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Abstract: Fluorescein sodium is a very important compound for a wide spectrum of applications,
from which medical applications prevail. Despite this, there are very few studies in the literature
related to the structure and fundamental properties of fluorescein sodium and its solutions, with
most of the studies dealing with fluorescein. The purpose of the present article is to determine some
parameters of the fluorescein sodium molecule approaching the quantum-mechanical modeling
and experimental solvatochromism in both binary and ternary solutions. For data analysis, several
theoretical models were applied. The results highlight the intermolecular interactions involved
in the spectral shift of the electronic absorption band of fluorescein sodium when dissolved in
different solvents or binary solvents and allowed the estimation of the difference between the
interaction energy in molecular pairs of the type of fluorescein sodium — solvent 1 and fluorescein
sodium—solvent 2. By applying a variational method, the dipole moment in the first excited state
of the fluorescein sodium molecule and the angle between the dipole moments in the ground and
excited states, respectively, were estimated. These results are useful for a better understanding of the
behavior of fluorescein sodium when dissolved in different solvents or combinations of solvents, to
develop new practical applications.

Keywords: fluorescein sodium; solvatochromism; dipole moment; intermolecular interactions

1. Introduction

Fluorescein sodium is the well-known disodium salt of fluorescein, also known as
uranine. Its molecular formula is CyoHj9NayOs and the structural picture of this compound
is shown in Scheme 1.
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Scheme 1. Skeletal formula of fluorescein sodium.
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While it is less known than fluorescein, mainly because of a widespread confusion
between them in the literature, fluorescein sodium is more widely used in applications
because of its very good solubility in water. Regarding the synthesis of fluorescein sodium,
this was achieved by the Nobel Prize for Chemistry recipient Johann Friedrich Wilhelm
Adolf von Baeyer in 1871. Related to this, an initial point of confusion occurs, since most of
the authors cite the seminal paper of Baeyer [1] that reports the synthesis of fluorescein,
but with no reference to fluorescein sodium, while the discovery of this one was reported
by the same author in the same year, same journal, volume, and issue, but in a different
article [2].

Fluorescein sodium is an organic fluorescent dye that is yellowish-red in color, with
peak excitation at 494 nm and peak emission at 512 nm (in water). It is a highly fluorescent
compound, even in small quantities. The intensity of the emitted light depends on the
concentration and pH of the solution. Having a low molecular weight of only 376.27 Da,
fluorescein sodium easily diffuses through most of the body fluids but cannot pass through
the retinal vascular endothelium or the pigment epithelium [3].

The first application of fluorescein sodium was successfully completed in 1877 and
reported in 1878 [4]. By using fluorescein sodium as a water tracer, geologist Adolf Knop
proved that a part of the Danube water flows into the Rhine through sinkholes near
Immendigen and reappearing about 12 km away, near Aachtopf, as the river Radolfzeller
Aach, a tributary of the Rhine.

However, much more important for the future applications of this compound was
the result communicated by the Nobel Prize for Physiology recipient Paul Ehrlich, who
used fluorescein sodium for the first time in animal physiology to observe the pathway of
secretion of aqueous humor in the rabbit’s eye [5-7]. This has opened the way to a wide
range of fluorescein sodium applications in many fields of medicine. Thus, in 1910, Burke
administrated fluorescein sodium in coffee to examine the choroid and retina [8], while Sorsby
described its path in the retinal blood vessels in 1939 [9]. A turning point in the application
of fluorescein sodium in medicine was the establishing of the fundamental principles of
fluorescence angiography of the ocular fundus in 1959, by Harald Novotny and David Alvis,
two students of ophthalmology, their results being published in 1961 [10]. This technique was
strongly improved over the years, now being routine in ophthalmological diagnosis.

Another turning point in the medical applications of fluorescein sodium was its first
use in neurosurgery, in 1948, for the localization and resection of intracranial tumors [11].
The application was based on the observation of Moore, one year before [12], that fluorescein
sodium can be used as an agent for differentiation of normal and malignant (gastric
carcinoma) tissues. Koc et al. evaluated the use of fluorescein sodium in glioblastoma
multiforme surgery-guiding [13], concluding that, despite being a simple procedure, the
number of patients having gross total resection significantly increased from 55% to 83%. By
using filters and a high dose of fluorescein sodium, Okuda et al. succeeded in distinguishing
tumor from brain surface and tumor vessels from neighboring normal vessels [14]. As an
alternative to using high doses, Kuroiwa et al. developed a modified operative microscope
having the same ocular lens for operation and fluorescence visualization [15]. As in the case
of fluorescence angiography, fluorescence image-guided surgery and fluorescence-guided
resection have become routine neurosurgical practice during tumor surgery [16-18], also
in the case of pediatric patients [19]. Recently, it was proven that fluorescein sodium is a
helpful microsurgical tool also for the biopsy of intramedullary spinal cord lesions [20], as
well as in the surgery of spinal arteriovenous malformation [21].

In 1913, Strauss used fluorescein sodium in the diagnosis of kidney function [22],
while Cipolla et al. used it in 1953 to highlight the rupture of the urinary bladder [23]. In
1943, Lange and Krewer [24] developed the dermofluorometer, a device that quantitatively
records skin fluorescence, Lund and Lund introduced in 1971 dynamic fluorescence an-
giography [25], while Scheffler and Rieger developed in 1989 digital video fluorescence
perfusography [26]. Now, fluorescein sodium is the only fluorophore routinely used in
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experimental dermatology for in vivo study of the skin when using non-invasive devices
such as confocal scanning laser microscopy, being widely safe [27].

Fluorescein sodium contains functional groups such as the carboxyl group, carbonyl
group, and phenolic hydroxyl group, which are ubiquitous in various drugs and interact
with carriers. Because of this, it is often used as a drug model molecule in the studies
of drug carriers [28,29]. Moreover, it was proven that fluorescein sodium is a general
substrate of the entire human family of organic anion transporting polypeptides, which are
transmembrane proteins that influence the pharmacokinetics and drug—-drug interactions
of several clinically relevant compounds [30].

In confocal endomicroscopy investigation of the gastrointestinal tract, fluorescein
sodium is used as an intravenously administrated contrast agent, being safe and well
tolerated [31]. Also, for the detection of early-stage gastric cancer, a novel method based on
the use of fluorescein sodium was developed, namely fluorescein electronic endoscopy [32].

In gynecology, fluorescein sodium is used as a contrast agent during colposcopy for
the detection of abnormal (usual malignant) cervical tissue [33].

Fluorescein sodium is used in dentistry to detect and monitor early caries lesions,
distinguishing between active and inactive lesions [34]. The technique is called dye-
enhanced quantitative light-induced fluorescence (DEQLEF).

However, fluorescein sodium is not used only in medicine, but also in other branches
of science. Regarding its first application, fluorescein sodium is still used as a fluorescent
tracer for cave water flows [35,36] or petroleum applications [37]. Fluorescein sodium is
intensively used in the development of sensors for a large area of applications [38—42]. By
investigating the electrical conductivity of fluorescein sodium, it was found that this salt is
a p-type organic semiconductor [43]. This result opened a huge range of applications in
semiconductor electronics [44—47], but also in the direction of improvement of the efficiency
of solar cells [48,49]. In fluid technology, a new technique based on the use of fluorescein
sodium was developed for temperature measurements, pH tracking, and acid-base mixing,
namely two-color ratiometric pH-sensitive-inhibited planar laser-induced fluorescence [50].
In a very recent application, fluorescein sodium was used as a tracer to measure the
concentration field of boric acid by planar laser-induced fluorescence, with implications for
the study of turbulence in nuclear reactors [51].

The above short review on the applications of fluorescein sodium highlights the neces-
sity to further investigate the properties of this molecule, especially in the interaction with
other compounds. Two research methods can be very useful for this purpose: experimental
solvatochromic measurements and computational molecular modeling.

Solvatochromism involves the shift of the visible absorption and/or emission (fluo-
rescence) of the spectral bands, and sometimes the change of the band intensity, or even
its shape, when the studied compound is introduced into a solvent or a binary solvent
mixture [52]. The shift of the spectral band depends on the nature and strength of the
intermolecular forces acting between the solute and solvent molecules and can be correlated
with different parameters of the molecules, like the dipole moment and polarizability in
the ground and excited states, respectively, involved in the quantum transition, dielectric
constant, refractive index, ionization potential, density, and molecular mass.

Solvatochromic investigation of fluorescein was already performed, and interesting
results were reported in the literature [53-55]. Golubeva et al. [56] recorded the absorption
and fluorescence spectra of fluorescein sodium in water and dimethyl sulfoxide (DMSO) at
different values of pH, as well as in healthy and pathological human tissues, drawing some
conclusions about the formation of hydrogen bonds. To our knowledge, this is the only
study of fluorescein sodium involving solvatochromism.

Molecular modeling involves molecular mechanics and quantum chemical calculations
to provide structures, relative stabilities, properties, and spectra of isolated molecules,
or of molecules interacting with different solvents. Powerful software like Spartan or
Gaussian were developed to be used by scientists. They provide a wide range of modern
computational methods and basis sets.
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Here, a comprehensive solvatochromic study of the disodium salt of fluorescein is
presented, together with results provided by quantum-mechanical molecular modeling. Its
UV-Vis absorption spectrum was recorded in 15 solvents, both protic and aprotic ones, and
the shift of the spectral bands was analyzed by approaching different models, obtaining
information on the intermolecular forces involved in the interactions. By approaching
a variational method, the dipole moment of fluorescein sodium in the excited state was
estimated.

Three binary solvent mixtures (water + ethanol, water + methanol, and methanol +
dimethylacetamide) were prepared in different ratios and the visible absorption spectral
bands of the fluorescein sodium were recorded in these mixtures. The data were analyzed
by employing three models and information on the hydrogen bonds’ strength was obtained.

Spartan’l4 software [57] was used for quantum-mechanical modeling of two isomers of
fluorescein sodium, obtaining the optimized structures, some molecular parameters in the
ground state, as well as the maps of electrostatic charge, highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), density, electrostatic potential,
and local ionization potential.

2. Materials and Methods
2.1. Materials

All used chemical compounds were purchased from Sigma Aldrich (now Merck),
St. Louis, MO, USA. Their purity is specified in Table 1. The double distilled water was
produced in our laboratory.

Table 1. The purity of used chemical compounds.

Compound Purity
Fluorescein sodium BioReagent, suitable for fluorescence
Butan-1-ol ACS reagent, >99.4%
Hexan-1-ol Reagent grade, 98%
Pentan-1-ol Puriss. p.a., ACS reagent, >99.0%
Propan-1-ol ACS reagent, >99.5%
Butan-2-ol ReagentPlus®, >99.5%.
Propan-2-ol ACS reagent, >99.5%
Propan-2-one CHROMASOLV®, for HPLC, >99.8%
Acetonitrile E CHROMASOLV®, for HPLC, for UV, >99.9%
N,N-Dimethylformamide (DMF) ACS reagent, >99.8%
Dimethyl sulfoxide (DMSO) ACS reagent, >99.9%
Ethanol Puriss. p.a. absolute, >99.8%
Methanamide ReagentPluS®, >99.0%
Methanol ACS reagent, >99.8%
N,N-Dimethylacetamide (DMA) Spectrophotometric grade, >99%

The binary and ternary solutions of fluorescein sodium were prepared with a con-
centration of 10~* mol/L, by weighing fluorescein sodium powder with a Mettler balance
XSR105 (Mettler Toledo, Columbus, OH, USA) having a precision of 107> g, while the
solvent volumes were measured with a micropipette.

2.2. Molecular Modeling

For the optimization of the molecular structure, the density functional B3LYP
method [58,59] was applied, together with the basis set 6-311G* [60], by using Spartan’14
(Wavefunction, Inc., Irvine, CA, USA) software [57].

2.3. Spectral Measurements

The spectral measurements were performed at room temperature with a QE65000
Ocean Optics spectrometer (Ocean Insight, Orlando, FL, USA), having a resolution of 0.76
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nm. For illuminating the samples, a deuterium-tungsten-halogen source was used, with a
spectral range 200-1100 nm.

2.4. Theoretical Models
2.4.1. Binary Solutions

The solvent influence on the visible band of fluorescein sodium in binary solutions was
estimated by two models. The first one considers the empirical parameters introduced by
Kamlet and Taft [61,62], that describe the hydrogen bond donor («) and the hydrogen bond
acceptor () interactions, together with Lippert-Mataga [63,64] empirical dependences on
dielectric constant (¢) and refractive index (n):

vV =19+ le(S) + sz(?l) + C3B + Cua, (1)

where v and vy are the wavenumbers corresponding to the maximum of the electronic
absorption band in solution and for isolated molecule, respectively, C;—Cy are correlation
coefficients, while f(¢) and f(n) are given by the following relations:

flo) ==, @
2 _
foy =" +;. 3)

In Equation (1), the term C; f (¢) describes the orientation-induction interactions, while
the term C, f(n) describes the dispersion interactions.

The second model used for the estimation of the solvent influence on the visible band
of fluorescein sodium is the one proposed by Kamlet and Taft [61,62,65], which, besides the
empirical parameters « and f, considers a new parameter, 77¥, modeling the non-specific
interactions (orientation-induction—dispersion), leading to the following relation:

V="Vy+mmx+np+ pa, 4)

where m, n, and p are correlation coefficients.

The third model used for the estimation of the solvent influence on the visible
band of fluorescein sodium is the one proposed by Catalan [66], which offers the next
empirical relation:

V =7vy+aSdP + bSP + c¢SB + dSA, (5)

where a-d are correlation coefficients. The solvent dipolarity scale SdP, polarizability scale
SP, basicity scale SB, and acidity scale SA have similar significances with the corresponding
ones from Equation (1).

By experimentally measuring v and applying a multiple linear regression in the
Equations (1), (4) and (5), the correlation coefficients C1—-Cy, m—p, and a—d, respectively, as
well as Vg, can be estimated and, in this way, the contribution of each type of intermolecular
interaction to the total spectral shift of the visible electronic absorption band can also
be evaluated.

2.4.2. Ternary Solutions

For investigating the spectral data recorded with the ternary solutions of fluorescein
sodium, three theoretical models were approached: statistical cell model of ternary so-
lutions [67,68], Suppan model [69], and Bosch—Rosés model [70-73]. All these models
estimate the composition of the solute molecule’s first solvation shell, which generally
differs from that one in the whole solution. Because of the dependence of the intermolec-
ular interaction energy on the distance between the molecules (R) of the type ~R %, the
composition of the first solvation shell is very important in the evaluation of the electronic
absorption band’s spectral shift.



Symmetry 2024, 16, 673

6 of 27

The statistical cell model of ternary solutions considers the solute molecule’s first
solvation shell as a macrocanonical ensemble, its reservoir being the surrounding solution.
In this frame, the probability to have N1 molecules of solvent 1 and N, molecules of solvent
2, with N7 + N» = N, in the first solvation shell is as follows:

1 N! Np(#q—wq) Nop(pp—wo)
P(N{,Np) = — ——— kT kT , 6
(N, N2) = 2 gt ¢ ©
with Zy the partition function,
_wy _w\N
ZN = (xle KT+ xpe kT) . (7)

In the above equations, y is the chemical potential, w is the interaction energy in the
pair of molecules solute—solvent, k is the Boltzmann constant, T is the temperature and x is
the molecular fraction of the solvent in the whole solution. Indices 1 and 2 refer to the two
solvents, respectively.

Equation (6) can be written in the following form:

!

_ Ni N>

P(NLNZ) = W}?l Py~ 8)

with o

xie kT
pP1 = wll wy 1 (9)

xX1e kT + xpe  *T
x e*%
2

p2 = T (10)

_ _w
Xx1e kT 4 xpe T

and p; + pp = 1, highlighting the relative statistical average weights p; and pp, which prove
to be the ratio between the average number of molecules of solvent 1 (N1) and solvent 2
(N»), respectively, and the total number of solvent molecules (N) in the first solvation shell,

_ N

P= g (11)
_ N

P2 =45 (12)

Furthermore, by considering that the wavenumber in the maximum of the electronic
absorption band of the solute can be calculated as

Uy = p1v1 + pava, (13)

where the indices ¢, 1 and 2 refer to ternary solution and binary solutions solute + solvent 1
and solute + solvent 2, respectively, the model [68] establishes the next relations to estimate
the statistical average weights p1 and p»:

V=1
PL= 5 o0, (14)
T — Ty
=1t 1
P2= 5, (15)

Also, the following relation was established:

Pr_ 1 W2 W
lnpz—lnx2+ T (16)
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which allows the estimation of the difference w, — w; by preparing a series of ternary
solutions with different ratios x; /x; and measuring the corresponding v;.

Suppan model [69] considers that the most dipolar solvent will preferentially solvate
the solute, the mole fraction of the two solvents in the first solvation shell (11 /y>) being
related to that one in the bulk solution by the following equation:

2 _ 22 (17)

A X1

where Z is the index of preferential solvation [74]. e~ < can be estimated from the spectral
data by using the following relation:

1 243 X7 _Z>
S — N P A 18
AE W Ag(e)y ( X1 (18)
where
AE = ]/lC(Vt — VQ), (19)
2(e —1
o) =21 (20)

In Equations (18)—(20), 2 and y are the molecular radius and the electric dipole moment of
the solute’s molecule, respectively, & is the Planck constant, and c is the speed of light. By
linear regression of the dependence 1/AE versus x3/x1, e~% can be calculated as the ratio
between the slope and the intercept and introduced into Equation (17) for the estimation of
the first solvation shell’s composition.

The Bosch-Rosés model also takes into consideration the specific interactions (e.g.,
hydrogen-bonding interactions), both solute-solvent and solvent-solvent. Starting from a
preliminary model [70] and a theory developed by Skwierczynski and Connors [75], which
consider a two-step solvent exchange model described by the chemical equations

m m
I(Sl)m -+ ESZ = I(Slz)m -+ 551, (21)

1(51),, + mSy = I1(S2),, +mSy, (22)

where [ is the solvatochromic indicator (solute), m is the number of solvent molecules from
the cybotactic region, and Sy, Sp, and S1, denote the two solvents and the 1:1 complex of
the two solvents, respectively, Bosch-Rosés model uses m = 2 [71-73]. Two preferential
solvation parameters, f,/1 and f15,1, were introduced, describing the tendency of the
solvatochromic indicator to be solvated by S, and 515, respectively, in respect to S1:

_ /n 23

fan /) (23)
Y12/

fiz1 = P (24)

where y1, ¥, and 1, are the mole fractions of the solvent 1, solvent 2, and the 1:1 complex
of the two solvents, respectively, in the cybotactic region, with y1 + y» + y12 = 1.

In this frame, the transition energy corresponding to the maximum of the electronic
absorption band in the ternary solution, E;, for various bulk mole fractions is as follows:

Et = y1E1 + v2Ex + y12E12, (25)
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with Ej, Ep, and Ej, as the transition energies corresponding to the maximum of the
electronic absorption bands in the binary solutions with the solvent 1, solvent 2, and the 1:1
complex of the two solvents, respectively. From Equations (23)—(25) the following results:

Eix2+E 24+ E
E = 1%] + Exfa/1%5 + 12f12/1x1x2' (26)

X2+ fo133 + f12/1%1%2

Considering x1 + x = 1, Equation (26) becomes

E — Eyx? 4+ Exfyyp(1— x1)* + Enafray1%1 (1 — x1)

2 . (27)
X3+ fo1(1—x1)" + froy121(1 — x1)

By nonlinear regression of Equation (27) (E; function of x1), the parameters Eqy, f5 /1,
and f15/1 can be estimated and the mole fractions in the cybotactic region can be calculated
with the following relations:

X7

Y1 = p (28)

x% + f2/1x% + fi2/1%1%2

fanxj

Y2 = , (29)

X3+ 2133 + fra/131%2

X1X2

Vi = fi2n1 (30)

X2+ f21%5 + fiaj1x1%2

2.4.3. Variational Method to Determine the Dipole Moment of a Molecule in Excited State

A variational method to determine the dipole moment of a molecule in excited state
was proposed by Dorohoi in 2018 [76]. From theoretical models developed for the binary
solutions under the assumption that specific interactions can be neglected, the next relations
were obtained for the correlation coefficients C; and C, that appear in Equation (1) [77,78]:

2ug (g — pecos @) ng — e
C = 3kT , 31
! hcad + ad 1)
2 .2
Mo — Mg 2ug(pg — pecos ) ng — e 3ag— e Il
— _ _3kT 2 2
= hea heca3 3k ad 2 a3 L+1L/ (32)

where o and p, are the dipole moments of the solute’s molecule in the ground and
excited states, respectively, ¢ is the angle between them, a¢ and «, are the polarizabilities
of the solute’s molecule in the ground and excited states, respectively, c¢ is the speed of
light, h is the Planck constant, k is the Boltzmann constant, T is the temperature, a is
the radius of the solute’s molecule, I, and I, are the ionization potential of the solute’s
and solvent’s molecules, respectively. The molecular radius a can be calculated with the
following equation:

a=— (33)

with V and A being the volume and the surface of the solute’s molecule in the ground state.
The values of V, A, ¢, and &y can be determined from quantum-mechanical modeling,
after the optimization of solute’s molecule, while the values of I,, and I, can be taken from
different handbooks and databases or calculated from quantum-mechanical modeling data.

Three unknown quantities exist in the Equations (31) and (32): p,, a., and ¢. To
determine the values of these quantities, the variational method proposes to give different
values for the angle ¢ and calculate the corresponding values for p, and a.. The better
choice corresponds to the assumption made by McRae [79], according to which a, = ag. In
this way, the values of the dipole moment of the solute’s molecule in excited state, as well
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as of the angle between the dipole moment of the solute’s molecule in excited and ground
states, respectively, can be estimated.

3. Results and Discussion
3.1. Quantum-Mechanical Analysis

Two isomers of fluorescein sodium were analyzed, which were called fluorescein
sodium A (FS-A) and fluorescein sodium B (FS-B). The optimized structure of the two
isolated molecules, obtained with the B3LYP method and the basis set 6-311G* in the frame
of Spartan’14 software, are shown in Figure 1. As can be observed, the isomer FS-B has a
higher degree of symmetry than the isomer FS-A.

(b)

Figure 1. Optimized structure of the two isomers of fluorescein sodium: (a) FS-A; (b) FS-B. The

arrows indicate the orientation of the electrical dipole moment of the molecule. The colors code is as
follows: gray—C, white—H, red—oxygen, and yellow—sodium.

Table 2 contains the main energetic and electro-optical parameters of the two isomers
of fluorescein sodium. The first isomer, FS-A, is more stable, having both the total energy
and the energies of the frontier orbitals (HOMO—highest occupied molecular orbital,
LUMO—lowest unoccupied molecular orbital) lower than those of the isomer FS-B. On
the other hand, the isomer FS-B has lower dimensions (lower values of volume and area),
which also determine a lower value of the polar surface area by comparing with that one
of FS-A. However, the value of PSA for both isomers is lower than 90 Az, so they can
penetrate both the cell membrane and the blood-brain barrier [80], a very useful property
for medical applications. A very interesting property, but not unexpected considering the
molecular structure, is that one revealed by the hydrogen bond donor count, which is 0.
This means that the fluorescein sodium molecule cannot participate in hydrogen bonding
with other molecules by proton donation. However, hydrogen bonding can function, but
only by proton acceptance.

Figure 2 shows the electrostatic charges near the atoms of the fluorescein sodium
molecule (both isomers), expressed in elementary charge units. The high degree of charge
symmetry can be observed in the upper part of the isomer FS-B. The strength of both ionic
bonds of FS-B is higher than the corresponding ionic bonds of the isomer FS-A because of
the higher absolute values of electrostatic charge near the corresponding Na and O atoms.

HOMO and LUMO maps of the two isomers of fluorescein sodium are illustrated in
Figures 3 and 4, respectively. Looking at Figure 3, the shape of HOMO is almost similar,
but with opposite phases in molecular orbital wave function (given by the two colors, red
and blue). An interesting shape of LUMO maps can be observed in Figure 4, with the
distribution well localized around a single ionic bond Na-O.
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Table 2. Main energetic and electro-optical parameters of the two isomers of fluorescein sodium.

Property FS-A FS-B
Energy (au) —1468.17154 —1468.14433
Exomo (eV) —4.02 —3.80
ELUMO (eV) —2.38 —1.96
Dipole moment (D) 20.49 14.77
Polarizability (A3) 67.63 67.31
Area (A?) 340.33 340.07
Volume (A3) 328.42 325.04
Ovality 1.48 1.49
Polar surface area (PSA) (A2) 57.523 52.076
Hydrogen bond donor (HBD) count 0 0
Hydrogen bond acceptor (HBA) count 4 4
0.916 0215 0.205 0.917 0.210 0.210 0.917
092 0688 o209 0601 0576 1042 0719 -0362 -0708 1043
0818 0467 0364  0:687 0897 o528y 0517 0894
0504 | 9140 _0010  -0.380 0573 -04 0417 0577
0.170 : - - - 0.171
+M9 0127 0159 0172 051  daser 0.055
0.126-0.659 10.130 0101 J 9100
05 Ga 0468 015
0.713 0051
0228 8120 -0.201 0-110
017470147 012870135
0.125 0.119

(a)

(b)

Figure 2. Electrostatic charges near the atoms of the two isomers of fluorescein sodium: (a) FS-A;
(b) FS-B. The green arrows indicate the orientation of the electrical dipole moment of the molecule.

(a)

(b)

Figure 3. HOMO maps for the two isomers of fluorescein sodium: (a) FS-A; (b) FS-B. The green
arrows indicate the orientation of the electrical dipole moment of the molecule.
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Figure 4. LUMO maps for the two isomers of fluorescein sodium: (a) FS-A; (b) FS-B. The green
arrows indicate the orientation of the electrical dipole moment of the molecule.

The electrostatic potential map and local ionization potential map for the two isomers
of fluorescein sodium are shown in Figures 5 and 6, respectively. The electrostatic potential
map provides a useful visualization of the charge distribution of the molecule, as well as
charge-related properties of the molecule. This map corresponds to the electronic reactivity.
The local ionization potential map shows the energy of electron removal (ionization) over-
layed on the electron density map. This map is considered another index of electrophilic
addition [81]. Both Figures 5 and 6 highlight the high values of the electrostatic potential
and local ionization potential, respectively, in the region of Na atoms.

@) (b)

Figure 5. Electrostatic potential maps of the two isomers of fluorescein sodium: (a) FS-A; (b) FS-B. Red
color corresponds to high negative potential, while the blue color indicates high positive potential.

3.2. Solvatochromic Analysis of Fluorescein Sodium in Binary Solutions

The visible electronic absorption band of fluorescein sodium was recorded in
15 solvents, listed in Table 1, except for water. As an example, Figure 7 shows these
spectra recorded for six binary solutions. A spectral shift of the band is observed, which
was analyzed with Equations (1), (4) and (5) to identify the degree of involvement of
different intermolecular interactions. Having in mind that HBD count is null (according to
Table 2 and the structure of the molecule), the terms C3f in Equation (1), nf in Equation (4),
and ¢SB in Equation (5) were neglected.
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@) (b)

Figure 6. Local ionization potential map of the two isomers of fluorescein sodium: (a) FS-A; (b) FS-B.

Blue color indicates large ionization potential values, while red color corresponds to small values of
the ionization potential.

10 Propan-1-ol
i Propan-2-ol
J| — Acetonitrile
——DMSO \
. 084 Ethanol
S Jl —— Water
c /)
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©
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[ -
o |
e —
< p2- ‘
0.0 —
= I L I = 1 L] 1
400 440 480 520 560

Wavelength (nm)

Figure 7. Visible electronic absorption band of fluorescein sodium recorded in 6 solvents (propan-1-ol,
propan-2-ol, acetonitrile, DMSO, ethanol, and water).

The parameters involved in Equations (1) and (4) as well as the experimentally
recorded wavenumbers corresponding to the maximum of the electronic absorption band
of fluorescein sodium are listed in Table 3 for all solvents.
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Table 3. Solvents’ parameters involved in Equations (1) and (4), as well as the experimentally recorded
wavenumbers corresponding to the maximum of the electronic absorption band of fluorescein sodium.

Solvent f(e) f(n) T* « Vexp (cm™1)
Butan-1-ol 0.84623 0.24205 0.47 0.84 19,972
Hexan-1-ol 0.80392 0.25201 0.04 0.8 20,094
Pentan-1-o0l 0.81132 0.24723 0.40 0.84 20,033
Propan-1-ol 0.86565 0.23381 0.52 0.84 20,003
Butan-2-ol 0.83146 0.24124 0.40 0.69 19,911
Propan-2-ol 0.86314 0.23124 0.48 0.76 19,881

Propan-2-one 0.86784 0.22026 0.62 0.08 19,295
Acetonitrile 0.92405 0.21078 0.66 0.19 19,380
DMF 0.92250 0.25859 0.88 0.00 19,266
DMSO 0.93837 0.28266 1.00 0.00 19,238
Ethanol 0.88701 0.22147 0.54 0.86 20,189
Methanamide 0.97345 0.26828 0.97 0.71 20,251
Methanol 0.91354 0.20311 0.60 0.98 20,345
DMA 0.92462 0.26225 0.88 0.00 19,238
Water 0.96346 0.20542 1.09 1.17 20,799

Using the data from above in Table 3 and applying the multiple linear regression
according to Equation (1), the correlation coefficients vy, C1, Cy, and C4 were estimated.
The Fisher’s test [82] of significance was applied, the results being shown in Table 4. From
these data, it can be observed that the term Cyf (1) can be also neglected.

Table 4. Results of multiple linear regression analysis of Equation (1).

Number
_ Adj. F
-1
Vo (em™%) G G Ca R-Square Value of
Solvents
—217
1 _
20,052 (2216) (2488) 0.076 0.007 15
—8658
21,926 (1203) (5016) 0.124 2.979 15
19,203 (64) 1125 (91) 0915 151.556 15
—109 —8651
22,022 (2397) (2338) (5223) 0.051 1.376 15
17,349 (425) 2042 (466) 1191 (61) 0.965 191.302 15
19,157 (470) 179 (1829) 1130 (107) 0.908 70.009 15
17,151 (555) 2070 (482) 678 (1174) 1210 (71) 0.962 120.565 15
1 Number in brackets is the standard deviation.
The next equation results are as follows:
v = 17,348.57461 + 2041.93435f (¢) + 1191.06266x«. (34)

The contribution of each type of intermolecular interactions (in cm ™! and %) to the
total spectral shift (v — ) of the electronic absorption band of fluorescein sodium, as well
as the calculated wavenumbers corresponding to the maximum of the electronic absorption
band according to Equation (34), are listed in Table 5.
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Table 5. Contribution of each type of intermolecular interactions (in cm~! and %) to the total spectral
shift of the electronic absorption band of fluorescein sodium and the calculated wavenumbers
corresponding to the maximum of the electronic absorption band according to Equation (34).

Cif(e) Cau C1f(e) Cau Veal

Solvent (- (cm™1) g (%) (cm™1)
Butan-1-ol 1727.95 1000.49 63.33 36.67 20,077.02
Hexan-1-ol 1641.56 952.85 63.27 36.73 19,942.98
Pentan-1-ol 1656.66 1000.49 62.35 37.65 20,005.73
Propan-1-ol 1767.60 1000.49 63.86 36.14 20,116.67
Butan-2-ol 1697.79 821.83 67.38 32.62 19,868.20
Propan-2-ol 1762.47 905.21 66.07 33.93 20,016.25
Propan-2-one 1772.08 95.29 94.90 5.10 19,215.93
Acetonitrile 1886.85 226.30 89.29 10.71 19,461.73
DMF 1883.69 0.00 100.00 0.00 19,232.26
DMSO 1916.10 0.00 100.00 0.00 19,264.67
Ethanol 1811.21 1024.31 63.88 36.12 20,184.10
Methanamide 1987.72 845.65 70.15 29.85 20,181.95
Methanol 1865.40 1167.24 61.51 38.49 20,381.21
DMA 1888.02 0.00 100.00 0.00 19,236.59
Water 1967.32 1393.54 58.54 41.46 20,709.44

From Table 5, it can be concluded that the orientation—induction interactions, described
by the term C;f(e), are dominant for all solvents.

Figure 8 shows the linear regression of the dependence v ,)c versus vexp. A very good
correlation can be observed, Adj. R-Square being 0.97, while the slope is 0.97.

21,000

cm™)

S 20,700
20,400 -
20,100 -
19,800

19,500 -

Calculated wavenumber

19,200 +

] v I : I L I i I Ll 1 ¥ 1
19,200 19,500 19,800 20,100 20,400 20,700 21,000
Experimental wavenumber (cm™")

Figure 8. Calculated (with Equation (34)) versus experimental wavenumbers. The red line represents
the linear regression of the data.

A similar analysis as that one described above can be made based on Equations (4) and (5).
The results of applying the Fisher’s test for the multiple linear regression analysis using
Equation (4) are summarized in Table 6.
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Table 6. Results of multiple linear regression analysis of Equation (4).
_ Adj. Number of
-1
Vo (em™%) " P R-Square F Value Solvents
20,002 (322) 1 —224 (464) —0.058 0.233 15
19,203 (64) 1125 (91) 0.915 151.556 15
18,916 (89) 370 (99) 1212 (69) 0.957 158.442 15
! Number in brackets is the standard deviation.
According to the data in Table 6, the next equation can be written as follows:
v = 18,915.7692 + 370.38931 7 * +1212.44112x. (35)

The contribution of each type of intermolecular interactions (in cm ™! and %) to the
total spectral shift of the electronic absorption band of fluorescein sodium, as well as the
calculated wavenumbers corresponding to the maximum of the electronic absorption band
according to Equation (35), are listed in Table 7.

Table 7. Contribution of each type of intermolecular interactions (in cm~! and %) to the total spectral
shift of the electronic absorption band of fluorescein sodium and the calculated wavenumbers
corresponding to the maximum of the electronic absorption band according to Equation (35).

mrc* [ mrc* o Veale

Solvent (cm~1) (em ) %) iy (cm1)
Butan-1-ol 174.08 1018.45 14.60 85.40 20,108.30
Hexan-1-ol 14.82 969.95 1.50 98.50 19,900.54
Pentan-1-ol 148.16 1018.45 12.70 87.30 20,082.38
Propan—l—ol 192.60 1018.45 15.90 84.10 20,126.82
Butan-2-ol 148.16 836.58 15.05 84.95 19,900.51
Propan-2-01 177.79 921.46 16.17 83.83 20,015.01
Propan-2-one 229.64 97.00 70.30 29.70 19,242 .41
Acetonitrile 244 .46 230.36 51.48 48.52 19,390.59
DMF 325.94 0.00 100.00 0.00 19,241.71
DMSO 370.39 0.00 100.00 0.00 19,286.16
Ethanol 200.01 1042.70 16.09 83.91 20,158.48
Methanamide 359.28 860.83 29.45 70.55 20,135.88
Methanol 222.23 1188.19 15.76 84.24 20,326.20
DMA 325.94 0.00 100.00 0.00 19,241.71
Water 403.72 1418.56 22.15 77.85 20,738.05

From Table 7, it is shown that for protic solvents, the hydrogen bond donor interactions
are dominant, while for the aprotic solvents, the non-specific interactions (orientation—
induction—dispersion) prevail.

Figure 9 shows the linear regression of the dependence V. (according to Equation (35)
Versus Vexp, a very good correlation being observed, with Adj. R-Square of 0.96 and the
slope 0.96.

Catalan parameters and the experimentally recorded wavenumbers corresponding to
the maximum of the electronic absorption band of fluorescein sodium are listed in Table 8.

Applying the multiple linear regression according to Equation (5), the correlation
coefficients vy, a, b, and d can be obtained. The results of the Fisher’s test applied to the
multiple regression analysis of Equation (5) are detailed in Table 9.
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Figure 9. Calculated (with Equation (35)) versus experimental wavenumbers. The red line represents
the linear regression of the data.

Table 8. Catalan parameters involved in Equation (5) and the experimentally recorded wavenumbers
corresponding to the maximum of the electronic absorption band of fluorescein sodium.

Solvent SdpP SpP SA Vexp (em~1)
Butan-1-ol 0.655 0.674 0.341 19,972
Hexan-1-o0l 0.552 0.698 0.315 20,094
Pentan-1-ol 0.587 0.687 0.319 20,033

Propan-1-ol 0.748 0.658 0.367 20,003
Butan-2-ol 0.706 0.656 0.221 19,911
Propan-2-ol 0.808 0.633 0.283 19,881
Propan-2-one 0.907 0.651 0.000 19,295
Acetonitrile 0.974 0.645 0.044 19,380
DMEF 0.977 0.759 0.031 19,266
DMSO 1.000 0.830 0.072 19,238
Ethanol 0.783 0.633 0.400 20,189
Methanamide 1.006 0.814 0.549 20,251
Methanol 0.904 0.608 0.605 20,345
DMA 0.987 0.763 0.028 19,238
Water 0.997 0.681 1.062 20,799

Table 9. Results of multiple linear regression analysis of Equation (5).

Vi Adj. Number of
-1
Vo (em™1) a b d R-Square F Value Sl
20,573
677) 1 —849 (793) 0.010 1.146 15
21,543 —2430
(1272) (1828) 0.052 1.767 15
19,367 (64) 1595 (155) 0.883 106.315 15
21,632 ~1936
a3 OBE® s 0.002 1.012 15
2852)3 —828 (154) 1592 (87) 0.963 182.597 15
20,184 ~1155
(426) (596) 1540 (143) 0.903 66.294 15
20,286
(265) —760 (169)  —396 (407) 1573 (89) 0.963 121.536 15

1 Number in brackets is the standard deviation.
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According to the results of applying the Fisher’s test, the next equation results are
as follows:
v = 20,063.2073 — 828.73245dP 4 1591.80509S A. (36)

The contribution of each type of intermolecular interactions (in cm~! and %) to the
total spectral shift of the electronic absorption band of fluorescein sodium, as well as the
calculated wavenumbers corresponding to the maximum of the electronic absorption band
according to Equation (36), are listed in Table 10.

Table 10. Contribution of each type of intermolecular interactions (in cm~! and %) to the total
spectral shift of the electronic absorption band of fluorescein sodium and the calculated wavenumbers
corresponding to the maximum of the electronic absorption band according to Equation (36).

aSdP dSA aSdP dSA Veale

Solvent (cm-1) (cm-1) (%) (%) (cm- 1)
Butan-1-ol —542.82 542.81 50.00 50.00 20,063.19
Hexan-1-ol —457.46 501.42 47.71 52.29 20,107.17
Pentan-1-ol —486.47 507.79 48.93 51.07 20,084.53
Propan—l—ol —619.89 584.19 51.48 48.52 20,027.51
Butan-2-ol —585.09 351.79 62.45 37.55 19,829.91
Propan—Z—ol —669.62 450.48 59.78 40.22 19,844.07
Propan-Z-one —751.66 0.00 100.00 0.00 19,311.55
Acetonitrile —807.19 70.04 92.02 7.98 19,326.06
DMF —809.67 49.35 94.26 5.74 19,302.88
DMSO —828.73 114.61 87.85 12.15 19,349.08
Ethanol —648.90 636.72 50.47 4953 20,051.03
Methanamide —833.70 873.90 48.82 51.18 20,103.40
Methanol —749.17 963.04 43.75 56.25 20,277.08
DMA —817.96 4457 94.83 5.17 19,289.82
Water —826.25 1690.50 32.83 67.17 20,927.46

In this case, for protic solvents, the orientation-induction intermolecular interactions
are comparable with the hydrogen-bonding donor ones, while for aprotic solvents, the
orientation—induction interactions are dominant.

Figure 10 shows the linear regression of the dependence v, (according to Equation (36))
Versus Vexp. A very good correlation can be observed, Adj. R-Square being 0.97 and the
slope 0.97.
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Figure 10. Calculated (with Equation (36)) versus experimental wavenumbers. The red line represents
the linear regression of the data.
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3.3. Solvatochromic Analysis of Fluorescein Sodium in Ternary Solutions

For this analysis, three binary solvents were prepared, namely water + methanol,
water + ethanol, and methanol + DMA, with different mole ratios between the two solvents.
The experimentally recorded wavenumbers in the maximum of the electronic absorption
band of fluorescein sodium (Vexp), the statistical average weights of the two solvents (p;
and py), calculated with the Equations (14) and (15), and the logarithms of the ratios
between the mole fractions of the two solvents (x; /x;) and between the statistical average
weights (p1/p2), respectively, necessary for the estimation of the difference w; — w, between
the interaction energies in pairs of molecules solute — solvent 1 and solute—solvent
2, respectively, with the Equation (16), are listed in Tables 11-13 for the three binary
solvents, respectively.

Table 11. Mole fraction of water (xy), the experimentally recorded wavenumbers in the maximum of
the electronic absorption band of fluorescein sodium (vexp), the statistical average weights of the two
solvents (py and py;), calculated with the Equations (14) and (15), and the logarithms of the ratios
between the mole fractions of the two solvents (x; /x;;) and between the statistical average weights
(pw/pm), respectively, for the ternary solution fluorescein sodium + water + methanol.

Mole v Statistical Statistical Average

Fraction of (cnix—pl) Average Weight Weight of In(xy/x1) In(pw/pm)

Water (x;) of Water (p) Methanol (p,,)
0.000 20,701 0.00000 1.00000 - -
0.050 20,701 0.00000 1.00000 —2.94444 -
0.100 20,701 0.00000 1.00000 —2.19722 -
0.150 20,701 0.00000 1.00000 —1.73460 -
0.200 20,701 0.00000 1.00000 —1.38629 -
0.250 20,701 0.00000 1.00000 —1.09861 -
0.300 20,701 0.00000 1.00000 —0.84730 -
0.350 20,696 0.05075 0.94925 —0.61904 —2.92877
0.400 20,692 0.09135 0.90865 —0.40547 —2.29727
0.450 20,691 0.10535 0.89465 —0.20067 —2.13917
0.500 20,686 0.15610 0.84390 0 —1.68756
0.550 20,681 0.21098 0.78902 0.20067 —1.31903
0.600 20,671 0.31248 0.68752 0.40547 —0.78855
0.650 20,666 0.36323 0.63677 0.61904 —0.56138
0.700 20,656 0.46205 0.53795 0.84730 —0.15207
0.750 20,651 0.51548 0.48452 1.09861 0.06193
0.800 20,644 0.58385 0.41615 1.38629 0.33861
0.825 20,641 0.61643 0.38357 1.55060 0.47444
0.850 20,633 0.69763 0.30237 1.73460 0.83605
0.875 20,629 0.73823 0.26177 1.94591 1.03680
0.900 20,626 0.76868 0.23132 2.19722 1.20088
0.925 20,620 0.82482 0.17518 2.51231 1.54936
0.950 20,616 0.87072 0.12928 2.94444 1.90738
0.975 20,609 0.94123 0.05877 3.66356 2.77356
1.000 20,603 1.00000 0.00000 - -

Figure 11 shows the dependence In(py /pm) versus In(xy / x,;), where the linear regres-
sion highlights the existence of two slopes of values 1.86844 and 1.03457. Since only the
second slope corresponds to the condition of the statistical cell model (slope = 1), it was
applied to determine the difference between the interaction energy in molecules’ pairs
fluorescein sodium—-water (wrs.,,) and fluorescein sodium-methanol (wrs.,,), according to
Equation (16), the result being wrs.;, — Wrs.;, = 0.027 eV. This very small value, comparable
with thermal energy, means that both water and methanol molecules interact with the
fluorescein molecule with almost the same intensity.
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Table 12. Mole fraction of water (xy), the experimentally recorded wavenumbers in the maximum
of the electronic absorption band of fluorescein sodium (Vexp), the statistical average weights of the
two solvents (py, and p.), calculated with the Equations (14) and (15), and the logarithms of the ratios
between the mole fractions of the two solvents (x /x,) and between the statistical average weights
(pw/pe), respectively, for the ternary solution fluorescein sodium + water + ethanol.

Mole v Statistical Statistical Average

Fraction of (cni)ipl) Average Weight = Weight of Ethanol  In(x/x,) In(p/pe)

Water (x;) of Water (p) (pe)
0.000 20,189 0.00000 1.00000 - -
0.050 20,275 0.14099 0.85901 —2.94444 —1.80712
0.100 20,307 0.19366 0.80634 —2.19722 —1.42641
0.150 20,350 0.26551 0.73449 —1.73460 —1.01754
0.200 20,366 0.29066 0.70934 —1.38629 —0.89218
0.250 20,381 0.31585 0.68415 —1.09861 —0.77291
0.300 20,399 0.34517 0.65483 —0.84730 —0.64033
0.350 20,420 0.38002 0.61998 —0.61904 —0.48947
0.400 20,443 0.41768 0.58232 —0.40547 —0.33231
0.450 20,474 0.46779 0.53221 —0.20067 —0.12901
0.500 20,488 0.49119 0.50881 0 —0.03526
0.550 20,497 0.50565 0.49435 0.20067 0.02260
0.600 20,513 0.53186 0.46814 0.40547 0.12760
0.650 20,536 0.57055 0.42945 0.61904 0.28409
0.700 20,554 0.59894 0.40106 0.84730 0.40103
0.750 20,573 0.63015 0.36985 1.09861 0.53284
0.800 20,599 0.67394 0.32606 1.38629 0.72605
0.825 20,622 0.71017 0.28983 1.55060 0.89620
0.850 20,635 0.73250 0.2675 1.73460 1.00736
0.875 20,654 0.76326 0.23674 1.94591 1.17064
0.900 20,689 0.82003 0.17997 2.19722 1.51656
0.925 20,718 0.86784 0.13216 2.51231 1.88197
0.950 20,742 0.90731 0.09269 2.94444 2.28119
0.975 20,773 0.95890 0.04110 3.66356 3.14974
1.000 20,798 1.00000 0.00000 - -

Table 13. Mole fraction of methanol (xy;), the experimentally recorded wavenumbers in the maximum
of the electronic absorption band of fluorescein sodium (Vexp), the statistical average weights of the
two solvents (p;; and ppp14), calculated with the Equations (14) and (15), and the logarithms of the
ratios between the mole fractions of the two solvents (x;; /xpp1a) and between the statistical average
weights (p/ppama), respectively, for the ternary solution fluorescein sodium + methanol + DMA.

Mole Statistical Statistical
Fraction of — 1 Av.erage Average
Methanol Vexp (cm™1) Weight of Weight of InGem/xpma)  In(pm/ppma)
Methanol
) ( DMA (pppma)
Pm)
0.00000 19,238 0.00000 1.00000 - -
0.10791 19,554 0.21590 0.78410 —2.11224 —1.28973
0.20343 19,642 0.27626 0.72374 —1.36502 —0.96310
0.28856 19,701 0.31671 0.68329 —0.90240 —0.76891
0.36492 19,731 0.33690 0.66310 —0.55409 —0.67715
0.49623 19,851 0.41879 0.58121 —0.01510 —0.32775
0.60509 19,911 0.46011 0.53989 0.42674 —0.15990
0.69682 20,004 0.52329 047671 0.83220 0.09321
0.77516 20,096 0.58587 0.41413 1.23767 0.34690

0.84284 20,220 0.67082 0.32918 1.67950 0.71188
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Table 13. Cont.
Mole Statistical Statistical
Fraction of — 1 Av.erage Average
Methanol Vexp (cm™1) Weight of Weight of In(xm/xppa) In(pu/ppma)
Methanol
(6 ( DMA (pppma)
Pm)

0.90190 20,376 0.77747 0.22253 2.21850 1.25097
0.92869 20,468 0.84062 0.15938 2.56680 1.66286
0.95389 20,553 0.89852 0.10148 3.02943 2.18090
0.97761 20,626 0.94822 0.05178 3.77664 2.90763
1.00000 20,701 1.00000 0.00000 - -
—~ 39

S
SN Slope = 1.03457
o 24 |intercept = -1.05411
‘_C’ Adj. R-Square = 0.995

I T T
-1 3 4
In(x,/x )

Slope = 1.86844
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Figure 11. In(py / pm) versus In(xy / xp;) for the ternary solution fluorescein sodium + water + methanol.

A similar analysis can be conducted for the other two binary solvents, water + ethanol
and methanol + DMA. Figure 12 shows the log-log dependence for these binary solvents.

| |Slope = 1.06733

Adj. R-Square = 0.995

Intercept = -0.81409

Slope = 1.02974
Intercept = —0.97981
1 |Adj. R-Square = 0.998
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Slope = 0.4838
Intercept = -0.32

Adj. R-Square = 0.990
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2
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3 4

In(xm/xDM A)

Figure 12. In(py /pm) versus In(xy /xp;) for the ternary solution fluorescein sodium + water + ethanol
(a) and In(p /ppma) versus In(x,, /xppr4) for the ternary solution fluorescein sodium + methanol +

DMA (b).

The calculated energy differences are wrg., — wrs, = 0021 eV and wrs.,, — wrs.ppma = 0.025 eV,
respectively. While for the pairs water-methanol and water—ethanol, these results were
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as expected because all these three compounds are protic, for the pair methanol-DMA
the result is a little bit surprising, since DMA is an aprotic solvent. It seems that DMA
molecules interact with methanol molecules by hydrogen bonding, preventing this kind of
interaction between the methanol and fluorescein sodium molecules, respectively. Good
information regarding this aspect can be obtained from the Bosch-Rosés model, which
estimates the mole fraction of the 1:1 complex formed between the molecules of the two
solvents composing the binary solvent, in the cybotactic region of the solute’s molecule.

Figure 13 shows the estimation made by the Bosch-Rosés model (Equations (28)—(30))
of the mole fractions of the two solvents, as well as of the 1:1 complex between them in
the cybotactic region, the function of the mole ratio between the two solvents in the bulk
solutions, for all three investigated binary solvents.
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Figure 13. Bosch-Rosés model estimation of the cybotactic region’s composition for the ternary
solution of fluorescein sodium in water + methanol (a), water + ethanol (b), and methanol + DMA (c).

As can be observed from Figure 13, the mole fraction of the 1:1 complex between the
two solvents” molecules is high for the pairs water—ethanol and methanol-DMA, exceeding
80% for the last one. This high mole fraction of the 1:1 methanol-DMA complex can explain
the relative same intensity of the interaction between the two solvents’ molecules and
fluorescein sodium molecule.
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To compare the estimations of the three models used for analyzing the ternary solutions
(statistical cell model, Suppan model, and Bosch-Rosés model), the comparative estimation
of the fluorescein sodium’s cybotactic region by the three models is presented in Figure 14.
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Figure 14. Estimation of the cybotactic region’s composition by statistical cell model, Suppan model,
and Bosch—Rosés model for the ternary solution of fluorescein sodium in water + methanol (a), water
+ ethanol (b), and methanol + DMA (c). The green line represents the first bisector (y = x).

For the water-methanol binary solvent, where the mole fraction of the 1:1 complex
water—methanol is small (see Figure 13a), the best comparative estimation of the cybotactic
region’s composition of the fluorescein sodium molecule is obtained. Since all three estima-
tions are under the first bisector, the result is that methanol is the active solvent (interacting
with higher intensity with the fluorescein sodium’s molecules), which agrees with the
above calculated difference of interacting energies in the pairs of molecules solute-solvent
by the statistical cell model. In the case of water—ethanol and methanol-DMA binary
solvent, for which the mole fraction of the 1:1 complex between the solvents” molecules
is high (see Figure 13b,c), the Bosch-Rosés model yields an underestimation of the mole
fractions of the solvents” molecules, many of them being involved in the formation of
the complex. For these two binary solvents, all three models indicate ethanol and DMA,
respectively, as being the active solvents for high values of water and methanol mole
fractions in the bulk solution, respectively. This agrees with the estimation of the difference
between the interaction energies in molecular pairs solute-solvent, achieved above in the
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frame of the statistical cell model. However, for low values of the mole fractions of water
and methanol, respectively, the statistical cell model indicates these solvents as being the
active ones (the estimated values are situated above the first bisector—see Figure 14b and
Figure 14c, respectively).

By applying the variational method described in Section 2.4.3, an estimation of the
dipole moment in the first excited state of fluorescein sodium was performed. The values
of the correlation coefficients C; and C, were taken from the solvatochromic analysis,
Equation (34). The next equations were obtained:

p2 — 2400.7411, cos ¢ + 47,814.60 = 0, (37)

we = 123.85 — 0.13742. (38)

The dependence of the fluorescein molecule’s polarizability in the first excited state
versus the angle between its dipole moments in the ground and excited states, respectively,
is illustrated in Figure 15.
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Figure 15. Fluorescein sodium molecule’s polarizability in the first excited state versus the angle
between its dipole moment in the ground and excited state, respectively. The red lines indicate the
value of the polarizability in the ground state and the corresponding value of the angle between the
dipole moment in the ground and excited state, respectively.

Considering the McRae hypothesis [79] that the molecule’s polarizability does not
change in the excitation process, a value of ¢ = 7.23° was obtained for the angle between the
fluorescein sodium molecule’s dipole moment in the ground and excited states, respectively,
that leads to a value of y, = 20.25 D for the fluorescein sodium molecule’s dipole moment
in the first excited state. This means a very slight decrease in the fluorescein sodium
molecule’s dipole moment after excitation. The value of the excited state dipole moment of
the fluorescein sodium molecule calculated with the method TD-DFT by using Spartan’14
is . = 22.14 D. Bearing in mind the approximations used in both methods (variational
method and TD-DFT), we consider that both obtained values are in good agreement.

4. Conclusions

Fluorescein sodium is a very important compound for a wide range of applications,
especially in medicine. Because of this, any new information about it is well received by
the international scientific community.

The fluorescein sodium molecule was analyzed by quantum-mechanical modeling
and experimental solvatochromism, both binary and ternary solutions.

Quantum-mechanical modeling confirms the impossibility of the fluorescein molecule
to participate in hydrogen bonding by proton donation and yields an estimation of some
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structural and electro-optical parameters (area, volume, polarizability, electrical dipole
moment) in the ground state, useful for the solvatochromic analysis.

The solvatochromic study of the binary solutions of fluorescein sodium with both
protic and aprotic solvents highlights the dominant contribution of the universal inter-
molecular interactions (orientation-induction and dispersion) to the total spectral shift of
the electronic absorption band of fluorescein sodium.

The results of the solvatochromic study of three ternary solutions of fluorescein sodium
(with binary solvents water + methanol, water + ethanol, and methanol + DMA) were
analyzed with three models, namely the statistical cell model, the Suppan model, and the
Bosch-Rosés model, which provided estimations of the cybotactic region’s composition in
very good agreement. The statistical cell model allowed the estimation of the difference
between the interaction energies in molecular pairs fluorescein sodium — solvent 1 and
fluorescein sodium — solvent 2, respectively. The Bosch-Rosés model yields an estimation
of the mole fraction of the 1:1 complex formed by the molecules of the two solvents
composing the binary solvent.

A variational method was applied to estimate the values of the fluorescein sodium
molecule’s dipole moment in the first excited state.
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