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Abstract: After constructions of p-adic q-integrals, in recent years, these integrals with some of
their special cases have not only been utilized as integral representations of many special numbers,
polynomials, and functions but have also given the chance for deep analysis of many families of
special polynomials and numbers, such as Bernoulli, Fubini, Bell, and Changhee polynomials and
numbers. One of the main applications of these integrals is to obtain symmetric identities for the
special polynomials. In this study, we focus on a novel extension of the degenerate Fubini polynomials
and on obtaining some symmetric identities for them. First, we introduce the two-variable degenerate
w-torsion Fubini polynomials by means of their exponential generating function. Then, we provide
a fermionic p-adic integral representation of these polynomials. By this representation, we derive
some new symmetric identities for these polynomials, using some special p-adic integral techniques.
Lastly, by using some series manipulation techniques, we obtain more identities of symmetry for the
two variable degenerate w-torsion Fubini polynomials.

Keywords: degenerate Fubini polynomials; degenerate w-torsion Fubini polynomials; fermionic
p-adic integral on Zp; symmetric identities

MSC: 05A19; 05A40; 11B83

1. Introduction

With the construction and introduction of the fermionic p-adic integral cf. [1,2], it is
utilized for not only integral representations of many special numbers, polynomials, and
functions but also for providing a chance for deep analysis of many families of special
numbers and polynomials, such as Euler, tangent, Boole, Genocchi, Changhee, Frobenius-
Euler, Fubini, polynomials and numbers, cf. [2–17]. One of the most useful aims of
the fermionic p-adic integral (abbreviated with “f.p-a.i.”) is to acquire more formulas and
properties of the special numbers and polynomials. In the last ten or more years, by utilizing
the fermionic p-adic integrals on Zp, symmetric identities of some special polynomials,
such as w-torsion Fubini polynomials in [11], q-Frobenius–Euler polynomials under S5,
the symmetric group of degree five in [4], q-Genocchi polynomials of higher order under
D3 in [3], (h, q)-Euler polynomials under D3 in [6], Carlitz’s-type twisted (h, q)-tangent
polynomials in [7], degenerate q-Euler polynomials in [12], and Fubini polynomials in [15],
have been studied and investigated in detail. By means of the p-adic integrals, several
special techniques and methods have been used to obtain symmetric identities, where these
identities include and generalize many special well-known formulas and properties for the
polynomials, such as Raabe formulas, extended recurrence formulas, Miki identity, Carlitz
identities, and many other identities for the polynomials. By these motivations, in this study,
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we focus on a novel extension of the degenerate Fubini polynomials. First, we introduce the
two variable degenerate (abbreviated with “t.w.d.”) w-torsion Fubini polynomials by their
exponential generating function. We then provide a f.p-a.i. representation of the degenerate
w-torsion Fubini polynomials, by which we acquire diverse novel symmetric identities for
the degenerate w-torsion Fubini polynomials. Lastly, by using some series manipulation
methods, we obtain more identities of symmetry for properties of the t.w.d. w-torsion
Fubini polynomials.

Along this work, the following notations hold for p be a fixed odd prime number: Zp
denotes the ring of p-adic integers, Qp denotes the field of p-adic rational numbers, and
Cp denotes the completion of the algebraic closure of Qp. The normalized p-adic norm is
provided by |p|p = p−1. For a continuous function g : Zp → Cp, the f.p-a.i. of g is provided
(cf. [1,8,11]) as follows:

∫
Zp

g(ν)dµ−1(ν) = lim
N→∞

pN−1

∑
ν=0

g(ν)(−1)ν, (1)

where µ−1(ν + pNZp) = (−1)ν.
It is apparent from (1) that

1
2

∫
Zp

g(ν + 1)dµ−1(ν) +
1
2

∫
Zp

g(ν)dµ−1(ν) = g(0). (2)

By invoking (2), we easily obtain (see [11])

1
2

∫
Zp
(−1)ν(γ(et − 1))νdµ−1(ν) =

1
1 − γ(et − 1)

=
∞

∑
m=0

Fm(γ)
tm

m!
, (3)

and
eνt

2

∫
Zp
(−1)z(γ(et − 1))zdµ−1(z) =

1
1 − γ(et − 1)

eνt =
∞

∑
m=0

Fm(ν; γ)
tm

m!
, (4)

where Fm(γ) and Fm(ν; γ) are the Fubini polynomials (also known as the geometric polyno-
mials or the ordered Bell polynomials) and two variable Fubini polynomials, respectively.
The convergences of the series (3) and (4) are |t| <

∣∣log
∣∣1 + γ−1

∣∣∣∣ for γ ̸= 1 and |t| < log 2
for γ = 1. If γ = 1, Fm := Fm(0) are termed the Fubini numbers, which enumerates the
ordered partitions of the set [n] = 1, 2, . . . , n, (cf. [2,5,11,13,15,16,18]). Fubini polynomials
and numbers (with several extensions) have been studied and analyzed comprehensively
in recent years, cf. [2,5,11,15,18] and see also the references cited therein. In [5], new
second-order non-linear recursive polynomials have been defined, and then these recursive
polynomials, the properties of the power series, and the combinatorial methods have been
used to prove some identities involving the Fubini polynomials, Euler polynomials, and
Euler numbers. In [11], the generating function of ω-torsion Fubini polynomials has been
considered by means of a fermionic p-adic integral on Zp and then, some new symmetric
identities for these polynomials have been investigated. Moreover, in [15], the compu-
tational problem of one-kind symmetric sums involving Fubini polynomials and Euler
numbers has been studied by utilizing elementary methods and the recursive properties of
a special sequence, and also, an interesting computational formula has been obtained.

Let t, λ ∈ Zp with |λt|p < p−
1

p−1 . The degenerate exponential function is provided for
λ ∈ R as follows (cf. [2,12,13,16,18,19])

eν
λ(t) = (1 + λt)

ν
λ with eλ(t) = e1

λ(t) = (1 + λt)
1
λ . (5)
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The series representations of the function eν
λ(t) are presented as follows:

eν
λ(t) =

∞

∑
m=0

(ν)m,λ
tm

m!
, (6)

where (ν)m,λ := (ν− (m− 1)λ)(ν− (m− 2)λ) · · · (ν− 2λ)(ν−λ)ν for m > 0 and (ν)0,λ := 1.
For k ≥ 0, the degenerate Stirling numbers of the second kind [13,19] are provided by

k!
∞

∑
j=k

S2,λ(j, k)
tj

j!
= (eλ(t)− 1)k. (7)

We compute from (7) that (cf. [19])

S2,λ(j, k) =
1
k!

k

∑
l=0

(
k
l

)
(−1)k−l(l)j,λ. (8)

It is obvious that (see [10,13,19])

lim
λ→0

S2,λ(j, k) = S2(j, k),

which are the usual Stirling numbers of the second kind. In combinatorics, the Stirling
numbers of the second kind count the number of ways in which n-distinguishable objects
can be partitioned into k indistinguishable subsets when each subset has to contain at
least one object, cf. [10,13,19]. Recently, degenerate and probabilistic forms of the Stirling
numbers of the second kind have been studied, and many properties and applications have
been investigated, cf. [13,19] and see also the references cited therein. In [19], the degenerate
Stirling polynomials of the second kind have been considered by their generating function,
and some new identities for these polynomials have been analyzed. In [13], the probabilistic
degenerate Stirling polynomials of the second kind associated with Y have been introduced,
and some properties, explicit expressions, and certain identities for those polynomials have
been derived.

It can be observed that

Fm(γ) =
m

∑
k=0

k!S2(m, k)γk and Fm =
m

∑
k=0

k!S2(m, k).

The t.w.d. Fubini polynomials Fm,λ(ν; γ) are defined as follows (see [2,18]):

1
1 − γ(eλ(t)− 1)

eν
λ(t) =

∞

∑
m=0

Fm,λ(ν; γ)
tm

m!
. (9)

If ν = 0, Fm,λ(γ) := Fm,λ(0; γ) and Fm,λ(1) := Fm,λ(0; 1) are termed the degenerate Fubini
polynomials and the degenerate Fubini numbers, respectively. In [18], two variable de-
generate Fubini polynomials have been first defined and some of their properties, explicit
formulas, and recurrence relations have been examined extensively. Also, in [2], two vari-
able higher-order degenerate Fubini polynomials have been considered by utilizing umbral
calculus and then, several recurrence relations, explicit formulas, and some correlations,
including some families of special functions, have been derived.

Using (2), we give the f.p-a.i. representations of the Fm,λ(γ) and Fm,λ(ν; γ) as follows:

1
2

∫
Zp
(−1)ν(γ(eλ(t)− 1))νdµ−1(ν) =

1
1 − γ(eλ(t)− 1)

=
∞

∑
m=0

Fm,λ(γ)
tm

m!
, (10)
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and

eν
λ(t)
2

∫
Zp
(−1)z(γ(eλ(t)− 1))zdµ−1(z) =

eν
λ(t)

1 − γ(eλ(t)− 1)
=

∞

∑
m=0

Fm,λ(ν; γ)
tm

m!
. (11)

From (6), (10) and (11), we observe that

m

∑
l=0

(
m
l

)
Fm−l,λ(γ)(ν)l,λ = Fm,λ(ν; γ) (m ≥ 0). (12)

The forward difference operator ∆ is defined by ∆g(v) = g(v + 1) − g(v) and
∆i = ∆i−1∆ for i ∈ N. From this, we see that (cf. [13])

∆kg(v) =
k

∑
l=0

(
k
l

)
(−1)k−l g(v + l), (k ≥ 0).

Therefore, we obtain that

∆k(γ)n,λ =
k

∑
l=0

(
k
l

)
(−1)k−l(γ + l)n,λ, (k ≥ 0)

and

∆k(0)n,λ =
k

∑
l=0

(
k
l

)
(−1)k−l(l)n,λ, (k ≥ 0). (13)

Hence, it is observed from (8) and (13) that (cf. [13])

∆n(0)m,λ =
1
n!

S2,λ(m, n). (14)

Using (13), it is also examined that

1 − γk(eλ(t)− 1)k

1 − γ(eλ(t)− 1)
=

k−1

∑
i=0

γi(eλ(t)− 1)i =
k−1

∑
i=0

i

∑
l=0

(
i
l

)
(−1)l−iγiel

λ(t)

=
∞

∑
m=0

(
k−1

∑
i=0

i

∑
l=0

(
i
l

)
(−1)l−iγi(l)m,λ

)
tm

m!

=
∞

∑
m=0

(
k−1

∑
i=0

γi∆i(0)m,λ

)
tm

m!
.

(15)

It can be observed that

Fm,λ(γ) =
m

∑
k=0

k!S2,λ(m, k)(γ)k,λ and Fm,λ =
m

∑
k=0

k!S2,λ(m, k)(1)k,λ.

2. Main Results

In this section, we consider t.w.d. w-torsion Fubini polynomials in terms of their expo-
nential generating function and a f.p-a.i. representation on Zp and investigate multifarious
formulas and identities of the mentioned polynomials. We begin with our main definition.

Definition 1. Let w ∈ N. We define the t.w.d. w-torsion Fubini polynomials as follows:

1
1 − γw(eλ(t)− 1)w eν

λ(t) =
∞

∑
m=0

Fm,w(ν; γ|λ) tm

m!
. (16)

Remark 1. In some special cases, Fm,w(γ|λ) := Fm,w(0; γ|λ) and Fm,w(1|λ) := Fm,w(0; 1|λ) are
called the degenerate w-torsion Fubini polynomials and numbers, respectively.
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Remark 2. Upon setting w = 1 in (16), the polynomials Fm,w(ν; γ|λ) become the usual t.w.d.
Fubini polynomials Fm(ν; γ|λ) in (11).

Remark 3. By letting w = 1 and λ → 0 in (16), the polynomials Fm,w(ν; γ|λ) become the familiar
two-variable Fubini polynomials Fm(ν; γ) in (4).

Similar to (10) and (11), for w ∈ N, the f.p-a.i. representations of the polynomials
Fm,w(ν; γ|λ) and Fm,w(ν; γ|λ) are provided by

∞

∑
m=0

Fm,w(γ|λ)
tm

m!
=

1
1 − γw(eλ(t)− 1)w =

1
2

∫
Zp
(−(eλ(t)− 1)wγw)νdµ−1(ν) (17)

and
∞

∑
m=0

Fm,w(ν; γ|λ) tm

m!
=

eν
λ(t)
2

∫
Zp
(−(eλ(t)− 1)wγw)νdµ−1(ν), (18)

respectively. Using (14) and (15), it can be derived from (10) and (17) that∫
Zp
(−(eλ(t)− 1)γ)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)

=
1 − γw1(eλ(t)− 1)w

1
1 − γ(eλ(t)− 1)

=
w1−1

∑
i=0

(eλ(t)− 1)iγi

=
∞

∑
m=0

(
w1−1

∑
i=0

∆i(0)m,λγi

)
tm

m!
, (w1 ∈ N)

=
∞

∑
m=0

(
w1−1

∑
i=0

S2,λ(m, i)γii!

)
tm

m!
.

(19)

Theorem 1. The following identity

m

∑
u=0

(
m
u

) w1−1

∑
i=0

γw2i∆w2i(0)u,λFm−u,w1(γ|λ)

=
m

∑
u=0

(
m
u

) w2−1

∑
i=0

γw1i∆w1i(0)u,λFm−u,w2(γ|λ)
(20)

holds for m ≥ 0, and w1, w2 are two odd numbers.

Proof. For w1, w2 ∈ N, we consider

I =

∫
Zp
(−(eλ(t)− 1)w1 γw1)ν1 dµ−1(ν1)

∫
Zp
(−(eλ(t)− 1)w2 γw2)ν2 dµ−1(ν2)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

, (21)

which is invariant under the interchange of w1 and w2. Then, using (21), we obtain

I =
∫
Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)×

( ∫
Zp
(−(eλ(t)− 1)w2 γw2)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

)
. (22)

First, using (14) and (15), we observe that
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∫
Zp
(−(eλ(t)− 1)w2 γw2)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

=
1 − (eλ(t)− 1)w1w2 γw1w2

1 − (eλ(t)− 1)w2 γw2

=
w1−1

∑
i=0

(eλ(t)− 1)w2iγw2i

=
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
(−1)w2i−lel

λ(t)γ
w2i

=
∞

∑
m=0

(
w1−1

∑
i=0

γw2i∆w2i(0)m,λ

)
tm

m!

=
∞

∑
m=0

(
w1−1

∑
i=0

γw2i(w2i)!S2,λ(m, w2i)

)
tm

m!
.

(23)

It can be discovered from (22) and (23) that

I =
∫
Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)×

( ∫
Zp
(−(eλ(t)− 1)w2 γw2)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

)

=

(
∞

∑
m=0

2Fm,w1(γ|λ)
tm

m!

)(
∞

∑
u=0

(
w1−1

∑
i=0

γw2i∆w2i(0)u,λ

)
tu

u!

)

=
∞

∑
m=0

(
2

m

∑
u=0

(
m
u

) w1−1

∑
i=0

γw2i∆w2i(0)u,λFm−u,w1(γ|λ)
)

tm

m!
.

(24)

Interchanging the roles of w1 and w2, using (21), we obtain

I =
∫
Zp
(−(eλ(t)− 1)w2 γw2)νdµ−1(ν)×

( ∫
Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

)
. (25)

Similar to the computations in (23), we obtain that∫
Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

=
∞

∑
m=0

(
w2−1

∑
i=0

γw1i(w1i)!S2,λ(m, w1i)

)
tm

m!
. (26)

Utilizing similar computations in (24), we discover from (25) and (26) that

I =
∞

∑
m=0

(
2

m

∑
u=0

(
m
u

) w2−1

∑
i=0

γw1i∆w1i(0)u,λFm−u,w2(γ|λ)
)

tm

m!
. (27)

So, the proof is completed as a result of the computations (24) and (27).

Corollary 1. By Theorem 1 and Equation (14), the following relation

m

∑
u=0

(
m
u

) w1−1

∑
i=0

γw2i(w2i)!S2,λ(m, w2i)Fm−u,w1(γ|λ)

=
m

∑
u=0

(
m
u

) w2−1

∑
i=0

γw1i(w1i)!S2,λ(m, w1i)Fm−u,w2(γ|λ)
(28)

is true for m ≥ 0, and w1, w2 being two odd numbers.

In particular, w1 = 1 in (20) and (28), we obtain the formulas in Remarks 4 and 5.
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Remark 4. The following summation formula holds for m ≥ 0:

Fm(γ|λ) =
m

∑
u=0

(
m
u

) w2−1

∑
i=0

γi∆i(0)u,λFm−u,w2(γ|λ). (29)

Remark 5. The following summation formula holds for m ≥ 0:

Fm(γ|λ) =
m

∑
u=0

(
m
u

) w2−1

∑
i=0

γii!S2,λ(m, i)Fm−u,w2(γ|λ). (30)

We give the following symmetric relation.

Theorem 2. The following identity

w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
γw2i(−1)l Fm,w1(w2i − l, γ|λ)

=
w2−1

∑
i=0

w1i

∑
l=0

(
w1i

l

)
γw1i(−1)l Fm,w2(w1i − l, γ|λ)

(31)

holds for m ≥ 0, and w1, w2 being two odd numbers.

Proof. It can be computed from (21) that

I =
∫
Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)×

( ∫
Zp
(−(eλ(t)− 1)w2 γw2)νdµ−1(ν)∫

Zp
(−(eλ(t)− 1)w1w2 γw1w2)νdµ−1(ν)

)

=

(∫
Zp
(−(eλ(t)− 1)w1 γw1)νdµ−1(ν)

)
×
(

1 − (eλ(t)− 1)w1w2 γw1w2

1 − (eλ(t)− 1)w2 γw2

)
=

(
w1−1

∑
i=0

(eλ(t)− 1)w2iγw2i

)
×
(

2
1 − (eλ(t)− 1)w1 γw1

)
(32)

=
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
γw2i(−1)l 2ew2i−l

λ (t)
1 − (eλ(t)− 1)w1 γw1

= 2
∞

∑
m=0

(
w1−1

∑
i=0

w2i

∑
l=0

(
w2i

l

)
γw2i(−1)l Fm,w1(w2i − l, γ|λ)

)
tm

m!
.

Similar to the computations in (32), by interchanging the roles of w1 and w2, we obtain
from (24) that

I = 2
∞

∑
m=0

(
w2−1

∑
i=0

w1i

∑
l=0

(
w1i

l

)
γw1i(−1)l Fm,w2(w1i − l, γ|λ)

)
tm

m!
. (33)

So, the proof is completed as a result of the computations (32) and (33).

On taking w1 = 1 in (31), we obtain the following remark.

Remark 6. The following summation formula holds for m ≥ 0:

Fm(γ|λ) =
w2−1

∑
i=0

i

∑
l=0

(
i
l

)
γi(−1)l Fm,w2(i − l, γ|λ). (34)

Now we give the following proposition.
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Proposition 1. We have the following correlation:

Fn,w(ν; γ|λ) =
n

∑
j=0

j

∑
k=0

(
n
j

)
(kw)!γkw(v)n−j,λS2,λ(j, kw). (35)

Proof. We observe from (7) and (16) that

∞

∑
n=0

Fn,w(ν; γ|λ) tn

n!
=

1
1 − γw(eλ(t)− 1)w eν

λ(t)

=
∞

∑
k=0

γkweν
λ(t)(eλ(t)− 1)kw

=
∞

∑
n=0

∞

∑
k=0

γkw(v)n,λ
tn

n!
(kw)!

∞

∑
j=kw

S2,λ(j, kw)
tj

j!

=
∞

∑
n=0

n

∑
j=0

j

∑
k=0

(
n
j

)
(kw)!γkw(v)n−j,λS2,λ(j, kw)

tn

n!
,

which completes the proof of the theorem.

Corollary 2. By Theorem 2 and Equation (35), the following relation

w1−1

∑
i=0

w2i

∑
l=0

m

∑
j=0

j

∑
k=0

(
w2i

l

)(
m
j

)
γkw1+w2i

×(−1)l(kw1)!(w2i − l)m−j,λS2,λ(j, kw1)

=
w2−1

∑
i=0

w1i

∑
l=0

m

∑
j=0

j

∑
k=0

(
w1i

l

)(
m
j

)
γkw2+w1i

×(−1)l(kw2)!(w1i − l)m−j,λS2,λ(j, kw2)

is true for m ≥ 0, and w1, w2 are two odd numbers.

3. Further Remarks

We now aim to derive more symmetric identities for the t.w.d. w-torsion Fubini
polynomials. Here are some symmetric identities for t.w.d. w-torsion Fubini polynomials
utilizing some series manipulation methods.

Theorem 3. The polynomials Fm,w(ν; γ|λ) fulfill the following identity for m ∈ Z≥0 and a, b ∈ R
and m ≥ 0:

m

∑
k=0

(
m
k

)
Fm−k,w(bν; γ|bλ) Fk,w(aν; γ|aλ)bkam−k

=
m

∑
k=0

(
m
k

)
Fm−k,w(aν; γ|aλ)Fk,w(bν; γ|bλ)akbm−k.

(36)

Proof. We choose that

Υ =
e2ν

λ (abt)
(1 − (ebλ(at)− 1)wγw)(1 − (eaλ(bt)− 1)wγw)

,

which is symmetric in a and b. We compute from (17) that

Υ =

[
∞

∑
m=0

Fm,w(bν; γ|bλ)
(at)m

m!

][
∞

∑
m=0

Fm,w(aν; γ|aλ)
(bt)m

m!

]
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=
∞

∑
m=0

(
m

∑
k=0

(
m
k

)
Fm−k,w(bν; γ|bλ) Fk,w(aν; γ|aλ)am−kbk

)
tm

m!

and in the same way

Υ =
∞

∑
m=0

(
m

∑
k=0

(
m
k

)
Fm−k,w(aν; γ|aλ)Fk,w(bν; γ|bλ)akbm−k

)
tm

m!
,

which means the assertion (36).

Here is another symmetric identity for Fm,w(ν; γ|λ) as follows.

Theorem 4. The polynomials Fm,w(ν; γ|λ) fulfill the following identity for a, b ∈ R and m ≥ 0:

m

∑
k=0

b−1

∑
i=0

a−1

∑
j=0

iw

∑
l=0

jw

∑
s=0

(
iw
l

)(
m
k

)(
jw
s

)
γw(i+j)(−1)(i+j)w−l−s

×Fm−k,w(l + s
b
a
+ bν1; γ|bλ)Fk,w(aν2; γ|aλ)bkam−k

=
m

∑
k=0

a−1

∑
i=0

b−1

∑
j=0

iw

∑
l=0

jw

∑
s=0

(
iw
l

)(
m
k

)(
jw
s

)
γw(i+j)(−1)(i+j)w−l−s

Fk,w(l + s
a
b
+ aν1; γ|aλ)Fm−k,w(bν2; γ|bλ)akbm−k.

Proof. We consider by (17) that

Ψ =
1 − (e1/b

λ (abt)− 1)awγaw

(1 − (ebλ(at)− 1)wγw)2

1 − (e1/a
λ (abt)− 1)bwγbw

(1 − (eaλ(bt)− 1)wγw)2 eν1+ν2
λ (abt)

=
eν1

λ (abt)
1 − (ebλ(at)− 1)wγw

1 − (e1/b
λ (abt)− 1)awγaw

1 − (ebλ(at)− 1)wγw

×
eν2

λ (abt)
1 − (eaλ(bt)− 1)wγw

1 − (e1/a
λ (abt)− 1)bwγbw

1 − (eaλ(bt)− 1)wγw .

Therefore, we compute that

Ψ =
eν1

λ (abt)
1 − γw(ebλ(at)− 1)w

1 − γaw(e1/b
λ (abt)− 1)aw

1 − γw(ebλ(at)− 1)w

×
eν2

λ (abt)
1 − γw(eaλ(bt)− 1)w

1 − γbw(e1/a
λ (abt)− 1)bw

1 − γw(eaλ(bt)− 1)w

=
eν1

λ (abt)
1 − γw(ebλ(at)− 1)w

b−1

∑
i=0

γiw(ebλ(at)− 1)iw

×
eν2

λ (abt)
1 − γw(eaλ(bt)− 1)w

a−1

∑
j=0

γjw(eaλ(bt)− 1)jw

=
b−1

∑
i=0

a−1

∑
j=0

γw(i+j) 1
1 − γw(ebλ(at)− 1)w

iw

∑
l=0

(
iw
l

)
(−1)iw−lel+bν1

bλ (at)

× 1
1 − (eaλ(bt)− 1)wγw

jw

∑
s=0

(
jw
s

)
(−1)jw−ses+aν2

aλ (bt)

=
b−1

∑
i=0

a−1

∑
j=0

iw

∑
l=0

jw

∑
s=0

(
iw
l

)
γw(i+j)

(
jw
s

)
(−1)(i+j)w−l−s
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×
el+s b

a +bν1
bλ (at)

1 − (ebλ(at)− 1)wγw
eaν2

aλ (bt)
1 − (eaλ(bt)− 1)wγw

=
∞

∑
m=0

(
m

∑
k=0

b−1

∑
i=0

a−1

∑
j=0

iw

∑
l=0

jw

∑
s=0

(
m
k

)(
iw
l

)
γw(i+j)

(
jw
s

)

(−1)(i+j)w−l−sFm−k,w(l + s
b
a
+ bν1; γ|bλ)Fk,w(aν2; γ|aλ)bkam−k

)
tm

m!
,

and similarly,

Ψ =
∞

∑
m=0

(
m

∑
k=0

a−1

∑
i=0

b−1

∑
j=0

iw

∑
l=0

jw

∑
s=0

(
m
k

)(
iw
l

)
γw(i+j)

(
jw
s

)
(−1)(i+j)w−l−sFk,w(l + s

a
b
+ aν1; γ|aλ)Fm−k,w(bν2; γ|bλ)akbm−k

) tm

m!
,

which yields the claimed symmetric identity in the theorem.

4. Conclusions

After constructions of p-adic q-integrals by Teakyun Kim, a Korean mathematician, in
recent years, p-adic q-integrals with some of their special cases have not only been utilized
as integral representations of many special polynomials and functions but also have given
the chance to deeply analyze many families of special polynomials and numbers, such as
Bernoulli, Fubini, Bell and Changhee polynomials and numbers. In the presented work, we
focused on a novel extension of the degenerate Fubini polynomials. We first defined the
t.w.d. w-torsion Fubini polynomials by means of their exponential generating function. We
then discovered a f.p-a.i. representation of the degenerate w-torsion Fubini polynomials,
by which we attained diverse novel symmetric identities for the degenerate w-torsion
Fubini and t.w.d. w-torsion Fubini polynomials. Finally, by using some series manipulation
methods, we acquired more identities of symmetry for properties of the t.w.d. w-torsion
Fubini polynomials. To the best of our knowledge, the results presented in this paper are
new and do not seem to be reported in the literature. In general, these results have the
potential to be used in many branches of mathematics, probability, statistics, mathematical
physics, and engineering.
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