
Citation: Yan, X.; Lian, B.; Yang, Y.;

Wang, X.; Cui, J.; Zhao, X.; Wang, F.;

Chen, K. A Ciphertext Reduction

Scheme for Garbling an S-Box in an

AES Circuit with Minimal Online

Time. Symmetry 2024, 16, 664.

https://doi.org/10.3390/sym16060664

Academic Editors: Sergei D. Odintsov

and Xiaoyang Dong

Received: 29 March 2024

Revised: 20 May 2024

Accepted: 21 May 2024

Published: 28 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Ciphertext Reduction Scheme for Garbling an S-Box in an AES
Circuit with Minimal Online Time
Xu Yan 1,2, Bin Lian 1,*, Yunhao Yang 1,2, Xiaotie Wang 3, Jialin Cui 1, Xianghong Zhao 1 and Fuqun Wang 4

and Kefei Chen 4

1 School of Information Science and Engineering, NingboTech University, Ningbo 315100, China;
yx2000@zju.edu.cn (X.Y.); 22331136@zju.edu.cn (Y.Y.); cuijl_jx@163.com (J.C.); zxh@nit.net.cn (X.Z.)

2 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China
3 School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;

wangxiaotiey@163.com
4 School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China; fqwang@hznu.edu.cn (F.W.);

kfchen@hznu.edu.cn (K.C.)
* Correspondence: lianbin_a@163.com

Abstract: The secure computation of symmetric encryption schemes using Yao’s garbled circuits,
such as AES, allows two parties, where one holds a plaintext block m and the other holds a key k, to
compute Enc(k, m) without leaking m and k to one another. Due to its wide application prospects,
secure AES computation has received much attention. However, the evaluation of AES circuits using
Yao’s garbled circuits incurs substantial communication overhead. To further improve its efficiency,
this paper, upon observing the special structures of AES circuits and the symmetries of an S-box,
proposes a novel ciphertext reduction scheme for garbling an S-box in the last SubBytes step. Unlike
the idea of traditional Yao’s garbled circuits, where the circuit generator uses the input wire labels
to encrypt the corresponding output wire labels, our garbling scheme uses the input wire labels
of an S-box to encrypt the corresponding “flip bit strings”. This approach leads to a significant
performance improvement in our garbling scheme, which necessitates only 28 ciphertexts to garble
an S-box and a single invocation of a cryptographic primitive for decryption compared to the best
result in previous work that requires 8× 28 ciphertexts to garble an S-box and multiple invocations
of a cryptographic primitive for decryption. Crucially, the proposed scheme provides a new idea to
improve the performance of Yao’s garbled circuits. We analyze the security of the proposed scheme
in the semi-honest model and experimentally verify its efficiency.

Keywords: garbled circuits; secure computation of AES; oblivious pseudo-random function; secure
two-party computation

1. Introduction
1.1. Yao’s Garbled Circuits and Secure AES Computation

Yao’s garbled circuits, introduced in [1], remain a cornerstone method for facilitating
secure two-party computation tasks. This approach enables two parties to jointly compute
a function without leaking their input to each other. In the traditional garbled circuits
protocol, the two parties play a circuit generator and a circuit evaluator, respectively.
Initially, the two parties decompose the function that they want to evaluate into a Boolean
circuit, and then the circuit generator produces the wire labels and garblings (ciphertexts)
for the Boolean circuit. The wire labels are used to conceal the truth values, and the
garblings are used to decrypt the output wire labels. Finally, with input wire labels and
garblings, the circuit evaluator can decrypt the output wire labels and learn the output of
the function. During the process, the evaluator does not learn which truth values the wire
labels correspond to because they are all produced by the generator, while the generator
does not learn which wire labels the evaluator uses to decrypt the garblings because the

Symmetry 2024, 16, 664. https://doi.org/10.3390/sym16060664 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym16060664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym16060664
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym16060664?type=check_update&version=1

Symmetry 2024, 16, 664 2 of 18

generator is not involved in the decryption process. Thus, neither side knows what the
other’s input is.

Among the myriad applications of garbled circuits [2–4], the secure computation of
the Advanced Encryption Standard (AES) [5] has garnered significant interest. In this
setup, the evaluator, possessing a plaintext message m, can encrypt m using the generator’s
key k without disclosing m to the generator while remaining oblivious to k. Secure AES
computation has found numerous applications [5], notably in the realms of side-channel
protection, blind message authentication codes (MACs), blind encryption, third-party
operations on encrypted data, etc. A particularly notable application is the construction of
the oblivious pseudo-random function (OPRF), which is fundamental to a host of privacy-
preserving technologies, including private set intersection (PSI) [6–8], private information
retrieval (PIR) [9,10], private keyword search (PKS) [11,12], location sharing [13], etc.

When these privacy-preserving protocols are constructed using secure AES compu-
tation, their runtime performance can be significantly improved. For example, the study
in [14] demonstrates a PSI protocol based on the OPRF, which is constructed using secure
AES computation, achieving the highest efficiency compared to the RSA blind signature-
based PSI (RSA-PSI), Diffie–Hellman-based PSI (DH-PSI), and Naor–Reingold PRF-based
PSI (NR-PSI). However, this method incurs the most communication overhead, primarily
due to the use of Yao’s garbled circuits to securely compute AES.

1.2. Gaps and Motivation

The huge communication overhead and deployment difficulty are two major obstacles
to the practical application of Yao’s garbled circuits. Although there have been various
schemes proposed to reduce the communication overhead of garbled circuits in recent
years, their communication overhead is still not ideal due to the fact that (1) the essence
of the garbled circuits is to use a bit string (wire label) to mask a bit, and (2) the Boolean
circuit that realizes the function is complex. In addition, there are few mature frameworks
that can efficiently convert the function to a Boolean circuit, and there is no systematic
literature on how to implement the garbled circuit schemes, which adds challenges to the
deployment of Yao’s garbled circuits in real applications.

Motivation. In view of these challenges, it is important to shift attention from universal
Yao’s garbled circuits to a commonly used cryptographic module realized by Yao’s garbled
circuits, such as secure AES computation. The optimization of a specific module is much
easier than the optimization of universal garbled circuits. Therefore, in this paper, we focus
on how to optimize and implement secure AES computation, which is realized using Yao’s
garbled circuits.

1.3. Our Idea

An AES circuit needs to perform four algorithms: SubBytes, MixColumns, ShiftRows,
and AddRoundKey. After extensive optimization of the circuit structure, only the Sub-
Bytes step requires the transmission of ciphertexts (i.e., incurs communication overhead).
The remaining steps—MixColumns, ShiftRows, and AddRoundKey—can be efficiently
performed using only free XOR gates [15].

Central to the SubBytes step is the S-box, which is a critical nonlinear element to create
turmoil. There are various studies on the optimization [16,17] of the S-box and its applica-
tions [18–21]. For the original AES S-box, Huang et al. [22] proposed two garbling schemes
aimed at minimizing the total and online times, respectively. The first scheme involves
decomposing the process of the S-box into a circuit, which completes GF(28) inversion and
bit transformation calculations, ultimately resulting in 58 [22] non-free gates. The second
scheme treats the S-box as a “gate” with eight input and eight output wires; thus, the
generator needs to garble this “gate” using eight input wire labels to encrypt eight output
wire labels. This results in 8× 28 ciphertexts, of which the evaluator only needs to decrypt
eight (eight output wire labels). The former approach, while less communication-intensive,
incurs longer online times, as the computation cannot be pre-processed and requires multi-

Symmetry 2024, 16, 664 3 of 18

ple invocations of cryptographic primitives. Many cryptographic primitives can be used to
produce ciphertexts such as hash functions [23], fixed-key AES [24], etc. The latter, while
necessitating the generation of more ciphertexts, allows for pre-processing by the generator
and reduces online time by requiring only four invocations of a cryptographic primitive.

It should be noted that if we use the second idea in [22] to garble an S-box that has
eight input and eight output wires, instead of using the garbling scheme in [22] where the
generator uses eight input wire labels to encrypt eight corresponding output wire labels,
the generator can encrypt the corresponding “flip bit string” according to the mapping law
of the S-box. For example, for an S-box that maps 00111100 to 11010101, the flip bit string is
00111100⊕ 11010101 = 11101001. These flip bit strings are used to flip the least significant
bit (lsb) of the input wire labels of the S-box. Since the final truth values of the output
are determined by the lsb of the output wire labels, and there are only XOR operations
between wire labels in other parts of the AES circuit, flipping the lsb of the input wire
labels of the S-box can eventually produce the correct output, thus reducing the number of
ciphertexts by converting the encryption of eight output wire labels into only one flip bit
string. Furthermore, by introducing optimized S-box structures [16–21], where each flip bit
string is almost exclusively mapped to an input byte, the security of our garbling scheme
can be effectively improved without additional overhead.

Contributions. The current state of optimizing performance for garbling the AES
circuit seems to be approaching its limits unless there is a significant breakthrough in the
field of garbled circuits. In this paper, we leverage the unique structure of the S-box and
AES circuit to propose a ciphertext reduction scheme. The contributions of this paper are
summarized as follows:

• We propose a novel garbling scheme, applicable to the 16 S-boxes in the final SubBytes
step, which requires only 28 ciphertexts to garble each S-box, with only one call
necessary for a cryptographic primitive. A comparison of the communication and
computational cost between our garbling scheme and existing schemes is shown in
Table 1. It is important to note that regardless of the S-box structure used, the overhead
of our scheme does not change. However, the overhead of the minimal total time
scheme in [22] increases because the optimized S-box has more nonlinear gates.

• In our experiments, we avoid using any hardware description language to instantiate
the AES circuit. Instead, we show how to only use the C++ class to construct the
structure of the AES circuit. In order to reuse circuit units, we introduce the concept
of the circuit layer, where we design a circuit layer for each algorithm in AES, and
each circuit layer stores only one copy in memory. Our implementation can help
researchers better understand how to deploy Yao’s garbled circuits in reality.

Table 1. Performance comparison between our scheme and existing schemes (single S-box).

Scheme Num. of AND Gates Num. of Ciphetexts Calls for Crypt.

Min. online time scheme in [22] - 2048 4

Min. total time scheme in [22] 58 116 (half-gate [23]) 116 (half-gate [23])

174 (GRR3 [25]) 58 (GRR3 [25])
Ours - 256 1

Organization. Our paper is organized as follows. In Section 2 we discuss related
works on garbled circuits and secure AES computation. In Section 3, we give the necessary
concepts and notations for understanding our design. In Section 4, we demonstrate our
ciphertext reduction scheme for garbling an S-box, illustrating its potential extra overhead
and possible extensibility, and provide the whole algorithm for garbling and evaluating the
AES circuit. In Section 5, we prove the security of our scheme, and in Section 6, we show
the circuit constructions and analyze the efficiency of our garbling scheme.

Symmetry 2024, 16, 664 4 of 18

2. Related Works

Yao’s garbled circuits have been at the forefront of cryptographic research, particularly
in the domain of secure multi-party computation (MPC) since their introduction by Andrew
Yao in the 1980s. This period has seen a burgeoning interest from the research community
in refining and optimizing the performance of this pivotal technique.

The “point-and-permute” optimization, first proposed by Beaver in 1990 [26], marked
a significant advancement in reducing the communication and computational overhead
associated with garbled circuits. This technique leverages the last bit of the wire label,
enabling the evaluator to discern which ciphertext to decrypt. This innovation not only
minimizes the computational burden of decryption but also obviates the need for commu-
nicating MACs to verify decryption outcomes. Furthermore, a suite of techniques has been
developed to reduce the number of ciphertexts required: the 4-to-3 garbled row reduction
(GRR3) [25], 4-to-2 garbled row reduction (GRR2) [5], free XOR [15], flexible XOR [27],
half-gate [23], and slicing and dicing [28] methods. Each of these technologies contributes
to the goal of optimizing communication efficiency within garbled circuits, as detailed in
Table 2.

Table 2. Comparison between efficient garbling schemes [28].

Communication Calls to H per Gate
(K bits/per Gate) Generator Evaluator

Scheme AND XOR AND XOR AND XOR

Yao 8 8 4 4 2.5 2.5
Point and permute 4 4 4 4 1 1

GRR3 3 3 4 4 1 1
GRR2 2 2 4 4 1 1

Free XOR 3 0 4 0 1 0
FleXOR 2 {0,1,2} 4 {0,2,4} 1 {0,1,2}

Half-gate 2 0 4 0 2 0
Slicing and dicing 1.5 0 ≤6 0 ≤3 0

AES is a globally adopted symmetric encryption standard known for its efficiency
and security. It operates on block sizes of 128 bits with key sizes of 128, 192, or 256 bits,
executing several rounds of transformation to securely encrypt plaintext into ciphertext.
When combined with garbled circuits, secure AES computation offers expansive application
potential in privacy-preserving fields.

Initially introduced by Pinkas et al. [5], secure AES computation has been incorporated
into various secure multi-party computation (MPC) frameworks, including Fairplay [29],
Obliv-C [30], and TASTY [31]. It continues to stand as a prominent benchmark for evaluat-
ing MPC systems.

Its appeal arises from its potential for various applications, including the construction
of the OPRF, a critical component in cryptographic operations. Although the OPRF derived
using secure AES computation is less efficient than that constructed via oblivious transfer
(OT) [32,33], it offers a unique advantage. This advantage stems from the inherent efficiency
of AES encryption. If a privacy-preserving protocol employing secure AES computation-
based OPRF could utilize AES encryption somewhere, its efficiency could be significantly
enhanced. This point has been confirmed in the work of Kiss et al. [14]. The authors
compared the performance of various kinds of PSI protocols constructed using different
schemes, as detailed in Table 3, where the GC-PSI protocol is constructed using secure
AES computation-based OPRF. The findings suggest that although the PSI protocol built
using secure AES computation-based OPRF is less efficient in the base phase for the secure
evaluation of AES circuits, it is the most efficient from a global perspective.

Symmetry 2024, 16, 664 5 of 18

Table 3. Runtime performance of different kinds of PSI protocols. The experimental data were
obtained from [14], with all other parameters kept constant.

Scheme Base (ms) Setup (ms) Online (ms)

RSA-PSI 56 3,441,906 7.38
DH-PSI 1 462,496 3.49
ECC-DH-PSI 1 1,325,400 2.91
NR-PSI 119 758,400 10.28
GC-PSI 1132 70 2.49

3. Preliminaries
3.1. Notations

Wire labels in the garbled circuits are denoted as Wb
i , where i represents the index

of the wire and b signifies the binary value of 0 or 1. For wire i, W0
i and W1

i correspond
to the false and true labels, respectively. Each gate shares the same index with its output
wire. Additionally, wire labels can be also represented by a capital letter along with its least
significant bit (lsb), facilitating the exposition of some concepts. For example, (A,1) indicates
that the wire label is A and its lsb is 1. The concatenation of two wire labels is denoted by
||, and ||mi

{0,1,2...n}W denotes the concatenation of multiple labels Wb0
0 , Wb1

1 , Wb2
2 ...Wbn

n , where
the sequence b0b1b2...bn = mi. mi is the 8-bit representation of i, such as m3 = 00000011.
“← $” denotes the random sampling, and “←” denotes the value assignment.

3.2. Garbled Circuit

The basic two-party garbled circuit evaluation scheme involves a generator and an
evaluator. The generator is responsible for producing wire labels and ciphertexts for the
circuit, while the evaluator uses wire labels in hand to decrypt ciphertexts according to the
circuit’s topology. The security of the scheme is based on the idea that the generator does
not learn which wire labels the evaluator holds, and the evaluator does not learn the truth
value that the wire labels represent.

The process for the generator to garble a Boolean circuit is as follows: The generator
randomly samples two labels, W0 and W1, for each wire, representing bits 0 and 1, respec-
tively. For a binary gate g with input wires i and j and output wire k, the generator arranges
the ciphertexts as follows:

Enk

W
bi
i ,W

bj
j

(W
g(bi ,bj)

k)

for all inputs bi, bj ∈ {0, 1}. The equation means that the generator encrypts the output
wire label using the corresponding combination of input wire labels. For example, for
an AND gate with input value (0, 1), the output value should be 0; thus, the generator
encrypts W0

k using W0
i and W1

j , where the input wires are i and j and the output wire is k.
In this way, the generator generates four ciphertexts successively for each gate according to
the topology order of the circuit.

A universal representation of the garbling scheme can be derived from [34], where a
garbling scheme is denoted as a five-tuple of algorithms G =(Gb, En, De, Ev, ev), as shown
in Figure 1.

The function Gb maps f and k to (F, e, d), where (F, e, d) are the stings that represent the
encoding garbled function, the encoding function, and the decoding function. Possession
of e and x allows one to compute the garbled input X = En(e, x); F and X enable the
calculation of the garbled output Y = Ev(F, X); and d and Y allow for the recovery of the
final output value y = De(d, Y), which must be equal to ev(f , x).

Symmetry 2024, 16, 664 6 of 18

1
k

f

Gb
x

F

e

En

x

Ev

d

ev

y

y

De

Figure 1. Components of a garbling scheme G = (Gb, En, De, Ev, ev).

3.3. Free XOR Gate

The free XOR technique, initially proposed in [15], eliminates the need for a ciphertext to
evaluate an XOR gate, significantly reducing the communication overhead of garbled circuits.

The idea of free XOR is based on the observation that it is unnecessary to randomly
generate false (representing bit 0) and true (representing bit 1) labels on a wire. Instead, the
false and true labels on a wire can establish a relationship such that the false label = the
true label ⊕ the offset value. The offset value is globally present and is secretly kept by
the generator.

As depicted in Figure 2, A and B denote the false labels on their respective wires, and
∆ represents the global offset value. Thus, the corresponding true labels on their respective
wire are A⊕ ∆ and B⊕ ∆. The false label on the output wire is computed as C = A⊕ B.
Similarly, the true label on the output wire is C⊕ ∆. When the generator produces wire
labels for the entire circuit, it only needs to randomly sample a false label for every input
wire and a global offset value ∆, and the false label of other wires can be computed gate by
gate according to the topology of the circuit.

Gate

i

j

k

Flase True Flase True

A A

B B

, , (0,1) ,
k

A B C A B =

C C

Figure 2. How to produce wire labels in the free XOR scheme.

This method of generating wire labels allows the evaluator, holding two input labels
of an XOR gate, to simply XOR the two labels to compute the output wire label without
decrypting any ciphertext. The correctness is demonstrated in Table 4.

Table 4. Free XOR correctness verification.

i j k

A B C
A B⊕ ∆ C⊕ ∆

A⊕ ∆ B C⊕ ∆
A⊕ ∆ B⊕ ∆ C

3.4. Reusable Circuit Layers in the AES Circuit

There are primarily four algorithms involved in encrypting one plaintext block using
AES: SubBytes, ShiftRow, MixColumn, and AddRoundKey. The KeyExpansion algorithm
can be processed locally by the generator.

Symmetry 2024, 16, 664 7 of 18

The circuit design of each of these algorithms has been extensively studied [22].
However, to the best of our knowledge, there is no existing literature on how to reuse the
circuit units in the AES circuit to generate a garbled circuit. Although some automated
compilation tools have been proposed [29,31], the structure of the auto-compiled circuit is
not the simplest. This underscores the significance of manually designing circuit structures
and understanding how to reuse circuit units.

To enable the reuse of circuit units, we propose designing a circuit layer for each
algorithm and setting an input and output 128-bit register at both ends of the circuit layer
call area. In the AddRoundKey layer, an additional 128-bit register is needed for the
generator to input the round key.

As depicted in Figure 3, each circuit layer is stored in memory only once and is directly
connected between the input register and the output register when it needs to be called.
After evaluating a circuit layer, the wire labels are transmitted from the output register
to the input register. By reusing circuit layers, the memory usage of both parties can be
greatly reduced.

Memory

S
u

b
B

y
tes lay

er
S

u
b

B
y

tes lay
er

S
u

b
B

y
tes lay

er

M
ix

C
o
lu

m
n
 lay

er
M

ix
C

o
lu

m
n
 lay

er
M

ix
C

o
lu

m
n
 lay

er

S
h
iftR

o
w

 lay
er

S
h
iftR

o
w

 lay
er

S
h
iftR

o
w

 lay
er

A
d

d
R

o
u

n
d
K

ey
 lay

er
A

d
d

R
o

u
n

d
K

ey
 lay

er
A

d
d

R
o

u
n

d
K

ey
 lay

er

In
p

u
t reg

ister
In

p
u
t reg

ister
In

p
u
t reg

ister

.
..

O
u
tp

u
t reg

ister
O

u
tp

u
t reg

ister
O

u
tp

u
t reg

ister

.
..

O
u
tp

u
t reg

ister
O

u
tp

u
t reg

ister

.
..

.
..

.
..

C
ircu

it lay
er call

area

Figure 3. Structure for reusing circuit layers in the AES circuit.

4. Construction
4.1. Intuitive Description

Initially, we recall how the evaluator computes the values on the output wires of a gar-
bled circuit. The origin input x is transformed into input wire labels through X ←En(ê, x).
Subsequently, the output wire labels are computed as Y ← Ev(F̂, X). This process involves
the evaluator decrypting the ciphertext F̂ of the garbled circuit using the input wire labels
X. Finally, holding the output wire labels Y and the decoding vector d̂, the evaluator can
compute the output values as y← De(d̂, Y). The decoding vector d̂ usually comprises the
lsbs of the false wire labels corresponding to each output wire and is transmitted from the
generator to the evaluator at the beginning of the protocol. After acquiring all the output
wire labels by evaluating the garbled circuit, the evaluator can compute the output value
y by comparing the lsbs of the output wire labels with the corresponding bits in d̂. If the
lsb of an output wire label matches the corresponding bit in d̂, it means that this wire label
represents the value 0; otherwise, it represents the value 1.

For example, let us assume there is only one output wire, with the false wire label
(A, 1) (where 1 is the lsb) and the true wire label (A⊕ ∆, 0). The generator sends the lsb (1)
of the false wire label (A) as the decoding vector d̂ to the evaluator. When the evaluator
computes an output wire label (A, 1) and finds that the lsb of A matches the bit in d̂, it
learns that A represents the value 0. Conversely, if the evaluator computes an output wire
label (A⊕ ∆, 0) and finds that the lsb of the output wire label does not match the bit in d̂, it
learns that the computed output wire label represents the value 1.

An important observation here is that if the lsb of the output wire label is flipped but
the bit in d̂ remains unchanged, the evaluator will output the opposite value. For instance,

Symmetry 2024, 16, 664 8 of 18

if the output wire label computed by the evaluator is (A, 0) (assuming the lsb of A is flipped
during the evaluation) instead of (A, 1), but the bit in d̂ remains 1, the evaluator will think
that it is acquiring a true wire label and output value 1, even though A represents a false
wire label from the generator’s perspective.

This example illustrates a key point: if the evaluator ultimately obtains an output
value of 1 (0), it is not necessary for them to acquire the true (false) label. By flipping the
lsb of the output wire label, the correct output value can still be achieved. Therefore, for
an S-box with eight input wires and eight output wires, the generator does not need to
encrypt the output wire labels using input wire labels like in the traditional garbled circuits
protocol. Instead, it can simply encrypt eight flip bits. When the evaluator decrypts these
flip bits using the input wire labels they possess, they use these flip bits to flip the lsbs of
these input wire labels. This way, the evaluator can still output the correct values, even
without the correct true or false label.

If using this method to garble an S-box, the generator can produce ciphertexts as
follows: Consider a possible input value of the S-box 0 × 10, and the output will be
S(0 × 10)=0× CA. The corresponding binary representations are 0 × 10 = 0b00010000 and
0 × CA = 0b11001010. Thus, the bits that need to be flipped are 00010000⊕ 11001010 =
11011010, where 1 denotes the need for flipping and 0 denotes no flipping. As depicted in
Figure 4, for the input value 0x10, the generator knows the evaluator will hold the input
wire label combination {A, B, C, D⊕ ∆, E, F, G, H}. Thus, the generator uses A||B||C||D⊕
∆||E||F||G to encrypt the flip bit string (f bs) 11011010 (all possible f bs are shown in
Appendix A Figure A1). Similarly, the generator can produce ciphertexts for all possible
input wire label combinations, resulting in a total of 28 ciphertexts for an S-box. The
evaluator only needs to decrypt one of them. It is important to note that in the AES circuit,
except for the S-box, the rest of the gates are free XOR gates, where the evaluator only needs
to perform the XOR operation between wire labels locally and does not need to decrypt
any ciphertext. Thus, the behavior of flipping lsbs does not affect the circuit evaluation.
The encryption scheme is drawn from [23]. It is important to note that the length of the
output H is σ, and the length of the f bs is 8. Thus, we need a reversible injective mapping
pad: (0, 1)8 ↔ (0, 1)σ, and we use H to encrypt pad(f bs). However, for the convenience of
presentation, in the description of the scheme, we omit the process of mapping the f bs to
(0, 1)σ.

S-box

, A A

, B B

, C C

, D D

, E E

, F F

, G G

, H H

Flase True Flip bits Garbling bits (r=r0r1r2r3r4r5r6r7)

1

1

0

1

1

1

0

0

Output
garblings

Point and
permutation

0m
T

1m
T

255mT

.

.

.

T̂

0r

1r

2r

3r

4r

5r

6r

7r

16For an example input 00010000m

16
(|| || || || || || ||) (11011010)mT H A B C D E F G H pad r

T̂

Figure 4. Garbling an S-box with its input wire labels.

Symmetry 2024, 16, 664 9 of 18

However, the f bs will lead to a significant risk of information leakage due to the public
mapping mode of the S-box. For example, if the evaluator decrypts the f bs = 11011010,
it can promptly deduce that the input value is 0 × 10 and the output value is 0 × CA.
This inference is feasible because the f bs almost exclusively corresponds to the input and
output values.

To address this concern, the generator needs to conceal the real f bs and let the evaluator
decrypt a garbled f bs. The detailed process is as follows: The generator randomly samples
an 8-bit string r, which we refer to as the garbling bits, and records each bit of r on the
corresponding wire. Then, for all 28 possible f bss, the generator XORs r and f bs to obtain
the garbled f bs∗ and uses corresponding input wire label combinations to encrypt f bs∗.
As shown in Figure 4, for the f bs = 11011010, the generator encrypts f bs∗ = 11011010⊕
r0r1r2r3r4r5r6r7 using the corresponding wire label combination: A||B||C||D⊕ ∆||E||F||G.
As a result, when the evaluator holds this input wire label combination, it will decrypt the
11011010⊕ r0r1r2r3r4r5r6r7 instead of the real f bs = 11011010. Although every possible f bs
is garbled by the same r, based on the security of the free XOR gate scheme, the evaluator
can only decrypt one of them, effectively preventing the leakage of the original f bs.

To ensure the correctness of the final output, the generator transmits the garbling
bits to the final output wire according to the circuit’s topology. Finally, instead of sending
the original d̂ to the evaluator, the generator sends d̂∗ = d̂⊕ r∗, where r∗ represents the
garbling bits that are finally recorded on the output wire. Holding d̂∗, the evaluator can
still output the correct value as y← De(d̂∗, Y).

Unfortunately, our garbling scheme for S-boxes can only be applied in the final Sub-
Bytes layer among the 10 SubBytes layers involved in the AES-128 circuit. This limitation
arises from the fact that flipping the lsbs in the S-boxes of the preceding SubBytes layers
would adversely impact the decryption process in subsequent SubBytes layers.

Despite this restriction, the S-box garbling scheme above ensures a reduction in the
number of ciphertexts from 8× 16× 28 to 16× 28, specifically in the final SubBytes layer
while maintaining minimal online time. It should be noted that a SubBytes layer consists of
16 S-boxes.

4.2. Garbling Scheme for the Final SubBytes Layer

Our garbling scheme for AES circuits is shown in Figure 5. For each gate i (i is also
its output wire), the GateInputs(f , i) function returns its input wire indices. For each S-box
i, the GateInputs(f , i) function returns eight input wire indices, and the GateOutputs(f , i)
function returns eight output wire indices. ri denotes the garbling bit recorded on wire i.

Here, we mainly describe the GbSbox algorithm in detail. In the initial step, the
generator randomly samples garbling bits ri for each input wire i. For every conceivable
input (i.e., m0 − m255), the generator first computes the f bs and garbles it by XORing the
f bs with garbling bits recorded on the wire. Then, the generator encrypts these garbled
f bss using the corresponding combination of input wire labels. Finally, the generator uses
the point-and-permutation technique to sort the order of ciphertexts. The transmission
of garbling bits is the same as the evaluation of a gate. For example, for an XOR gate
with input wires a and b and output wire c, rc = ra ⊕ rb (there is no AND gate in the
AES circuit). After transmission of garbling bits from the S-boxes to the output wire, the
generator produces the decoding vector d̂, where for the output wire i, di = lsb(W0

i)⊕ ri.

Symmetry 2024, 16, 664 10 of 18

1

0 1 0

1 0 1 0

0

(,)

$(0,1)

()

$(0,1) , () $(0,1)

, () () 1

{ , , }

k

k

k
i i

i i i i

i i

f

i f

W lsb W

W W lsb W lsb W

e W

procedure

for do

in

 Gb 1 :

 Inputs

 AddRoundKey ShiftRow MixColumn layers

0 0 0

1 0

()

{ , } (,)

(,

i a b

i i

i a b

i

a b f i

W W W

W W

r r r

i

a f i

for do

for do

 Inputregister in topology order

 GateInputs

 Inputregister

 GateInputs
0 0

1 0

*

)

{ }

ˆ

ˆ

i a

i i

i a

j

j j

W W

W W

r r

j

T

F T

in

for do

for do

 previous SubBytes layers

 ‐th S‐box

 GbSbox

 the last SubBytes layer

0

ˆ

ˆ

()

()

ˆˆ ˆ(, ,)

j

j j

i i i

T

F T

i f

d lsb W r

F e d

for do

for do

return

 j‐th S‐box

 GbSbox

 Outputs

ˆ(1 , ,)

()

{ , , }

{ , } (,)

()

k

i i

i a b

i

f F

i f

W X

i

a b f i

W W W

lsb W

procedure

for do

in

for do

 Ev

 Inputs

 AddRoundKey ShiftRow MixColumn layers

 Inputregister

 GateInputs

 () ()

(,)

() ()

{ }

{ , , , , , ,

a b

i a

i a

lsb W lsb W

i

a f i

W W

lsb W lsb W

j

a b c d e f

for do

in

for do

 Inputregister

 GateInputs

 previous SubBytes layers

 ‐th S‐box

* * * * * *

* * * * * * * *

* * *

, } (,)

{ , , , , , , , } (,)

(, ()) , (, ()) ...(, ())

{ }
a a b b h h

g h f j

a b c d e f g h f j

W lsb W W lsb W W lsb W

j

in

for

GateInputs

 GateOutputs

 EvSbox EvSbox EvSbox

 the last SubBytes layer

* * * *

* * * * * * * *

1

{ , , , , , , , } (,)

{ , , , , , , , } (,)

, ... ,

(|| || || || || |

a b g ha b g h

a b c d e f

a b c d e f g h f j

a b c d e f g h f j

W W W W W W W W

fbs pad H W W W W W W

do‐th S‐box

 GateInputs

 GateOutputs

* * *

(, ()|| ()||... ())

0 1 7

| ||)

() () , () () ... () ()

()

() ()

ˆ

a b hg h j lsb W lsb W lsb W

a b ha b h

i i

i i

W W F

lsb W lsb W fbs lsb W lsb W fbs lsb W lsb W fbs

i f

Y W

lsb Y lsb W

Y

for do

return

 Outputs

ˆ ˆ(,)

ˆ

ˆ

i

i i i

e x

e e

X e x

X

procedure

for do

return

 En

ˆˆ(,)

ˆ

()

ˆ

i

i i i

Y d

d d

y d lsb Y

y

procedure

for do

return

 De

 { ()} { ()}

(

$(,)

()

() ()

ˆ

i

i

i

i i

m
m j j

i

r

i

fbs m S m

T H W pad fbs r

T

procedure

for do

0 1

for 0 to 255 do

Input Sbox Input Sbox

point and permutaion

 GbSbox

 GateInputs Sbox)

 { , ... }

ˆ

T T T

T

 0 1 255

return

Figure 5. Garbling scheme for AES circuit. GbSbox∗ and EvSbox∗ denote the original S-box garbling
scheme, and GbSbox denotes our S-box garbling scheme. pad denotes a reversible injective mapping:
(0, 1)8 ↔ (0, 1)σ.

4.3. Discussions on the Additional Cost and Universality

The only additional cost in our S-box garbling scheme is that the generator needs to
sample some garbling bits, record them, and transmit them to the output wire. In fact,
compared to the overhead incurred by the generator to produce the ciphertexts for the AES
circuit, this additional cost is almost negligible.

Apart from the S-box, our garbling scheme can also be applied to other combinational
circuits. However, whether it is worthwhile depends on the depth of the combinational
circuit and the number of input and output wires. There are two scenarios where our
scheme becomes impractical: (1) when the combinational circuit inherently contains few
AND gates and (2) when the combinational circuit has too many input wires. In the first

Symmetry 2024, 16, 664 11 of 18

scenario, the cost of evaluating gate by gate is minimal, rendering the integration of the
combinational circuit unnecessary. In the second scenario, an excessive number of input
wires results in a substantial number of ciphertexts, making it impractical. An S-box
has eight input wires, resulting in 28 ciphertexts, which is acceptable. However, if we
decompose the S-box into various gates for evaluation, it may contain more than 58 AND
gates, leading to a high cost of evaluating gate by gate. Therefore, our scheme is highly
suitable for garbling S-boxes.

5. Security
5.1. Cryptographic Assumption and Security Model
5.1.1. Random Oracle

Random oracle (RO) is an ideal hash function that maps (0, 1)∗ → (0, 1)σ. For any
distinct query, RO outputs a random σ−bit string, which cannot be predicted. For the
hash function we used, H(t0 ⊕ a∆||t1 ⊕ b∆||...||t7 ⊕ h∆) must be indistinguishable from a
random σ-bit string for any randomly chosen values of {t0, t1...t7}, {a, b, c...h}.

5.1.2. Semi-Honest Model

The adversary in the semi-honest model strictly follows the protocol but tries to learn
more information from the message it receives. For a protocol π: (x, y)→ (fP0(x, y), fP1(x, y)),
P0 inputs x and outputs fP0(x, y), while P1 inputs y and outputs fP1(x, y). The security
for party Pi can be proven if there is a simulator that can use P1−i’s input and output
to compute the complete view of Pi. That is to say, adversary A cannot distinguish the
distribution of the simulator’s view Viewπ

S (x, y) and the real party Pi’s view Viewπ
Pi
(x, y)

in polynomial time, except for a negligible possibility. Viewπ
Pi
(x, y) consists of its input,

output, randomness, and all messages it receives.

5.2. Security Analysis of Our Garbling Scheme for S-Boxes

Intuitively speaking, the security of our garbling scheme is totally based on the security
of free XOR [15]. The only difference is that we use input wire labels to encrypt garbled
f bss instead of output wire labels. We now analyze whether there is any information
leakage when the evaluator decrypts a garbled f bs. Based on the security analysis in [15],
the evaluator can only decrypt one of the ciphertexts, while the rest of the ciphertexts look
random in its view. Therefore, the real f bs is equal to being encrypted by a one-time pad r,
and the evaluator cannot learn what the real f bs is.

In the following, we demonstrate the simulation process for our garbling scheme.
Instead of showing the simulation of the whole garbling scheme, we mainly focus on the
process of garbling the S-box, where the evaluator inputs the eight input wire labels of
the S-box and the generator inputs 28 real f bss. Finally, the evaluator outputs a garbled
f bs, and the generator outputs nothing. For the security requirement, the evaluator cannot
learn the real f bs. Thus, we only need to simulate the view of the evaluator.

The simulator S randomly samples 28 − 1 σ-bit strings as the rest of the garblings for
the S-box. Upon receiving the input wire labels and the garbled f bss from the evaluator,
S encrypts the garbled f bss using the input wire labels. S arranges the ciphertexts in the
corresponding position according to the lsbs of the input wire labels and outputs garblings
FS such that Viewπ

S (x, y) = FS.

Theorem 1. For any probabilistic polynomial-time (PPT) adversary A:∣∣∣Pr[AL(Viewπ
S (x, y)) = 1]

∣∣∣−∣∣∣Pr[AL(Viewπ
E (x, y)) = 1]

∣∣∣ < ε(σ)
(1)

where ε is a negligible function and σ is the security parameter.

Symmetry 2024, 16, 664 12 of 18

Proof. First, the encrypted garbled f bss are the same in the views of both S and the
evaluator. Furthermore, H(t0⊕ a∆||t1⊕ b∆||...||t7⊕ h∆) is indistinguishable from a random
σ-bit string for any randomly chosen values of {t0, t1...t7}, {a, b, c...h}. Thus, the rest of
the garblings F in Viewπ

E (x, y) are indistinguishable from the corresponding garblings
FS in Viewπ

S (x, y). Finally, we can conclude that Viewπ
S (x, y) is indistinguishable from

Viewπ
E (x, y).

6. Experiment

In this section, we experimentally implement our garbling scheme. Our platform is an
R7-7840HS at 3.80GHz running on Windows 11. We write our codes in C++. We do not use
any hardware description language to instantiate the AES circuit. Instead, we construct the
topology structure of the AES circuit using C++ objects. To reuse the circuit units, we use
the circuit layer model introduced in Section 3.4.

6.1. Gate Class

In our implementation, we create a Gate class to maintain all gate objects. Each gate
object contains an output wire and a number of input wires, and the gate shares the same
index with its output wire. For a gate with only one input wire, the value on the output
wire equals that on the input wire. For a gate with more than one input wire, the value on
the output wire equals the XOR of the values of all input wires.

6.2. AES Circuit

We demonstrate the construction of the MixColumn, ShiftRow, AddRoundKey, and
SubBytes layers in detail. As shown in Figure 3, each circuit layer is connected between
an input register and an output register. These registers are composed of 128 gate objects.
Each group of eight gates, sequentially arranged from 0 to 127, constitutes a byte within
the AES state matrix, as illustrated in Figure 6.

gate0

gate1

gate2

gate3

gate4

gate5

gate6

gate7

gate8

gate9

gate10

gate11

gate12

gate13

gate14

gate15

gate120

gate121

gate122

gate123

gate124

gate125

gate126

gate127

...

S0,0 S1,0 S3,3

Input register

S0,0

S1,0

S2,0

S3,0 S3,1 S3,2 S3,3

S2,1 S2,2 S2,3

S1,1 S1,2 S1,3

S0,1 S0,2 S0,3

State matrix

Figure 6. Input/output register.

6.2.1. ShiftRow Layer

The ShiftRow operation only involves the conversion of positions between individual
bytes, so we only need to concatenate the gate in the input register with the corresponding
gate in the output register according to the shift rule.

Symmetry 2024, 16, 664 13 of 18

Here, we give the concatenation rule (Figure 7) between the input register and the
output register. igate[i] denotes the i-th gate of the input register, ogate[i] denotes the i-th
gate of the output register, and← denotes the concatenation.

For i=0,1,2,3;
 For j=0,1,2,3

 For z=0,1,2..7

for (int i = 0; i < 4; i++)
{

for (int j = 0; j < 4; j++)
{

for (int z = 0; z < 8; z++)
{

ogate[z + j * 8 + i * 32] igate[z + j * 8 + (i+j mod 4) * 32];
}

}

Figure 7. Concatenation rule in the ShiftRow layer.

6.2.2. MixColumn Layer

The core computation of the MixColumn layer involves performing a matrix multipli-
cation as follows:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s2,3

 =

s′0,0 s′0,1 s′0,2 s′0,3
s′1,0 s′1,1 s′1,2 s′1,3
s′2,0 s′2,1 s′2,2 s′2,3
s′3,0 s′3,1 s′3,2 s′2,3

where the computation of a single column is

s′0,j = (2 · s0,j)⊕ (3 · s1,j)⊕ s2,j ⊕ s3,j

s′1,j = s0,j ⊕ (2 · s1,j)⊕ (3 · s2,j)⊕ s3,j

s′2,j = s0,j ⊕ s1,j ⊕ (2 · s2,j)⊕ (3 · s3,j)

s′3,j = (3 · s0,j)⊕ s1,j ⊕ s2,j ⊕ (2 · s3,j)

Here, the multiplication is over GF(28). The computation above is equivalent to

s′0,j = (2 · s0,j)⊕ (2 · s1,j)⊕ s1,j ⊕ s2,j ⊕ s3,j

s′1,j = s0,j ⊕ (2 · s1,j)⊕ (2 · s2,j)⊕ s2,j ⊕ s3,j

s′2,j = s0,j ⊕ s1,j ⊕ (2 · s2,j)⊕ (2 · s3,j)⊕ s3,j

s′3,j = (2 · s0,j)⊕ s0,j ⊕ s1,j ⊕ s2,j ⊕ (2 · s3,j)

Furthermore, the operation 02 that multiplies a byte x can be divided into

y7 = x6, y6 = x5, y5 = x4, y4 = x3 ⊕ x7,
y3 = x2 ⊕ x7, y2 = x1, y1 = x0 ⊕ y7, y0 = x7

where {02} · x = y, x = x7x6x5x4x3x2x1x0, y = y7y6y5y4y3y2y1y0.
After the decomposition of the computation, the MixColumn layer can be executed

only by the XOR gate. We show the MixColumn layer in Figure 8, where Xtimes executes
the {02} · x computation, and 5wayXOR is a gate with five input wires, executing the XOR
operation. The construction of Xtimes and 5wayXOR is shown in Figure 9.

Symmetry 2024, 16, 664 14 of 18

Xtimes Xtimes Xtimes Xtimes

gate0-7 gate8-15 gate16-23 gate24-31

5wayXOR 5wayXOR 5wayXOR 5wayXOR

M
ixC

o
lu

m
n

 layer

Input register

gate0-7 gate8-15 gate16-23 gate24-31

Output register

One column

...

...

...

Figure 8. MixColumn layer.

gate0 gate1 gate2 gate3 gate4 gate5 gate7gate6

gate0 gate1 gate2 gate3 gate4 gate5 gate7gate6

Input register

Xt
im

es

gate

5w
ay

XO
R

Figure 9. Xtimes and 5wayXOR.

6.2.3. AddRoundKey Layer

The core computation of the AddRoundKey layer is the XOR operation between two
bytes. Except for the input register, which stores the state matrix, an extra 128-bit register
is needed for the generator to input the round key. It is important to note that the key
expansion algorithm can be executed locally by the generator. The AddRoundKey layer is
shown in Figure 10.

gate0 gate1 gate127

gate0 gate1 gate127 gate0 gate1 gate127... ...

...

128-bit register Input register

AddRoundKey layer

gate0 gate1 gate127...

Output register

Figure 10. AddRoundKey layer.

Symmetry 2024, 16, 664 15 of 18

6.3. Performance Evaluation

In our experimental setup, we use σ = 256-bit wire labels and instantiate H as SHA-
256 (the output length is 256 bits). The performance of our garbling scheme is shown in
Table 5, which shows the respective runtimes of the two parties in each circuit layer. We
disregard the cost of OTs for the wire label transmission from the generator to the evaluator.

Table 5. The runtime performance of our garbling scheme for AES circuits.

Evaluator

AddRoundKey ShiftRow MixColumn SubBytes(the last) Overall online time
Time (×10−6 s) 2.8 2.2 4.1 83 3171

Generator

AddRoundKey ShiftRow MixColumn SubBytes(the last) Overall offline time
Time (×10−6 s) 2.1 1.4 0.5 21,248 788,061

On the generator’s side, the main cost includes two parts: (1) producing the output
wire labels for each XOR gate, which includes the XOR operation between the input wire
labels and offset value, and (2) producing the ciphertexts for the S-boxes. Both parts can be
executed completely offline. On the evaluator’s side, the main cost in the AddRoundKey,
ShiftRow, and MixColumn layers is the XOR operation between the input wire labels to
compute the output wire labels. In the SubBytes layer, the main cost is the hash function
invocations, which must be executed online. Therefore, fewer hash calls lead to better
online performance of the protocol.

We also compare our garbling scheme with schemes in previous works (the data are
derived from Table 1 in [22]). The results (Table 6) suggest that our garbling scheme has
minimal online time due to the fewer calls for the hash function. However, the overall time
increases, which we believe is mainly because we do not use any hardware description
language to instantiate the AES circuit. Furthermore, since it is impossible to reproduce
the scheme in [22], and the implementation platform is also different, this comparison can
only be used as a general reference to show that the runtime performance of the proposed
scheme is comparable with the state of the art.

Table 6. Comparison between our garbling scheme and schemes in previous works.

Scheme Online Time (s) Overall Time (s)

[31] 0.4 3.3
[22] 0.008 0.2

Ours 0.003 0.8

7. Conclusions

In conclusion, taking into account the special structure of the S-box and the AES circuit,
this paper proposes a garbling scheme for S-boxes in the final SubBytes layer, which further
reduces the ciphertext size of secure AES computation. Compared to the best result in
previous works, which requires 2048 ciphertexts and 4 hash calls (minimal online time) or
116(174) ciphertexts and 116(58) hash calls (minimal total time), our garbling scheme only
requires 256 ciphertexts and 1 hash call. In addition, if the optimized S-box structure is
used instead of the original AES S-box to enhance security, it would increase the number of
ciphertexts required by the minimum total time scheme, unlike our scheme.

In our implementation, we introduce the circuit layer model to reuse circuit units
in the AES circuit, where each algorithm is designed into a circuit layer, and only one
copy is stored in memory. Finally, we demonstrate the construction of each circuit layer
and experimentally evaluate the performance. The experimental data show that our
garbling scheme achieves better online performance compared to schemes in previous
works. However, the non-optimal overall time may be due to the fact that we did not use
any hardware description language to implement the AES circuit.

Symmetry 2024, 16, 664 16 of 18

To be honest, the extensibility of the proposed garbling scheme in this paper is rela-
tively limited. In future work, we will focus on applying the proposed garbling scheme to
all SubBytes layers to further improve the efficiency of secure AES computation. Future
work will also focus on extending the idea of the ciphertext reduction scheme proposed in
this paper to universal Yao’s garbled circuits.

Author Contributions: Conceptualization, X.Y. and B.L.; methodology, X.Y.; software, X.Y.; vali-
dation, X.Z. and J.C.; formal analysis, X.W.; investigation, Y.Y. and F.W.; resources, B.L. and K.C.;
writing—original draft preparation, X.Y. and F.W.; writing—review and editing, X.W. and Y.Y.; visual-
ization, K.C.; supervision, J.C. and F.W.; project administration, B.L. and J.C.; funding acquisition, B.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 61972350, 61972124, 11974096; and in part by the Zhejiang Provincial Natural Science
Foundation of China under Grant No. LY23F020013 and Zhejiang Provincial basic public welfare
research project of China (No. LGG22F030019) and Ningbo City’s Key Technology Breakthrough Plan
for “Science and Technology Innovation Yongjiang 2035” (No. 2024Z261) and the Ningbo 2025 Major
Project of Science and Technology Innovation under Grant 2021Z109, 2020Z021, 2021Z010, 2023Z040
and Major Technological Innovation Projects of Ningbo High tech Zone (No. 2022BCX050002).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author due to (specify the reason for the restriction).

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Flip Bit String for All Possible Inputs of the S-Box

Figure A1 shows the corresponding f bs for each possible input of the AES S-box. The
red text indicates that the input and f bs are injective, and the number characterizes the
security of our garbling scheme.

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 01100011 01111101 01110101 01111000 11110110 01101110 01101001 11000010 00111000 00001000 01101101 00100000 11110010 11011010 10100101 01111001
1 11011010 10010011 11011011 01101110 11101110 01001100 01010001 11100111 10110101 11001101 10111000 10110100 10000000 10111001 01101100 11011111
2 10010111 11011100 10110001 00000101 00010010 00011010 11010001 11101011 00011100 10001100 11001111 11011010 01011101 11110101 00011111 00111010
3 00110100 11110110 00010001 11110000 00101100 10100011 00110011 10101101 00111111 00101011 10111010 11011001 11010111 00011010 10001100 01001010
4 01001001 11000010 01101110 01011001 01011111 00101011 00011100 11100111 00011010 01110010 10011100 11111000 01100101 10101110 01100001 11001011
5 00000011 10000000 01010010 10111110 01110100 10101001 11100111 00001100 00110010 10010010 11100100 01100010 00010110 00010001 00000110 10010000
6 10110000 10001110 11001000 10011000 00100111 00101000 01010101 11100010 00101101 10010000 01101000 00010100 00111100 01010001 11110001 11000111
7 00100001 11010010 00110010 11111100 11100110 11101000 01001110 10000010 11000100 11001111 10100000 01011010 01101100 10000010 10001101 10101101
8 01001101 10001101 10010001 01101111 11011011 00010010 11000010 10010000 01001100 00101110 11110100 10110110 11101000 11010000 10010111 11111100
9 11110000 00010000 11011101 01001111 10110110 10111111 00000110 00011111 11011110 01110111 00100010 10001111 01000010 11000011 10010101 01000100
A 01000000 10010011 10011000 10101001 11101101 10100011 10000010 11111011 01101010 01111010 00000110 11001001 00111101 00111000 01001010 11010110
B 01010111 01111001 10000101 11011110 00111001 01100000 11111000 00011110 11010100 11101111 01001110 01010001 11011001 11000111 00010000 10110111
C 01111010 10111001 11100111 11101101 11011000 01100011 01110010 00000001 00100000 00010100 10111110 11010100 10000111 01110000 01000101 01000101
D 10100000 11101111 01100111 10110101 10011100 11010110 00100000 11011001 10111001 11101100 10001101 01100010 01011010 00011100 11000011 01000001
E 00000001 00011001 01111010 11110010 10001101 00111100 01101000 01110011 01110011 11110111 01101101 00000010 00100010 10111000 11000110 00110000
F 01111100 01010000 01111011 11111110 01001011 00010011 10110100 10011111 10111001 01100000 11010111 11110100 01001100 10101001 01000101 11101001

flip bit string

Figure A1. f bs lookup table.

References
1. Yao, A.C.C. How to generate and exchange secrets. In Proceedings of the 27th Annual Symposium on Foundations of Computer

Science (Sfcs 1986), Toronto, ON, Canada, 27–29 October 1986; IEEE: Piscataway, NJ, USA, 1986; pp. 162–167. [CrossRef]
2. Huang, Y.; Shen, C.H.; Evans, D.; Katz, J.; Shelat, A. Efficient secure computation with garbled circuits. In Proceedings of the

Information Systems Security: 7th International Conference, ICISS 2011, Kolkata, India, 15–19 December 2011; Procedings 7;
Springer: Berlin/Heidelberg, Germany, 2011; pp. 28–48. [CrossRef]

3. Mohassel, P.; Riva, B. Garbled circuits checking garbled circuits: More efficient and secure two-party computation. In Proceedings
of the Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 2013;
Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2013; pp. 36–53. [CrossRef]

4. Frederiksen, T.K.; Nielsen, J.B.; Orlandi, C. Privacy-free garbled circuits with applications to efficient zero-knowledge. In
Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
26–30 April 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 191–219. [CrossRef]

https://ieeexplore.ieee.org/document/4568207
https://doi.org/10.1007/978-3-642-25560-1_2
https://doi.org/10.1007/978-3-642-40084-1_3
https://doi.org/10.1007/978-3-662-46803-6_7

Symmetry 2024, 16, 664 17 of 18

5. Pinkas, B.; Schneider, T.; Smart, N.P.; Williams, S.C. Secure two-party computation is practical. In Proceedings of the Advances in
Cryptology–ASIACRYPT 2009: 15th International Conference on the Theory and Application of Cryptology and Information
Security, Tokyo, Japan, 6–10 December 2009; Proceedings 15; Springer: Berlin/Heidelberg, Germany, 2009; pp. 250–267. [CrossRef]

6. Pinkas, B.; Schneider, T.; Zohner, M. Scalable private set intersection based on OT extension. ACM Trans. Priv. Secur. (TOPS) 2018,
21, 1–35. [CrossRef] [CrossRef]

7. Pinkas, B.; Schneider, T.; Zohner, M. Faster private set intersection based on {OT} extension. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security 14), San Diego, CA, USA, 20–22 August 2014; pp. 797–812. [CrossRef]

8. Rindal, P.; Schoppmann, P. VOLE-PSI: Fast OPRF and circuit-PSI from vector-OLE. In Proceedings of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 17–21 October 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 901–930. [CrossRef]

9. Chor, B.; Kushilevitz, E.; Goldreich, O.; Sudan, M. Private information retrieval. J. ACM (JACM) 1998, 45, 965–981. [CrossRef]
[CrossRef]

10. Chor, B.; Gilboa, N.; Naor, M. Private information retrieval by keywords. Citeseer 1997. [CrossRef]
11. Freedman, M.J.; Ishai, Y.; Pinkas, B.; Reingold, O. Keyword search and oblivious pseudorandom functions. In Proceedings of the

Theory of Cryptography: Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA, 10–12 February 2005;
Proceedings 2; Springer: Berlin/Heidelberg, Germany, 2005; pp. 303–324. [CrossRef]

12. Yang, Y.; Lu, H.; Weng, J. Multi-user private keyword search for cloud computing. In Proceedings of the 2011 IEEE Third
International Conference on Cloud Computing Technology and Science, Athens, Greece, 29 November–1 December 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 264–271. [CrossRef]

13. Lian, B.; Cui, J.; Chen, H.; Zhao, X.; Wang, F.; Chen, K.; Ma, M. Trusted Location Sharing on Enhanced Privacy-Protection IoT
Without Trusted Center. IEEE Internet Things J. 2024, 11, 12331–12345. [CrossRef] [CrossRef]

14. Kiss, Á.; Liu, J.; Schneider, T.; Asokan, N.; Pinkas, B. Private set intersection for unequal set sizes with mobile applications. Proc.
Priv. Enhancing Technol. 2017, 2017, 177–197. [CrossRef] [CrossRef]

15. Kolesnikov, V.; Schneider, T. Improved garbled circuit: Free XOR gates and applications. In Proceedings of the Automata,
Languages and Programming: 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, 7–11 July 2008; Proceedings, Part
II 35; Springer: Berlin/Heidelberg, Germany, 2008; pp. 486–498. [CrossRef]

16. Artuğer, F.; Özkaynak, F. A new post-processing approach for improvement of nonlinearity property in substitution boxes.
Integration 2024, 94, 102105. [CrossRef] [CrossRef]

17. Sokolov, A.; Radush, V. A method for synthesis of S-boxes with good avalanche characteristics of component Boolean and
quaternary functions. J. Discret. Math. Sci. Cryptogr. 2022, 26, 561–572. [CrossRef] [CrossRef]

18. Khan, H.; Hazzazi, M.M.; Jamal, S.S.; Hussain, I.; Khan, M. New color image encryption technique based on three-dimensional
logistic map and Grey wolf optimization based generated substitution boxes. Multimed. Tools Appl. 2023, 82, 6943–6964. [CrossRef]
[CrossRef]

19. Alali, A.S.; Ali, R.; Jamil, M.K.; Ali, J.; Gulraiz. Dynamic S-Box Construction Using Mordell Elliptic Curves over Galois Field and
Its Applications in Image Encryption. Mathematics 2024, 12, 587. [CrossRef] [CrossRef]

20. Ali, J.; Jamil, M.K.; Alali, A.S.; Ali, R. A medical image encryption scheme based on Mobius transformation and Galois field.
Heliyon 2024, 10, e23652. [CrossRef] [CrossRef] [PubMed]

21. Ali, R.; Jamil, M.K.; Alali, A.S.; Ali, J.; Afzal, G. A robust S box design using cyclic groups and image encryption. IEEE Access
2023, 11, 135880–135890. [CrossRef] [CrossRef]

22. Huang, Y.; Evans, D.; Katz, J.; Malka, L. Faster secure Two-Party computation using garbled circuits. In Proceedings of the 20th
USENIX Security Symposium (USENIX Security 11), San Francisco, CA, USA, 8–12 August 2011. [CrossRef]

23. Zahur, S.; Rosulek, M.; Evans, D. Two halves make a whole: Reducing data transfer in garbled circuits using half gates. In
Proceedings of the Advances in Cryptology-EUROCRYPT 2015: 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, 26–30 April 2015; Proceedings, Part II 34; Springer: Berlin/Heidelberg,
Germany, 2015; pp. 220–250. [CrossRef]

24. Bellare, M.; Hoang, V.T.; Keelveedhi, S.; Rogaway, P. Efficient Garbling from a Fixed-Key Blockcipher. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 19–22 May 2013; pp. 478–492. [CrossRef]

25. Naor, M.; Pinkas, B.; Sumner, R. Privacy preserving auctions and mechanism design. In Proceedings of the 1st ACM Conference
on Electronic Commerce, Denver, CO, USA, 3–5 November 1999; pp. 129–139. [CrossRef]

26. Beaver, D.; Micali, S.; Rogaway, P. The round complexity of secure protocols. In Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, Baltimore, MD, USA, 14–16 May 1990; pp. 503–513. [CrossRef]

27. Kolesnikov, V.; Mohassel, P.; Rosulek, M. FleXOR: Flexible garbling for XOR gates that beats free-XOR. In Proceedings of the
Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 2014;
Proceedings, Part II 34; Springer: Berlin/Heidelberg, Germany, 2014; pp. 440–457. [CrossRef]

28. Rosulek, M.; Roy, L. Three halves make a whole? Beating the half-gates lower bound for garbled circuits. In Proceedings of the
Annual International Cryptology Conference, Virtual Event, 16–20 August 2021; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 94–124. [CrossRef]

29. Malkhi, D.; Nisan, N.; Pinkas, B.; Sella, Y. Fairplay-Secure Two-Party Computation System. In Proceedings of the USENIX
Security Symposium, San Diego, CA, USA, 9–13 August 2004; Volume 4, p. 9. [CrossRef]

https://doi.org/10.1007/978-3-642-10366-7_15
.
http://doi.org/10.1145/3154794
https://dl.acm.org/doi/10.5555/2671225.2671276
https://doi.org/10.1007/978-3-030-77886-6_31
.
http://dx.doi.org/10.1145/293347.293350
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=70d2a37d5af527dfc345691e2f978f6e46dc4efe
https://doi.org/10.1007/978-3-540-30576-7_17
https://10.1109/CloudCom.2011.43
.
http://dx.doi.org/10.1109/JIOT.2023.3336337
.
http://dx.doi.org/10.1515/popets-2017-0044
https://doi.org/10.1007/978-3-540-70583-3_40
.
http://dx.doi.org/10.1016/j.vlsi.2023.102105
.
http://dx.doi.org/10.1080/09720529.2021.1964727
.
http://dx.doi.org/10.1007/s11042-022-13612-6
.
http://dx.doi.org/10.3390/math12040587
.
http://dx.doi.org/10.1016/j.heliyon.2023.e23652
http://www.ncbi.nlm.nih.gov/pubmed/38192806
.
http://dx.doi.org/10.1109/ACCESS.2023.3337443
https://dl.acm.org/doi/10.5555/2028067.2028102
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1109/SP.2013.39
https://doi.org/10.1145/336992.337028
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/978-3-662-44381-1_25
https://doi.org/10.1007/978-3-030-84242-0_5
https://dl.acm.org/doi/10.5555/1251375.1251395

Symmetry 2024, 16, 664 18 of 18

30. Zahur, S.; Evans, D. Obliv-C: A Language for Extensible Data-Oblivious Computation. Cryptol. Eprint Arch. 2015, 1153. Available
online: https://eprint.iacr.org/2015/1153 (accessed on 30 November 2015). [CrossRef]

31. Henecka, W.; Kögl, S.; Sadeghi, A.R.; Schneider, T.; Wehrenberg, I. TASTY: Tool for automating secure two-party computations.
In Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, IL, USA, 4–8 October 2010;
pp. 451–462. [CrossRef]

32. Naor, M.; Pinkas, B. Oblivious transfer and polynomial evaluation. In Proceedings of the Thirty-First Annual ACM Symposium
on Theory of Computing, Dallas, TX, USA, 23–26 May 1999; pp. 245–254. [CrossRef]

33. Naor, M.; Pinkas, B. Efficient oblivious transfer protocols. In Proceedings of the SODA, Washington, DC, USA, 7–9 January 2001;
Volume 1, pp. 448–457. [CrossRef]

34. Bellare, M.; Hoang, V.T.; Rogaway, P. Foundations of garbled circuits. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, Raleigh, NC, USA, 16–18 October 2012; pp. 784–796. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://eprint.iacr.org/2015/1153
https://eprint.iacr.org/2015/1153
https://doi.org/10.1145/1866307.1866358
https://doi.org/10.1145/301250.301312
https://dl.acm.org/doi/10.5555/365411.365502
https://ia.cr/2012/265

	Introduction
	Yao's Garbled Circuits and Secure AES Computation
	Gaps and Motivation
	Our Idea

	Related Works
	Preliminaries
	Notations
	Garbled Circuit
	Free XOR Gate
	Reusable Circuit Layers in the AES Circuit

	Construction
	Intuitive Description
	Garbling Scheme for the Final SubBytes Layer
	Discussions on the Additional Cost and Universality

	Security
	Cryptographic Assumption and Security Model
	Random Oracle
	Semi-Honest Model

	Security Analysis of Our Garbling Scheme for S-Boxes

	Experiment
	Gate Class
	AES Circuit
	ShiftRow Layer
	MixColumn Layer
	AddRoundKey Layer

	Performance Evaluation

	Conclusions
	Appendix A
	References

