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Abstract: The quality of sintered ore, which serves as the primary raw material for blast furnace
ironmaking, is directly influenced by the moisture in the sintering mixture. In order to improve
the precision of water addition in the sintering process, this paper proposes an intelligent model
for predicting water-filling volume based on Temporal Fusion Transformer (TFT), whose symmetry
enables it to effectively capture long-term dependencies in time series data. Utilizing historical
sintering data to develop a prediction model for the amount of mixing and water addition, the
results indicate that the TFT model can achieve the R squared of 0.9881, and the root mean square
error (RMSE) of 3.5951. When compared to the transformer, long short-term memory (LSTM), and
particle swarm optimization–long short-term memory (PSO-LSTM), it is evident that the TFT model
outperforms the other models, improving the RMSE by 8.5403, 6.9852, and 0.453, respectively. As an
application, the TFT model provides an effective interval reference for moisture control in normal
sintering processes, which ensures that the error is within 1 t.

Keywords: sintering; moisture prediction; TFT; attention mechanism; interpretability

1. Introduction

The automation and intelligent control of the entire sintering production process has
become a prevailing trend [1]. The iron-sintering process involves mixing iron ore, fluxes
and fuels in specific proportions and adding the appropriate amount of water [2]. The
water content during the sintering process not only significantly affects the quality of the
sintered ore but also impacts the production efficiency [3]. The traditional sintering process
primarily relies on manual estimation by employees to control the water injection, leading
to high variations in moisture content [4]. Since the empirical model is influenced by
manual operation parameters, it is important to establish a more optimized water-adding
volume control model to realize the automation and intelligent control of the water addition
process.

In some study on the intelligent control of the sintering process, Li and Gong [5]
proposed an adaptive fuzzy PID control system to address the time lag phenomenon
and parameter uncertainty of the sintering process. However, the adaptive fuzzy PID
model is sensitive to the selection of fuzzy sets and relies on manual experience. Giri
and Roy [6] introduced a sintering process control system based on genetic algorithms
to optimize the parameters of the PID model, but the complexity of the energy balance
calculation makes the model challenging to apply. Artificial neural networks have been
widely utilized in the field of sintering moisture prediction due to their ability to recognize
nonlinear relationships. Cai [7] proposed a feedforward water addition model based on
the least squares method to control the material balance, which can control the moisture
content of the mixture during the sintering process; however, under the given mixed ore
structure, the water absorption capacity of the mixture and the role of moisture in the
granulation effect were ignored. Jiang et al. [8] proposed a NARX control system based on
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the combination of offline and online approaches, but there is room for improvement in
the prediction accuracy of the model. Ren et al. [9] utilized the KPCA-GA model based on
the BP neural network, which had better prediction accuracy compared to the traditional
neural network model. But the model lacks interpretation and numerical prediction, and it
is difficult to achieve the precise control of moisture.

In recent years, deep neural network architectures have been gradually applied in
various fields, and the LSTM model is widely used in the field of time series prediction. The
Transformer model, on the other hand, due to its stronger long-term memory capability
and nonlinear mapping advantage, has also been successfully applied to many fields such
as image recognition [10,11], medical data processing [12,13], and text processing [14,15],
etc. However both models suffer from defects that are difficult to interpret. In 2021, Google
proposed an improved Temporal Fusion Transformer (TFT) model [16], which improves on
the Transformer model. The adequate consideration of different types of inputs makes the
model more accurate in the prediction of nonlinear relationships, and it utilizes the attention
mechanism to make the model interpretable. This paper argues that the symmetry of TFT
is reflected in three aspects: time, characteristics and attention. Time series can be divided
into past and future parts by symmetry in time because past events affect the occurrence
of future events; our hypothesis is that the features in the time series are symmetrical and
therefore the same in the choice of encoder and decoder. The symmetry of the self-attention
mechanism is understood in this paper to mean that it is possible to focus on both past and
future features, and the dependence between such data features can be captured. From this
point of view, it can be argued that TFT captures the long-term dependencies between the
past and the future in the data, making more accurate predictions, and the same decoder
and encoder can reduce the complexity of the model. The advantages of the TFT model for
nonlinear systems and the recognition of unexpected events by its attention mechanism
make it possible to deal with sintering and water addition processes with transient on–off
phenomena.

Therefore, in this study, a real-time prediction and control model for the addition of
water to sintering is developed, and the results of the model are interpretable based on the
attention mechanism from three perspectives: input characteristics, time, and abnormal
working conditions. The main contributions of this paper are as follows:

1. A novel model for predicting sintering water addition parameters is proposed for
the intelligent control of water addition in the sintering process, which combines multi-
horizon forecasting with interpretability into temporal dynamics and utilizes the gating
layers to suppress unnecessary components;

2. Interpretability analyses are conducted for the water addition model to investigate
the effects of different materials, time of day, and contingencies on the amount of water
added.

2. Sintering and Water Addition Process Mechanism

In the sintering process, the model of the actual mixer is shown in Figure 1. The whole
sintering process can be divided into four steps: the first part is the batching, the second
part is the mixing, the third part is the ignition high-temperature sintering, and the fourth
part is the crushing, screening and cooling of the material. In the first step, various raw
materials are placed in different containers, and the required raw materials are taken out
in proportion to the conveyor belt under computer control, such as iron ore, dolomite,
quicklime, etc. Then, enter the second step, the process can be divided into two mixing
steps; this paper will mainly introduce and study this step. In the third step, the mixed
raw material continues through the sintering machine for a series of operations, and the
sintering process ends when the reaction in the unit reaches the end. In the fourth step, the
sintered ore is crushed and sieved according to size and cooled in a cooler. After screening,
the qualified sinter is sent to the blast furnace to make iron, while the unqualified part is
returned to the batching area of step 1 for the next round of sintering. This paper focuses
on the second step of the whole sintering process: mixing.
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In the second step, there are two mixing drums, and various raw materials are first
introduced into the first mixing drum, at which time the inlet valve adds water to the raw
material mixture and mixes it fully to form the raw material mixture. The initial addition
of materials includes sintered return ore, limestone, quicklime, dolomite, iron ore, etc. The
raw materials are then transferred to a second mixing drum for mixing, and the second
mixing is for granulation. The inlet valve also adds water to the raw material mixture
and mixes it. There is a moisture meter at the end of both mixing drums to measure the
moisture content in the mixture. The operator will dynamically adjust the amount of water
added in the second inlet valve according to the quantity of raw materials and moisture
content measured by the moisture meter so that the moisture content of the mixture coming
out of the second mixing drum can reach the standard [8].

Figure 1. Sinter mixer model.

During the sintering process, various materials are introduced into the sintering
machine, which then enter the mixer and combine with water to create a raw material
mixture. Initially the added materials include sintered ore return, limestone, quicklime,
dolomite, iron ore return, etc. After the raw materials are mixed, the water content in the
mixture is measured at two points where water is added. At this stage, the worker will
adjust the amount of water to be added based on the quantity of material and the moisture
content measured by the hydrometer [8].

The water content of the raw material mixture is theoretically calculated as follows:

M =
∑n

i=1 Ki × Wi + U + Ur

∑n
i=1 Wi + U + Wr

(1)

where M represents the water content of the mixture, Wi denotes the weight of each raw
material in the mixture, Wr and Ur indicate the weight and water content of the sintered
ore, U signifies the amount of artificially added water, and Ki represents the water content
of the material. The units for M, Wi, Wr and Ur are t/h, and the unit for Ki is %. Therefore,
it can be concluded that the quantity of artificially added water should be:

U =
M × [∑n

i=1 Wi + Wr]− [∑n
i=1 Ki × Wi + Ur]

1 − M
(2)

The amount of water added is controlled so that the water content of the mixture
meets the optimal demand, and the amount of water added to the mixer at a given moment
correlates with the amount added in the previous period. This correlation allows for
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controlling the water addition in the sintering process based on the previous amount added
and the measured material quantity:

U(i + 1) = g(u1(i), u1(i − 1), . . . , u1(i − dx)), (3)

u1
T = [U1, U2, . . . , Un] (4)

The control system for adding water during sintering becomes a complex nonlinear
system due to the delay between measuring the material quantity and the actual fabric in
the sintering process, and the influence of the raw material water content and moisture
measurement values by the ambient temperature and humidity. The main objective of this
study is to analyze and predict the complex nonlinear system using the Temporal Fusion
Transformers (TFTs).

3. Model Architecture

The TFT water addition control model used in this paper is shown in Figure 2, the
model first uses principal component analysis to downscale the features obtained in the
sintering process. Subsequently, the features are downscaled into the variable selection
network (VSN) to identify the significant features.The model then utilizes LSTM to process
temporal information, and the long-term dependency in the processing is analyzed using
the multi-head attention mechanism. The Gated Residual Network (GRN) is designed to
skip unused components of the architecture in order to manage the depth and complexity
of the model. The entire prediction process uses a quantized loss function to calculate the
model’s prediction error.

Figure 2. TFT architecture.
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3.1. Gated Residual Networks

The Gated Residual Network (GRN) is primarily utilized to address the challenge of
determining the extent of nonlinear processing resulting from the uncertain relationship
between exogenous inputs and the target. This allows the model to apply nonlinear
processing only when the exogenous inputs are strongly correlated with the target outputs.
The GRN uses a group of Gated Linear Units (GLUs) to enable the component gating layer
to bypass unnecessary components in the model architecture, thereby controlling model
complexity and providing self-adaptation depth.

The formula for GRN is as follows:

GRNω(a, c) = LayerNorm(a + GLUω(η1)), (5)

η1 = W1,ωη2 + b1,ω, (6)

η2 = ELU(W2,ωa + W3,ωc + b2,ω) (7)

ELU is an exponential linear unit activation function that mitigates the “dead zone”
issue of Relu when the input is less than 0, making it more robust to input changes or noise.
The linear component on the right side also addresses the problem of the vanishing gradient
that occurs with the Sigmoid function. The intermediate layers include LayerNorm as the
normalization criterion layer, and ω indicates an indicator of weight sharing.

3.2. Variable Selection Network

Most real-time series data contain only a few features directly related to the prediction
target, along with time-varying covariates that change with the input features. Variable
selection networks (as shown in Figure 3) analyze the importance of the input variables
to the prediction target and eliminate noisy inputs that negatively impact the model’s
performance. This process greatly improves the model’s performance by focusing on
learning the most significant features using a learning mechanism.

Figure 3. Variable selection network model.

An entity embedding representation is utilized for the categorical variables, while
linear transformations are applied to the continuous variables. All input variables are
then transformed into d-dimensional vectors to match the subsequent layer inputs. Let

ζ
(i)
t denote the transformed j-th input variable at time t.Then, ψt = [ζ

(1)
t

T
, ζ

(2)
t

T
, . . . , ζ

(nx)
t

T
]

denotes the vector of all input features at time t. This vector and the external context vector
c are acted upon by the Gated Residual Network and input to the Softmax function to
determine the variable selection weights, and the formula is as follows:

wxt = So f tmax(GRNwx (ψt, cs)) (8)

For each time step, the GRN is used for nonlinear processing with the following
equations:

ζ̃t
(j)

= GRN
ζ̃(j)(ζt

(j)) (9)
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where ζ̃t
(j)

denotes the feature vector of variable j after the action of GRN, and the weights
obtained by each variable through its own GRN are applicable at all time steps. At the end
of the feature selection network, the variable weights will influence their corresponding
transformation variables.

3.3. Interpretable Multi-Head Attention

The self-attentive mechanism utilizes its input features and the learnable parameters
of the neural network to generate the corresponding query vector Q, key vector K, and
value vector V[19]. Where Q = [q1, q2, . . . , qD], K = [k1, k2, . . . , kD] and V = [v1, v2, . . . , vD],
using the normalization function and the scaled dot product as the scoring function, the
result of the self-attention is:

ATT = So f tmax(
QKT
√

dattn
) (10)

The multi-head attention mechanism is designed based on the self-attention mech-
anism and employs multiple attention heads, each capable of capturing the interaction
information of different characteristics. This effectively improves the learning ability of
the standard attention mechanism. The model of the multi-head attention mechanism is
as follows:

Multihead(H) = [ATT1 ⊕ ATT2 ⊕ · · · ⊕ ATTm]Wh (11)

where m represents the number of attention heads.
To represent feature importance, multiple attention heads were designed to share the

value of each attention head instead of each having a different value. The shared value was
determined through the additive aggregation of each attention head:

InterpretableMultihead(H) = ÃTTWh (12)

ÃTT = Ã(Q, K)VWv, (13)

= {1/H
mH

∑
h=1

A(QWQ
(h), KWK

(h))}VWV , (14)

= 1/H
mH

∑
h=1

Attention(QWQ
(h), KWK

(h), VWV) (15)

where WV represents the shared weight value of the attention head in the multi-head
attention mechanism and Wh is used to realize the linear mapping.

3.4. Temporal Fusion Decoder
3.4.1. Local Enhanced Sequence Layer

The significance of a point in time series data is often determined by the surrounding
data, such as the position of variations. Peaks in data have periodic variations. The
performance of the attention-based architecture model can be improved by integrating
contextual features through pointwise computation. Due to the fluctuating number of past
and future feature inputs, it is not feasible to extract local patterns using a filter with a single
convolutional layer. The locally enhanced sequence layer can be handled by inputting
ξ̃t−k:t into the LSTM encoder and ξ̃t+1:t+τmax into the LSTM decoder. This process produces
a consistent temporal feature ϕ(t, n) ∈ {ϕ(t,−k), . . . , ϕ(t, τmax)}:

ϕ̃(t, n) = LayerNorm(ξ̃t+n + GLUϕ̃(ϕ(t, n))) (16)

3.4.2. Static Enrichment Layer

The static enrichment layer enhances temporal characterization by utilizing static
metadata to reflect the significant impact of static covariates on time-varying characteristics.
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For example, it can demonstrate how the material moisture content is affected by geographic
variation. It is calculated using the formula:

θ(t, n) = GRNθ(ϕ̃(t, n), ce) (17)

where n denotes the index of the static metadata, GRN weights are shared across the static
enrichment layer, and ce corresponds to the context vector of the encoder.

3.4.3. Temporal Self-Attention Layer

The temporal self-attention layer allows the model to capture long-term temporal
dependencies by utilizing the multi-attention mechanism on temporal features. It also
incorporates the decoder masking principle with a gating layer to ensure that each temporal
dimension focuses solely on events occurring before the current time node. The calculation
formula is as follows:

B(t) = InterpretableMultiHead(Θ(t), Θ(t), Θ(t)), (18)

δ(t, n) = LayerNorm(θ(t, n) + GLUδ(β(t, n))) (19)

where Θ(t) denotes the separate grouping matrix of the static time features and B(t)=
[β(t,−k), . . . ,β(t, τmax)].

3.4.4. Position-Wise Feedforward Layer

The positional feedforward layer is similar to the static enrichment layer and serves
as a nonlinear transformation of the output from the temporal self-attention layer. Its
computational formula is:

ψ(t, n) = GRNψ(δ(t, n)) (20)

At the same time, the TFT model considers the scenario in which the model does not
require the application of the temporal fusion transformers. In this case, a gated residual
connection is established to bypass the entire fusion transformer module. The model will
then be simplified as:

ψ̃(t, n) = LayerNorm(ϕ̃(t, n) + GLUψ̃(ψ(t, n))) (21)

3.5. Quantile Regression Loss Function

The traditional linear regression model applies to the conditional distribution of the
dependent variable based on the independent variable X. In real-world applications, the
least squares method may be less stable and more prone to instability when the data exhibit
a distribution with sharp peaks or thick tails, as well as significant heteroskedasticity.

Compared with the traditional linear regression model, quantile regression offers
greater robustness, improved flexibility, and stronger resistance to anomalies in the data.
Unlike ordinary least squares regression, quantile regression applies a monotonic trans-
formation to the dependent variable. Additionally, the parameters estimated by quantile
regression demonstrate asymptotic excellence under the theory of large samples.

The formula for the loss function kernel in quantile regression is generally as follows:

max(q × (y − ypred), (1 − q)× (ypred − y)) (22)

In a regular MSE, the loss per sample is (y − ypred)
2, whereas here, y − ypred and

ypred − y are one positive and one negative.
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4. TFT Sintering Mositure Model
4.1. Data Pre-Processing

The determination of the sintering water addition is primarily based on the real-time
monitoring of the material volume and the moisture content. Factors affecting the water
content also include the mixing efficiency of the mixer, fluctuations in the water content,
the system turnover index, and the sintering environment [9]. Given that the mixing
efficiency of the mixer is a controllable factor for the plant and that environmental factors
are less variable for the determination of the plant, the assumptions in this article are
only focused on analyzing the impact of material volume and moisture content on the
amount of sintering water added under specific ambient temperature and mixing efficiency
conditions.

The data used in the experiments in this paper are all from the real-time monitoring
system of the plant (the volume of the sintering machine is 360 m2, the volume of the
mixed hopper is in tons, and the measuring accuracy of the moisture meter is 0.001). They
contain the plant’s sintering system measurement data from January 2018 to April 2018.
The data were collected every 4 s, totaling 1,636,000 entries (as shown in Table 1), in which
the amount of artificial added water is the predicted output variable of the model, and the
remaining variables include the amount of each type of material in the sintering process
with real-time moisture measurements as input variables.

Table 1. Historical data used in the experiment.

Time (s) Limestone (t/h) Quicklime (t/h) · · · Moisture (%) Added Water (t/h)

0 229 76 · · · 7.4 115
4 232 67 · · · 7.4 115
8 237 56 · · · 7.4 114
12 230 54 · · · 7.5 113
16 224 62 · · · 7.4 113
· · · · · · · · · · · · · · · · · ·

The raw sintering data contain a variety of materials, and there is a correlation between
the inputs of each material. In order to make the model results more accurate, the dimen-
sionality of the input features was chosen to be reduced. The Bartlett’s test corresponds to
a p-value of less than 0.05, indicating that each material quantity is suitable for principal
component analysis. Therefore, we use principal component analysis to extract a total of
nine materials as the main factors affecting the water addition process (shown in Figure 4);
it can be seen that the input of each material quantity in the sintering process is a basically
stable process.
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Figure 4. Material volume change graph.
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Figure 5 shows the correlation between the principal component. Based on the correla-
tion coefficients between the amount of each mixture and the moisture content of the sinter
ore, it is concluded that there is a correlation between the sinter ore moisture content (Mo)
and quicklime (Qu) inputs, with a correlation coefficient of 0.44. The sintered returned ore
(Si) and limestone (Li) showed a correlation coefficient of 0.42 with the moisture measure-
ments (Mo). At the same time, there is a positive correlation between the amount of each
material input and the moisture content, and there is no negative correlation, which is con-
sistent with the observation that an increase in the amount of material input is accompanied
by a corresponding increase in water content.

Du

Si

Li

Do

Qu

Ir

Bl

Fi

Pu

Mo

Du Si Li Do Qu Ir Bl Fi Pu Mo

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5. Correlation of mixture volume with water addition (where Du denotes dust ash, Si denotes
sinter return, Li denotes limestone, Do denotes dolomite, Qu denotes quicklime, Ir denotes iron-
tempering return, Bl denotes blast-furnace ash, Fi denotes mineral powder, Pu denotes pulverized
coal, and Mo denotes moisture measurements).

The data need to be normalized because of the significant variations in the weights of
the different sintered material inputs. In the sintering process, it is typical for the sintering
machine to start running and shut down when the material amount reaches zero. Therefore,
no specific treatment of this occurrence is conducted during the modeling process to allow
the model to understand the actual sintering and water addition process, thereby guiding
the water addition process. Moreover, the strength of the TFT model also lies in its ability
to account for special events, which will be discussed in the model interpretability section
of this paper.

4.2. TFT Network Architecture and Training Result Analysis

After reducing the dimensionality of the above data through principal component anal-
ysis, the TFT model is constructed using the model architecture proposed by Google [16].
The model contains 11 input variables and culminates in the amount of water added as an
output. Table 2 lists the model parameters. The dataset is divided into 90% for training
samples, 5% for validation samples, and 5% for test samples.

Table 2. Table of model parameters.

Model Parameters Value

Learning rate 0.001
Number of iterations 15

Number of attention heads 4
Encoding time step 168

Total time step 192
Number of single batches 36
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As depicted in Table 3, the root mean square error (RMSE) and relative RMSE (RMSEr)
between the predicted values and the actual values obtained from the water addition
prediction model based on the TFT model are low. This indicates that the model can
effectively minimize prediction errors and more accurately regulate the amount of water
added during the sintering process.

Table 3. Indicators for assessing model results.

Time Interval (s) RMSE RMSEr R

0 3.5651 0.0298 0.9940
4 4.0208 0.0334 0.9924
8 4.4209 0.0367 0.9907
12 4.6186 0.0383 0.9899
16 4.4401 0.0369 0.9895
· · · · · · · · · · · ·

Since the instant-on and instant-off process of sintering water addition is affected by
humans, in order to accurately evaluate the prediction effect of the model on the water
addition, the human interference is considered when assessing the degree of fit.The analysis
reveals a slight increase in model error as the number of steps increases, but the overall
change is small, which can more accurately determine the water filling volume control.
However, the most accurate model predictions were made with fewer steps, and the results
for steps 1 and 2 are shown in Figure 6.
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Figure 6. Multi-step prediction fit (P50_step = 1 denotes the prediction result corresponding to the
50% quartile at one time step in backward prediction, P50_step = 2 denotes the prediction result
corresponding to the 50% quartile at two time steps in backward prediction, P90_step = 1 denotes
the prediction result corresponding to the 90% quartile at one time step in backward prediction, and
P90_step = 2 denotes the prediction result corresponding to the 90% quartile at two time steps in the
backward prediction).
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A comparison of the predicted results with the true values using the TFT model is
shown in Table 4. It is evident that when the percentile loss is 50%, there is a more accurate
prediction of the required amount of water to be added. On the other hand, a 90th percentile
quartile ensures that the actual amount of water to be added meets a 90% probability to be
less than the predicted amount. This provides an upper limit guide for the water addition
process.

Table 4. TFT model predictions.

Times (s) True Added Water P50 Added Water P90 Added Water

0 114 114.4302 114.9393
4 114 114.4522 114.9517
8 114 114.4081 114.9467

12 114 114.4565 114.9686
16 115 115.5932 116.1918
· · · · · · · · · · · ·

4.3. Comparative Analysis with Existing Models

To further analyze the TFT model’s ability to regulate the amount of water added
during the sintering process, we compare the effectiveness of the TFT sintering water
addition model with other time series prediction models. The LSTM model has been widely
utilized in time series forecasting in recent years, yielding favorable results. However, the
challenge of determining the parameters of the LSTM may result in a decline in its perfor-
mance. In order to obtain more objective model comparison results, the experiments were
designed to compare the LSTM model and the particle swarm optimized PSO-LSTM model.
The PSO-LSTM model can objectively and accurately determine the optimal parameters
of LSTM, leading to improved model performance. The TFT model is an optimization
algorithm for the Transformer model, while the Transformer model excels in time series
cases due to its contextual learning capability. Therefore, the paper will analyze the TFT
model in comparison with the three models mentioned above.

As depicted in Figure 7, the prediction results of the LSTM exhibit significant fluctu-
ation and noticeable bias. However, its optimization model, the PSO-LSTM model, still
has a large prediction error when it comes to the amount of water added, so it is unable to
effectively control the amount of sintering water added. The Transformer model makes
similar predictions to the PSO-LSTM. The comparison results indicate that the TFT model
is significantly superior to the other three models.
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Figure 7. Comparison with existing models.

Further analysis of the variations in predictive effectiveness between the models can
be derived from Figure 8 and Table 4, which show the differences in correlation coefficients
(R) and root mean square errors (RMSEs) of the comparative models. It can be concluded
that the TFT model has the best fit.
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Figure 8. Comparison of model fits.

This paper compares the effectiveness of the TFT water addition prediction model
with other time series prediction models(as shown in Table 5.). It can be concluded that
the prediction result of the TFT model is significantly closer to the target value. The RMSE
value is reduced to 3.5851 and the RMSEr is reduced to 0.0298.

Table 5. Comparison of model predictions.

Model R2 RMSE RMSEr

LSTM 0.8923 10.5703 0.0878
Transformer 0.8582 12.1254 0.1007
PSO-LSTM 0.9836 4.3081 0.0358
TFT 0.9881 3.5851 0.0298

4.4. Interpretability Analysis
4.4.1. Characteristic Importance Analysis

The TFT model optimizes the performance of the underlying Transformer model.
This is useful for analyzing the impact of material quantity and moisture content on the
amount of sintering water added to the sintering process. It does so by quantifying the
attentional weights of the variable choices in the variable selection hierarchy, thereby
analyzing the importance of the input characteristics. Ultimately, this guides the main
characteristics to be focused on during the sintering water addition control process. In
order to comprehensively and consistently analyze the impact of each input variable, this
paper chooses to examine the 10%, 50%, and 90% quartiles of the attention weights of each
variable when the prediction step is 1.
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In Figure 9, it is evident that the amount of water added plays a critical role in
determining the amount of water to be added in the next step of the sintering process.
This is linked to the moisture control of the sintering process. Since the sintering process
is generally stable and the variation in the input quantities of each material is small, the
historical amount of water added in the past is a crucial factor in determining the future
water addition. It can be observed that the model exhibits strong attentional weights for
inputs of unstable materials (such as dolomite and blast furnace ash), which subsequently
regulate the impact of these variables on the amount of water added to the sintering process.
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Figure 9. Distribution of importance of characteristics (Du denotes dust ash, Si denotes sinter return,
Li denotes limestone, Do denotes dolomite, Qu denotes quicklime, Ir denotes iron ore return, Bl
denotes blast-furnace ash, Fi denotes mineral powder, Pu denotes coal dust, and Mo denotes moisture
measurement).

It is concerning that previous stabilizing input variables (such as sinter return, quick-
lime, etc.) did not directly and significantly influence the determination of the next water
addition amount. The reason for this may be that the composition of such materials ex-
periences minimal fluctuations during the sintering process, and there is a certain delay,
causing their attention weights to remain smooth and low. This aligns with the actual
conditions of the typical sintering process, where the manual addition of water should
also consider the quantity of materials that are prone to fluctuations, in order to maintain
overall control over the impact of the added water.

4.4.2. Analysis of Model Validity under Abnormal Operating Conditions

As the sintering process often occurs such that the machine starts and stops instanta-
neously, the amount of water added at this time should be controlled to zero. The sintering
autofill model must be capable of analyzing sudden changes in these phenomena to be
more effectively applied to the sintering process. This will reduce resource waste, control
sintering quality, and minimize economic losses caused by unexpected conditions. The
identification of mutations is also a crucial factor in the model’s ability to mitigate risk in
emergency situations.

By plotting the 10%, 50%, and 90% temporal attentional weight distributions predicted
in the previous step on the test set, it can be observed that during the normal operation
of the sintering machine, the attentional weights within the time window exhibit minimal
fluctuation.

Analyzing the temporal changes in the attention mechanism’s weight of the TFT model
during the sintering and water addition process (as shown in Figure 10), it is concluded
that the TFT water addition control model remains stable during the normal sintering
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process, as there are only minor fluctuations in the amount of water added. Consequently,
the attention of such bands also operates in a fluctuating low-level attention mode.
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Figure 10. Plot of average attentional weights of the multi-horizon forecasting.

However, when the sintering process is shut down, the amount of water added
decreases significantly along with the amount of other materials. As depicted in the
Figure 11, the model’s attention is drawn to such changes, resulting in a sharp decrease in
the model’s attentional weights. The experiments indicate that the model can anticipate the
activation and deactivation of the sintering machine and make attentional adjustments in
advance. This demonstrates that the TFT model can effectively detect the transient start–
stop phenomenon in the sintering process. Since the amount of material in the sintering
machine during shutdown is 0, the model’s low attention level of the model at this time
can maintain the model’s high performance for the smooth control of sintering moisture
and reduce the impact of sudden changes on the entire sintering process.
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Figure 11. Sintering process identification.

4.4.3. Analysis of Quantile Forecasting Results

Since the process of adding sintering water is nonlinear and complex, various numeri-
cal prediction models cannot provide a practical reference for determining the amount of
sintering water addition. Therefore, in this paper, we choose to predict the quantiles of the
results to obtain the predicted amount of sintering water addition that satisfies the 10%
and 90% quantiles (as shown in Figure 12). The predicted value at the 10% ensures a 90%
probability that the dosage will be higher than this predicted amount, providing guidance
on the lower limit of the sintering dosage. The 90% quantile water addition ensures that
90% of the predicted water additions will be lower than this amount, providing an upper
limit guide for selecting the sintering water addition.

As depicted in Figure 12, the model ensures that the error in the water addition will
be limited within 1 ton. This allows for the precise control of the sintering water addition
within a narrow range, offering a practical reference for selecting the appropriate amount
of water to be added while maintaining accuracy.
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Figure 12. Quartile prediction effect.

5. Conclusions

This paper demonstrates the use of the Temporal Fusion Transformers model for
controlling the volume of water added during sintering, utilizing historical data to develop
a self-learning Temporal Fusion Transformers model for the more precise control of water
addition. The experimental results show that the model’s effectiveness is superior to that
of most time series models. The R-squared value for one-step prediction results is 0.9881,
and the RMSE is 3.5851. The error for the multi-step prediction increases slightly but still
remains above 0.98. This model offers interpretability, allowing for the analysis of the
impact of various materials and sintering times on the amount of water added as indicated
by the attention weights. At the same time, the attention weights of the TFT water addition
prediction model can recognize the transient start and stop process of the sintering machine.
This allows for the advanced control of water addition changes, indicating the effectiveness
of the TFT model in identifying the transient start–stop phenomenon in the sintering process.
Providing interval guidance on the amount of water to be added based on the quantile
prediction ensures that the error is within 1 t, which is more conducive to controlling the
sintering quality and reducing the risks. Under the premise of only considering the amount
of material, the predicted results of the model can provide reference for the water content
determination of the mixing process. The subsequent study will further improve the model
and combine the optimal control algorithm with it to realize the real-time optimal control
of water addition.
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