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Abstract: This paper presents the numerical solution of the heat conduction model with a fractional
derivative of the Riemann–Liouville type with respect to the spatial variable. The considered mathe-
matical model assumes the dependence on temperature of the material parameters (such as specific
heat, density, and thermal conductivity) of the model. In the paper, the boundary conditions of the
first and second types are considered. If the heat flux equal to zero is assumed on the left boundary,
then the thermal symmetry is obtained, which results in a simplification of the problem and the
possibility of considering only half the area. The numerical examples presented in the paper illustrate
the effectiveness and convergence of the discussed computational method.

Keywords: heat conduction; fractional derivative; temperature-dependent parameters; thermal
symmetry

1. Introduction

Models with fractional derivatives have gained a lot of popularity in recent times.
Derivatives of this type are widely used in modeling many phenomena and turn out to
be an effective tool for mathematical simulations [1–6]. In paper [1], the authors focus on
the fractional Maxwell model of viscoelastic materials, which is a generalization of the
classic Maxwell model to fractional-order derivatives. The generalized Caputo fractional
derivative is used in the mathematical model under discussion. The paper [2] concerns
the fractional-order cancer model for stem cells and chemotherapy. The authors use the
Atangana–Baleanu in the Liouville–Caputo sense operator in the considered mathematical
model. The paper also presents the numerical solution with examples. In paper [6], the
authors compare various mathematical models applied for modeling the heat conduction
in a porous material. Experimental data show that models with a fractional derivative,
in particular the model with Riemann–Liouville derivative, are more precise than the
traditional model with integer-order derivatives.

In the scientific literature, one can find many references concerning the methods for
solving differential equations with fractional derivatives. Depending on the needs and the
model under consideration, very different methods can be used. For example, the paper [7]
presents the numerical methods for solving the selected nonlocal models with a fractional
derivative. In particular, the authors focus on the finite element, finite difference, and
spectral methods. Next, in the paper [8], the adaptive predictor corrector method for
the numerical solution of generalized Caputo-type initial-value problems is investigated.
The considered numerical method is, in some way, an extension of the Adams–Bashforth–
Moulton method to the fractional case. More examples of various types of numerical
methods dedicated to the models with fractional derivatives can be found, among others,
in the papers [9–11].

The paper [12] presents an overview of the variable-order fractional differential equa-
tions and their applications. The authors also provide a literature review in terms of
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numerical methods for solving the posed problems. In the paper [13], the nonlinear cou-
pled time fractional derivatives are discretized through the finite difference method along
with the L1 algorithm applied to the problem of the Darcy medium natural convection flow
of an MHD nanofluid. In [14], the author deals with the fractional heat conduction models
and their applications. Additionally, a review of numerical methods for solving the heat
conduction models using the integer- and fractional-order derivatives for homogeneous or
inhomogeneous materials is included in this paper. Some of the presented methods were
implemented in a specially created tool in the MatLab platform. The paper also contains
some computational examples. The paper [15] focuses on the time fractional dual-phase-
lagging (DPL) heat conduction model in a double-layered nanoscale thin film. In order to
solve the considered equation, the authors use a finite difference scheme with second-order
spatial convergence accuracy in a maximum norm. Two- and three-dimensional fractional
heat conduction equations are considered in paper [16]. The problem is discussed in a
rectangular domain and is solved with the use of the Bernstein operational matrices of
derivatives. The paper also presents some numerical examples. Next, the paper [17] focuses
on the mathematical model of fractional-order dual-phase-lag heat conduction in a compos-
ite spherical medium. In the model under consideration, the Caputo derivative with respect
to time is used. The solution to the problem is presented in the form of a double series of
spherical Bessel functions and Legendre functions. As shown in this article, the order of
the fractional derivative has a significant impact on the temperature distribution in the
considered area.

The motivation for this work was delivered by the desire to investigate the possibility
of using the fractional derivative with respect to space in solving the problem of recon-
structing the aerothermal heating for thermal protection systems of space vehicles [18–20].
The authors plan to compare the results obtained for the model with classical derivative
and the model with a fractional derivative. In the classical model under consideration,
the material parameters depend on temperature, and the heat conduction coefficient occurs
as a derivative with respect to space. Therefore, there is a need to solve the direct problem
described by the equation considered in this work.

The authors are not aware of any available papers in which exactly the same or a
more general form of the heat conduction equation is considered including the fractional
derivative with respect to space.

2. Mathematical Model

The heat conduction equation with a fractional derivative is considered [21–23]:

c(T) ϱ(T)
∂T(x, t)

∂t
=

∂

∂x

(
k(T)

∂βT(x, t)
∂xβ

)
+ f (x, t), (1)

x ∈ (0, lx), t ∈ (0, t∗), β ∈ (0, 1), where c, ϱ, and T are the specific heat, density, and
temperature, respectively; k(·) = ŵ k̂(·) is the scaled thermal conductivity [W/(m2−β K)],
that is, the thermal conductivity multiplied by the scaling constant ŵ with a numerical
value of one and unit [mβ−1] selected so that the right and left units of the equation are
the same [6,24,25]; k̂ is the thermal conductivity [W/(m K)]; and f denotes a function
describing the efficiency of internal heat sources.

As a fractional derivative, the Riemann–Liouville fractional derivative is applied [23,26]:

∂βT(x, t)
∂xβ

=
1

Γ(1 − β)

d
dx

∫ x

0
(x − s)−β T(s, t) ds β ∈ (0, 1), (2)

where Γ(·) is the gamma function.
On the left boundary of the considered region, the second kind of boundary conditions

is given:

−k̂(T)
∂T(x, t)

∂x

∣∣∣
x=0

= q(t), t ∈ (0, t∗) (3)
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or the first kind of boundary conditions of the form

T(0, t) = φa(t), t ∈ (0, t∗). (4)

If in condition (3) it is assumed that q(t) = 0, then there is a thermal symmetry in the
area. As a consequence of this, only a half of the area is considered. Whereas, on the right
boundary, the first type of boundary conditions is given:

T(lx, t) = φb(t), t ∈ (0, t∗). (5)

The temperature distribution at the initial moment is also known:

T(x, 0) = ψ0(x), x ∈ [0, lx]. (6)

Obviously, the compatibility of relevant boundary conditions is assumed at the com-
mon points.

3. Numerical Procedure

For solving the discussed problem, the implicit scheme of the finite difference
method [27–29] is used with an appropriate approximation of the Riemann–Liouville
derivative. In order to apply the finite difference method, the considered area is discretized
by introducing the following mesh:

S :=
{
(xi, tτ) : xi = i ∆x, i = 0, 1, . . . , nx; tτ = τ ∆t, τ = 0, 1, . . . , nt

}
, (7)

where ∆x = lx
nx

, ∆t = t∗
nt

.
The Riemann–Liouville derivative at point xi at time tτ+1 is approximated as fol-

lows [30–32] for β ∈ (0, 1):

∂β(x, t)
∂xβ

∣∣∣∣∣
(xi ,tτ+1)

≈ 1
(∆x)β

i+1

∑
j=0

ω(j) Tτ+1
i−j+1 =: A, (8)

where

ω(j) =
Γ(j − β)

Γ(−β) Γ(j + 1)
. (9)

Whereas, at point xi−1 at time tτ+1, the approximation of the form is obtained as
follows:

∂β(x, t)
∂xβ

∣∣∣∣∣
(xi−1,tτ+1)

≈ 1
(∆x)β

i

∑
j=0

ω(j) Tτ+1
i−j =: B. (10)

Next, the backward difference quotient is used for the first component of the right
side of Equation (1):

∂

∂x

(
k(T)

∂βT(x, t)
∂xβ

)∣∣∣∣∣
(xi ,tτ+1)

≈ ki A − ki−1 B
∆x

, (11)

where ki = k(Tτ
i ). For the derivative with respect to time, the backward difference quotient

is also used
∂T(x, t)

∂t

∣∣∣∣∣
(xi ,tτ+1)

≈
Tτ+1

i − Tτ
i

∆t
. (12)

The boundary condition of the second kind is approximated by an equation of the form

k0
(
−3 Tτ+1

0 + 4 Tτ+1
1 − Tτ+1

2
)
= 2 ∆x qτ+1. (13)
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The rate of convergence of approximation (10) is equal to O(∆x) [31]. The rate of
convergence of the difference scheme (11) is also equal to O(∆x). However, the rate of
convergence of the approximation of the second kind of boundary conditions (10) is equal
to O(∆x2). In turn, the rate of convergence of the difference scheme with respect to time
is equal to O(∆t) (see [27,29]). Therefore, the rate of convergence of the whole system is
O(∆x + ∆t).

Putting all the above equations together and taking into account the boundary condi-
tion of the first kind defined on the right boundary of the considered region, the system of
linear equations of the form given below is obtained.

Aτ Tτ+1 = wτ . (14)

The non-zero elements of matrix A are as follows:

a11 = −3 k0, a12 = 4 k0, a13 = −k0,

ai+1,j+1 = −b2 ki+1 ω(i + 1 − j) + b2 ki ω(i − j), i = 1, . . . , nx − 1, j = 0, . . . , i − 1,

ai+1,i+1 = di+1 − b2 ki+1 ω(1) + b2 ki ω(0), i = 1, . . . , nx − 1,

ai+1,i+2 = −b2 ki+1 ω(0), i = 1, . . . , nx − 1,

anx+1,nx+1 = 1.

where

b2 = (∆x)−1−β, di =
c(Tτ

i ) ϱ(Tτ
i )

∆t
.

Whereas, the elements of vector w are of the form

w1 = 2 ∆x qa(τ ∆t),

wi = di Tτ
i + f

(
(i − 1)∆x, (τ − 1

2
)∆t

)
, i = 2, . . . , nx

wnx+1 = φb(τ ∆t).

Matrix Aτ contains the temperature-dependent material parameters; therefore, it
changes at each step of the calculations. We obtain the system of equations of dimension
(nx + 1)× (nx + 1). In the case of boundary conditions of the first kind (4), the first row of
matrix A changes, in which the only non-zero element is a11 = 1. The first coordinate of
vector w also changes and is equal to w1 = φa(τ ∆t).

The algorithm was implemented in the Wolfram language of the Mathematica 14.0
package, and the calculations were performed on a computer with an Intel Core i7-8565U,
1.80 GHz, 2.00 GHz processor equipped with 16 GB of RAM memory.

4. Numerical Calculations
4.1. Example 1

The following data appearing in Equation (1) are assumed in the considered example:
β = 0.5, lx = 1, t∗ = 1, k̂(T) = 2 T + 1, c(T) = T2/5, ϱ(T) = T + 0.3, and

f (x, t) = − 8√
π

e−t x3/2 − 176
5
√

π
e−2 t x9/2 − 3

50
e−3 t x9 − 1

5
e−4 t x12.

The initial condition and boundary conditions are described by means of the functions

ψ0(x) = x3, q(t) = 0, φb(t) = e−t.

Thus, the example concerns the region with thermal symmetry. The above data are
selected so that the exact solution of the problem is known. This solution is given by
function ue(x, t) = e−t x3.
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The calculations were performed for various meshes (nx × nt). The constant mesh
over time nt = 500 and the variable mesh over space nx ∈ {10, 50, 100, 200, 500} were taken
as the first one. Then, the mesh over space was fixed at nx = 500, whereas the mesh over
time was changed nt ∈ {10, 50, 100, 200, 500}.

Figure 1 shows the exact solution and the approximate solution obtained for the
densest mesh 500 × 500. The approximation errors are so small that the differences are not
noticeable in the presented figures. However, in Figure 2a, the exact solution for x = 0.5
and the approximate solutions obtained for different densities of mesh over space are
compared. The errors of the presented approximate solutions are plotted in Figure 2b. In
the case of the sparsest mesh (nx = 10), the maximum error is equal to 0.0385; for nx = 50,
it decreases to the value of 0.0081; for nx = 100, it takes the value of 0.0042; for nx = 200, it
is equal to 0.0023; and finally, it is 0.0011 for nx = 500.

In turn, Figure 3 presents the errors of approximate solutions for cross-sections t = 0.25
and t = 0.5 obtained for different mesh densities over space. For the sparsest mesh
(nx = 10), the maximum error is at the level of 0.02013 for t = 0.25 and 0.00955 for t = 0.5.
As the mesh becomes more dense over space, these errors decrease. For the densest mesh
(nx = 500), they are equal to 0.00076 and 0.00048, respectively.

Figure 4 illustrates the approximation errors for the cross-sections t = 0.3 and t = 1
obtained for different meshes over time. For t = 0.3, the maximum error decreases from
the value of 0.01756 for the mesh nt = 10 to the value of 0.00069 for nt = 500. In the case
of t = 1, the maximum obtained errors are smaller, and they decrease from the value of
0.00952 to the value of 0.00019, respectively.

Tables 1 and 2 show the maximum and mean absolute errors calculated for the entire
region. Table 1 contains the results for various meshes over space, while Table 2 presents
the results for various meshes over time. In the case of various meshes over space, the max-
imum error determined for the entire region decreases from the value of 3.85 × 10−2 to the
value 1.17 × 10−3. Whereas, the mean errors decrease from the value of 8.03 × 10−3 to the
value of 3.64 × 10−4. Next, in the case of various meshes over time, the maximum error de-
creases from the value of 1.94 × 10−2 to the same value as above. Similarly, the mean error
decreases from the value of 8.35 × 10−2 to the same value as for the various meshes over
space. This is the obvious consequence of the fact that the last mesh (nx × nt = 500 × 500)
is the same in both cases.

(a) (b)

Figure 1. Exact solution (a) and approximate solution for the 500 × 500 mesh (b).
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Figure 2. Exact solution for x = 0.5 and approximate solutions obtained for various mesh densities
over space (a) together with errors of these approximations (b).
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Figure 3. Errors of approximate solutions for t = 0.25 (a) and for t = 0.5 (b) obtained for various
mesh densities over space.
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Figure 4. Errors of approximate solutions for t = 0.3 (a) and for t = 1.0 (b) obtained for various mesh
densities over time.

Table 1. Absolute errors of the solution determined for various meshes over space (mesh over time:
nt = 500).

nx Max Mean

10 3.85 × 10−2 8.03 × 10−3

50 8.12 × 10−3 1.94 × 10−3

100 4.26 × 10−3 1.07 × 10−3

200 2.32 × 10−3 6.28 × 10−4

500 1.17 × 10−3 3.64 × 10−4
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Table 2. Absolute errors of the solution determined for various meshes over time (mesh over space:
nx = 500).

nt Max Mean

10 1.94 × 10−2 8.35 × 10−3

50 4.90 × 10−3 2.00 × 10−3

100 2.81 × 10−3 1.10 × 10−3

200 1.79 × 10−3 6.42 × 10−4

500 1.17 × 10−3 3.64 × 10−4

Figure 5 shows the experimental estimation of the convergence rate. In the case
of space variable, the approximate value of 0.9 is obtained, while in the case of time
variable, the obtained convergence rate is around 0.73. Theoretical values are correct for
sufficiently small steps ∆x and ∆t. Therefore, the differences between theoretical values
and their estimations are most likely a consequence of excessively large steps and the
approximation errors.

(a)

-10 -9 -8 -7 -6 -5 -4 -3
-11

-10

-9

-8

-7

-6

-5

-4

z=log2[�x]

y
=
lo
g
2
[e

�

x
]

y=-1.79902 + 0.900519 z

(b)

-9 -8 -7 -6 -5 -4 -3

-10

-9

-8

-7

-6

z=log2[�t]

y
=
lo
g
2
[e

�

t]

y=-3.4337 + 0.730389 z

Figure 5. Experimental estimation of the convergence rate with respect to the space variable (a) and
time variable (b).

4.2. Example 2

In the second example, the following data appearing in the Equation (1) are assumed:
β = 0.7, lx = 1, t∗ = 1, k̂(T) = T2 + 1, c(T) = 2, ϱ(T) = T/4, and

f (x, t) =
1

10 x7/10

(
5 x27/10 cos(t) (sin(t) + x)−

− 20 x2 (sin(t) + x) (sin(t) + 2 x)

(
sin(t)
Γ
( 13

10
) + 2x

Γ
( 23

10
))−

−
20 x

(
x2 (sin(t) + x)2 + 1

)
Γ
( 23

10
) − 3

(
x2 (sin(t) + x)2 + 1

)( sin(t)
Γ
( 13

10
) + 2 x

Γ
( 23

10
))).

The initial condition and boundary conditions are described by the functions

ψ0(x) = x2, φa(t) = 0, φb(t) = 1 + sin t.

The exact solution is defined, then, by the function ue(x, t) = x2 + x sin t.
As in the previous example, the calculations were performed for various meshes

(nx ×nt). First, a constant mesh is assumed over time, that is, nt = 500, and the mesh density
changes over space, that is, nx ∈ {10, 50, 100, 200, 500}. Then, the mesh is fixed over space,
that is, nx = 500; the mesh density changes over time, that is, nt ∈ {10, 50, 100, 200, 500}.
Figure 6 illustrates the distribution of absolute error obtained for the densest mesh 500× 500.
The maximum error in the entire region is equal to 0.0037, while the mean error is 0.00154.
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In Tables 3 and 4, the maximum and mean absolute errors calculated for the entire
considered region are collected. Table 3 contains the results for various meshes over space,
while Table 4 includes the results for various grids over time. In the case of various meshes
over space, the maximum error determined for the whole investigated region decreases
from the value 2.02 × 10−1 to the value 3.7 × 10−3. Whereas, the mean error decreases from
the level 6.51 × 10−2 to the level 1.54 × 10−3. Considering the case of different meshes over
time, the maximum error reduces from the value of 2.75 × 10−2 to the same value as above.
Similarly, the mean error reduces from the level of 1.28 × 10−2 to the same level as for the
various mesh densities over space.

Figure 7a shows the exact solution for x = 0.3 and the approximate solutions obtained
for various mesh densities over space. The errors of the presented approximate solutions
are displayed in Figure 7b. In the case of the sparsest mesh (nx = 10), the maximum error
is equal to 0.1846; for nx = 50, it decreases to the value 0.0338; for nx = 100, the maximum
error takes the value 0.0169; for nx = 200, it is equal to 0.0086; and finally, the maximum
error is at the level of 0.0036 for the mesh nx = 500.

However, the errors of approximate solutions for the cross-sections t = 0.5 and t = 1
obtained for various mesh densities over space are plotted in Figure 8. For the sparsest
mesh (nx = 10), the maximum error is at the level of 0.1183 for t = 0.5 and 0.2016 for t = 1.
As the mesh becomes more dense over space, these errors decrease. That is, for nx = 50,
the maximum errors are equal to 0.0219 and 0.0346, respectively; for nx = 100, they take
the values 0.011 and 0.0172; and for nx = 200, they are equal to 0.0057 and 0.0087. Finally,
in the case of the densest mesh (nx = 500), the maximal errors of the approximate solutions
are 0.0025 and 0.0037, respectively.

Next, Figure 9 presents the approximation errors for the cross-sections t = 0.5 and
t = 1 obtained for various meshes over time. For t = 0.5, the maximum error decreases
from the value of 0.02503 for the mesh nt = 10, through the value of 0.00426 for the mesh
nt = 100, ultimately reaching the value of 0.00253 for nt = 500. In the case of t = 1, the
obtained maximum errors are slightly larger, and they decrease, respectively, from the
value of 0.0262, through the value of 0.00524, finally reaching the value of 0.0037.

Figure 6. Error of approximate solution for the 500 × 500 mesh.
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Table 3. Absolute errors of the solution determined for various meshes over space (mesh over time:
nt = 500).

nx Max Mean

10 2.02 × 10−1 6.51 × 10−2

50 3.47 × 10−2 1.32 × 10−2

100 1.72 × 10−2 6.74 × 10−3

200 8.73 × 10−3 3.50 × 10−3

500 3.70 × 10−3 1.54 × 10−3

Table 4. Absolute errors of the solution determined for various meshes over time (mesh over space:
nx = 500).

nt Max Mean

10 2.75 × 10−2 1.28 × 10−2

50 7.33 × 10−3 3.63 × 10−3

100 5.24 × 10−3 2.47 × 10−3

200 4.27 × 10−3 1.89 × 10−3

500 3.70 × 10−3 1.54 × 10−3
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Figure 7. Exact solution for x = 0.3 and approximate solutions obtained for various mesh densities
over space (a) together with errors of these approximations (b).
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Figure 8. Errors of approximate solutions for t = 0.5 (a) and for t = 1.0 (b) obtained for various mesh
densities over space.
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Figure 9. Errors of approximate solutions for t = 0.5 (a) and for t = 1.0 (b) obtained for various mesh
densities over time.

5. Conclusions

This paper discusses the mathematical model of heat conduction applying the
Riemann–Liouville fractional derivative with respect to the spatial variable. In the consid-
ered model, the material coefficients, such as specific heat, density, and thermal conductivity,
depend on temperature. Mixed boundary conditions, i.e., of the first and second kind, are
assumed in the examined model. If the given heat flux q(t) = 0, then the thermal symmetry
is obtained in the investigated process. Section 3 describes the numerical solution of the
considered problem in the form of an implicit finite difference scheme. The computational
examples, presented in Section 4, illustrate the effectiveness of the examined method.
The examples are structured so that they illustrate the impact made by the density of the
used mesh on the accuracy of the approximate results. The presented research shows that
the elaborated approach is effective for solving this type of problem. In the case of the
200× 500 mesh (nx × nt), the computation time was approximately 100 s and the maximum
absolute error in both considered examples was less than 0.009. Taking the denser mesh,
that is 500 × 500, increased the computation time to approximately 420 s and reduced the
maximum errors to 0.0037.

In earlier papers, the authors dealt with the reconstruction of aerothermal heating for
thermal protection systems of space vehicles [18–20]. In the model considered there, it was
assumed that the material parameters depended on temperature and the heat conduction
coefficient occurred as a derivative with respect to space. In the future, the authors plan to
investigate the possibility of using the model in which the internal derivative with respect
to space variable will be a derivative of a fractional order. For this aim, it will be necessary
to solve the direct problem described by Equation (1). The algorithm presented in the
current paper will be used for this purpose.
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