMa,n if ci and fi are different from excluded values, i.e., different,
respectively, from either (i)

ci ̸≡ 0(mod (2nk + 1)) and fi ̸≡ k(mod (2nk + 1)) (53)

for positive natural integers k = 2nuv + uε + vδ + r, with u, v and r positive natural integers
such as uv ̸= 0, ε and δ integers ̸= 0 and ̸= 1 and such as εδ ≡ 1(mod 2n) = 2nr + 1; or (ii)

ci ̸≡ 0(mod (2nk − 1)) and fi ̸≡ −k(mod (2nk − 1)) (54)

for positive natural integers k; or (iii)

ci ̸≡ 0(mod (2nk ± t)) and fi ̸≡ (α + kβ)(mod (2nk + γ)) (55)

for natural integers k, for odd natural integers t such that 1 < t < n, for integers α, β, γ, with β
and γ odd integers and 2nα + 1 = βγ.

Proof. Let a, n, i, j, k, ci, fi, s, u, v, x, y be natural integers with a ≥ 2, n prime, n ≥ 3, and
α, β, γ, δ, ε, r integers and δ ̸= 0 and ε ̸= 0.

From Theorem 6, factors ci of a GMa,n are

ci = 2n fi + 1 ≡ 1(mod 2n). (56)

Let us assume in all generality that fi can be written as

fi ≡ x(mod y) (57)

for yet unknown natural integers x and y. For a given prime n, for fi to be excluded values,
(56) must not be verified for all bases a. Among all possible values of fi, it will be the case if
in (56)

ci = 2n fi + 1 ≡ 0(mod y) (58)

meaning that
2nx + 1 ≡ 0(mod y) (59)

is a multiple of y. Writing in all generality x = (α + kβ) and y = (2nk + γ), one has
from (57)

fi ≡ (α + kβ)(mod (2nk + γ)) = (2nk + γ)s + (α + kβ) (60)

with α, β, γ integers and k and s natural integers. Replacing in (59) yields

2n(α + kβ) + 1 ≡ 0(mod (2nk + γ)) (61)

or

β

((
2nα + 1

β

)
+ 2nk

)
≡ 0(mod (2nk + γ)) (62)

which gives the condition
2nα + 1 = βγ (63)
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where β and γ are obviously odd integers, either positive and/or negative depending on
the sign of α. The factors ci read then from (58) and (60) with (63)

ci = 2n((2nk + γ)s + (α + kβ)) + 1 = (2nk + γ)(2ns + β) (64)

All fi of the form (60) are excluded values and all ci of the form (64) cannot be factors
of GMa,n for every integer α, β, γ complying with (63) and for all natural integers k, except
for the following specific cases.

(i) First, for the triplet (α, β, γ) = (0, 1, 1) verifying (63), fi (60) and factors ci (64)
read, respectively,

fi ≡ k(mod (2nk + 1)) = (2nk + 1)s + k (65)

ci = 2n((2nk + 1)s + k) + 1 = (2nk + 1)(2ns + 1). (66)

If for certain positive integers k, (2nk + 1) is prime, then by Theorem 6, ci (66) are
factors of a GMa,n and fi (65) are not excluded values.

If for other positive integers k, (2nk + 1) is composite, it can be written as

(2nk + 1) = (2nu + δ)(2nv + ε) (67)

with the obvious condition
δε ≡ 1(mod 2n) = 2nr + 1 (68)

where u and v are natural integers with u and v not simultaneously null; δ, ε and r are
integers with δ ̸= 0 and ε ̸= 0; and

k = 2nuv + uε + vδ + r. (69)

As k must be a natural integer, only the values of δ and ε complying with (68) must be
considered. For δ = ε = 1 (i.e., r = 0), k = 2nuv + u + v and the factors of (2nk + 1) are

(2nk + 1) = (2nu + 1)(2nv + 1) (70)

showing that fi (65) with (70) are not excluded values, similarly to the above case of
(2nk + 1) being prime.

For all the other cases of values of k in (69) with δ and ε integers ̸= 0 and ̸= 1, and
complying with (68), the factors ci from (66) read

ci = (2ns + 1)(2nu + δ)(2nv + ϵ) (71)

which, by Theorem 6, cannot be factors of a GMa,n and the corresponding fi (65) are
excluded values. For example, with δ = ε = −1 (i.e., r = 0), the factors of (2nk + 1) are
(2nu − 1)(2nv − 1), showing from (66) that ci = (2ns + 1)(2nu − 1)(2nv − 1) cannot be
factors of a GMa,n and that the corresponding fi are excluded values.

(ii) Second, for the triplet (α, β, γ) = (0,−1,−1) verifying (63), fi (60) and factors ci
(64) read, respectively,

fi ≡ −k(mod (2nk − 1)) = (2nk − 1)s − k (72)

ci = 2n((2nk − 1)s − k) + 1 = (2nk − 1)(2ns − 1) (73)

showing again by Theorem 6 that ci (73) cannot be factors of a GMa,n and that fi (72) are
excluded values for all positive integers k.

(iii) Third, for the general case where α ̸= 0, from (63), both β and γ are obviously ̸= 1,
and therefore, again by Theorem 6, ci (64) cannot be factors of a GMa,n and all fi (60) are
excluded values for all natural integers k.

Summarizing, the excluded values of fi and the excluded forms of factors ci are,
respectively, (53) for positive integers k (69) with δ and ε integers ̸= 0 and ̸= 1; (54) for all
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positive integers k; and (55) for all integers α, all odd integers β and γ complying with (63),
all natural integers k and all t odd integers such that 1 < t < n, as, from the form of factors
ci (64),

t ≡ β(mod 2nk) or t ≡ γ(mod 2nk). (74)

The excluded forms of factors ci (55) are always composites and the product of at least
two factors, which are multiple of integers of the form (2nj − 1) and/or (2nj ± t) with j
natural integers and at least once j = k.

We can now prove Theorem 7 as follows.

Theorem 7. For all natural integer bases a ≥ 2 and all prime integer exponents n ≥ 3, a natural
integer ci divides GMa,n if and only if, for some natural integer values of fi, ci = (2n fi + 1) is
prime or a composite formed by the product of primes of the form (2nj + 1), with i and j natural
integers and ci and fi different from excluded values given in (53) to (55).

Proof. Let a, n, i, j, k, ci, fi be natural integers with a ≥ 2, n prime, n ≥ 3.
The first part of the demonstration is quite straightforward as from Theorem 6 above,

all natural integer prime and composite factors of GMa,n are of the form (39).
Conversely, if a natural integer c1 = (2n f1 + 1) is prime or a composite formed by

the product of primes of the form (2nj + 1), then, for a suitable choice of an integer f2, a
natural integer function Φn can be found and written as

Φn = f2(2n f1 + 1) + f1. (75)

The suitable choice of the integer f2 means here that it must not be an excluded value
specifically for the prime exponent n as shown in above Lemma, i.e., that c2 = (2n f2 + 1)
must itself be either a prime or a composite formed by the product of primes of the form
(2nj + 1). Relation (75) then yields

Φn ≡ f1(mod (2n f1 + 1)) (76)

and by Corollary 2 above, c1 = (2n f1 + 1) divides GMa,n = (2nΦn + 1), i.e., there is a
base a for which the polynomial Qn(a) in (4) specific for each prime exponent n is equal to
Φn (75).

We emphasize again that not all integer values of f1 and f2 will do, and that the integer
f2 must be chosen suitably, such that the factors c1 = (2n f1 + 1) and c2 = (2n f2 + 1) are
prime or composite formed by the product of primes of the form (2nj + 1). All other values
of f1 and f2 are excluded values, as shown in Lemma 1.

2.4.3. Theorem on Congruence of Coefficients f1 and f2

The form of the integers f1 and f2 in the factors c1 and c2 of composite GMa,n can
be determined in function of the exponent n, the base a and the factors c1 and c2 by the
following theorem.

Theorem 8. If a composite GMa,n has c1 = (2n f1 + 1) and c2 = (2n f2 + 1) as two factors, then
f1 ≡ u(mod 4) and f2 ≡ v(mod 4) with u and v = 0, 1, 2 or 3, depending on the congruence of
n(mod 4) and on the congruence of a(mod 8), as shown in Table 3.
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Table 3. Congruence of natural integers f1 and f2 (mod 4).

if a ≡ 0 or if a ≡ 2 or if a ≡ 3 or if a ≡ 4 or
1(mod 8), 7(mod 8), 6(mod 8), 5(mod 8),

c1 ≡ ... f1 ≡ ... f2 ≡ ... f2 ≡ ... f2 ≡ ... f2 ≡ ...
(mod 8) (mod 4) (mod 4) (mod 4) (mod 4) (mod 4)

For n ≡ 1(mod 4)
1 0 0 3 1 2

3 1 1 2 0 3

5 2 2 1 3 0

7 3 3 0 2 1

For n ≡ 3(mod 4)
1 0 0 1 3 2

3 3 3 2 0 1

5 2 2 3 1 0

7 1 1 0 2 3

The demonstration of this theorem is based on the above Theorems 6 and 7.

Proof. Let a, n, i, j, ci, fi, u, v be natural integers with a ≥ 2, n prime, n ≥ 3 and α, β, γ
integers. Let c1 and c2 be the two factors of GMa,n = c1c2. From Theorem 7, c1 and c2
are primes of the form (2n f1 + 1) and/or composites of the form of a product of integers
(2nj + 1). From Theorem 6, one has

GMa,n ≡ α(mod 8) (77)

with c1 ≡ β(mod 8) and c2 ≡ γ(mod 8), where α, β and γ take values either ±1 or ±3,
with the obvious condition that

α ≡ βγ(mod 8) (78)

which then yields by Theorem 6

β = γ for α = +1 i.e., for a ≡ 0(mod 8) or 1(mod 8) (79)

β = −γ for α = −1 i.e., for a ≡ 2(mod 8) or 7(mod 8) (80)

β = −γ + 4 for α = +3 i.e., for a ≡ 3(mod 8) or 6(mod 8) (81)

β = γ − 4 for α = −3 i.e., for a ≡ 4(mod 8) or 5(mod 8). (82)

For
c1 = 2n f1 + 1 ≡ β(mod 8) (83)

one has for

n ≡ 1(mod 4) : f1 ≡
(

β − 1
2

)
(mod 4) ≡ u(mod 4) (84)

n ≡ 3(mod 4) : f1 ≡
(

1 − β

2

)
(mod 4) ≡ u(mod 4) (85)

and f2 ≡ v(mod 4) is found by replacing in (84) and (85) β in function of γ from (79) to
(82) depending on the prime exponent n and the base a. Hence, the congruences given in
Table 3 hold.

Note that for Mersenne numbers (i.e., for a = 2 in Table 3), c1 ≡ 1(mod 8) or 7(mod 8),
yielding that f1 and f2 are congruent to 0(mod 4) and/or 3(mod 4) for n ≡ 1(mod 4), and
f1 and f2 are congruent to 0(mod 4) and/or 1(mod 4) for n ≡ 3(mod 4).

3. Results and Discussion

Distributions of primes and composites in generalized Mersenne numbers are further
investigated in companion papers. However, generalized Mersenne numbers as presented
in this paper are useful to approach the problem of why most of the Mersenne numbers
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with prime exponents are not themselves primes. It was mentioned in the introduction
that composite and prime generalized Mersenne numbers appear apparently at random
for different values of the exponent n and the base a. It is seen also that prime generalized
Mersenne numbers can be found for larger values of the base a for exponents n that yield
Mersenne composites, like, e.g., for n = 11, 23, 29, . . .. It appears that some exponents n
are less “productive” than others to yield generalized Mersenne primes. The reason for
this is still unknown, but it shows that Mersenne numbers that are composite for prime
exponents are nothing exceptional and are simply generalized Mersenne composites for
a = 2. Sequences of generalized Mersenne numbers, primes, bases, and exponents can be
found online at the Online Encyclopedia of Integer Sequences (OEIS) [19]; see Table 4.

Table 4. OEIS references of sequences of generalized Mersenne numbers, primes, bases and exponents
for k integers.

n GMa,n GMa,n Primes
Numbers Primes a # for a ≤ 10k # < 10k 10k−1 < # < 10k

2 A005408 A000040 – – A006880 A006879
3 A003215 A002407 A002504 A221794 A113478 A221792
5 A022521 A121616 A121617 A221849 A221846 A221847
7 A022523 A121618 A121619 A221980 A221977 A221978
11 A022527 A189055 A211184 A221986 A221983 A221984
13 A022529 – – – – –
17 A022533 – – – – –
19 A022535 – – – – –
23 A022539 – – – – –

Notes: # means “Number of GMa,n primes”. For n = 2, the first prime, 2, must be removed from the sequences
indicated in the first row as GMa,2 generates only all the odd integers. In some sequences, a shift of one unity
must be applied.

The density of Mersenne primes is also very low. Let us consider the largest known
Mersenne prime M82589933=

(
282589933 − 1

)
, having 24862048 digits.

If we compare the number of known Mersenne primes, 51, first to the number of all
the primes less than 1024862048 that can be approximated from the prime number theorem as
Π
(
1024862048) ≈ 1024862048/ ln

(
1024862048), i.e., approximately 1.75 · 1024862042, and second

to the number of Mersenne numbers with prime exponents, i.e., the number of primes less
than 82589933, i.e., Π(82589933) ≈ 82589933/ ln(82589933), or approximately 4530590, we
see that the density of Mersenne primes is extremely low, in the order of 2.1 · 10−24862041

and 1.1 · 10−5, respectively, for the first and second cases.
Mersenne primes are used in cryptography (see, e.g., [8,20–24]). But to fix the ideas,

only medium-sized Mersenne primes are used in cryptography. So the search for larger
Mersenne primes does not have applications in cryptography. Generally speaking, there
are two applications of Mersenne primes within cryptography [25]:

- As a modulus within a prime elliptic curve: for example, the Mersenne prime(
2521 − 1

)
is used to define an elliptic curve.

- In the Carter–Wegman Counter (CWC) mode [26], the Mersenne prime
(
2127 − 1

)
is

used to define a universal hash function consisting of evaluating a polynomial modulo
the Mersenne prime

(
2127 − 1

)
.

In both cases, the special property that is taken advantage of is that Mersenne primes
(rather than another prime of approximately the same size) make computing the modulo
operation x mod

(
2521 − 1

)
or x mod

(
2127 − 1

)
easy by the linear-feedback shift register

(LFSR). More generally, performing modular reduction modulo a Mersenne prime does not
modify the hamming weight of the result.

On the other hand, in asymmetric key cryptography, a pair of keys is used to encrypt
and decrypt information. A receiver’s public key is used for encryption and a receiver’s
private key is used for decryption. Public keys and private keys are different. Even if the
public key is known by everyone, the intended receiver can only decode it because he
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alone knows his private key. The most popular asymmetric key cryptography algorithm is
the Rivest–Shamir–Adleman (RSA) algorithm [27]. The practical difficulty of factoring the
product of two large prime numbers is what makes the RSA algorithm secure.

As seen, the number of Mersenne primes is relatively limited, and a fortiori, those
of medium size are even less. As an alternative for asymmetric key cryptography, we
propose to use generalized Mersenne primes, which are more frequent even for small prime
exponents and for which both the base a and the exponent n can be used either as public
keys or secret keys.

4. Conclusions

It was shown that with the proposed generalization of Mersenne numbers, for any nat-
ural integer base a, generalized Mersenne numbers are in general such that (GMa,n − 1) are
even and divisible by n, a and (a − 1) for any odd prime exponent n and by (a(a − 1) + 1)
for any prime exponent n > 5. The remaining factor is a function of triangular num-
bers of (a − 1), specific to each prime exponent n. Four theorems on Mersenne numbers
were generalized for generalized Mersenne numbers and four new theorems were demon-
strated, allowing one to show first that (GMa,n − 1) are divisible by 6, and more precisely,
GMa,n are congruent to 1(mod 12) or 7(mod 12) depending on the congruence of the base
a(mod 4); second, that (GMa,n − 1) are divisible by 10 if n ≡ 1(mod 4) and, if n ≡ 3(mod 4),
GMa,n ≡ 1(mod 10), or 7(mod 10) or 9(mod 10) depending on the congruence of the base
a(mod 5); third, that all factors ci of GMa,n are of the form (2n fi + 1) with fi natural inte-
gers such that ci is prime itself or the product of primes of the form (2nj + 1) with j natural
integer; fourth, that for odd prime exponents n, all GMa,n are periodically congruent to
either ±1(mod 8) or ±3(mod 8) depending on the congruence of the base a(mod 8); and
fifth, that the factors of a composite GMa,n is of the form (2n fi + 1) with fi ≡ u(mod 4)
and u being either 0, 1, 2 or 3 depending on the congruence of the exponent n(mod 4) and
on the congruence of the base a(mod 8). Note that alternate proofs for Theorems 1, 2, 4, 5
and 7, and another development of GMa,n in embedded products are given in the online
version of the paper [28]. Finally, the potential use of generalized Mersenne primes in
cryptography has been shortly addressed.

Distributions of primes and composites in generalized Mersenne numbers are further
investigated in companion papers.
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