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Abstract: In this paper, we present four categories of covering-based intuitionistic hesitant fuzzy rough
set (CIHFRS) models using intuitionistic hesitant fuzzy β-neighborhoods (IHF β-neighborhoods) and
intuitionistic hesitant fuzzy complementary β-neighborhoods (IHFC β-neighborhoods. Through
theoretical analysis of covering-based IHFRS models, we propose the intuitionistic hesitant fuzzy
TOPSIS (IHF-TOPSIS) technique for order of preference by similarity to an ideal solution, address-
ing multicriteria decision-making (MCDM) challenges concerning the assessment of IHF data. A
compelling example aptly showcases the suggested approach. Furthermore, we address MCDM
problems regarding the assessment of IHF information based on CIHFRS models. Through compari-
son and analysis, it is evident that addressing MCDM problems by assessing IHF data using CIHFRS
models proves more effective than utilizing intuitionistic fuzzy data with CIFRS models or hesitant
fuzzy information with CHFRS models. IHFS emerges as a unique and superior tool for addressing
real-world challenges. Additionally, covering-based rough sets (CRSs) have been successfully applied
to decision problems due to their robust capability in handling unclear data. In this study, by com-
bining CRSs with IHFS, four classes of CIFRS versions are established using IHF β-neighborhoods
and IHFC β-neighborhoods. A corresponding approximation axiomatic system is developed for
each. The roughness and precision degrees of CBIHFRS models are specifically talked about. The
relationship among these four types of IHFRS versions and existing related versions is presented
based on theoretical investigations. A method for MCDM problems through IHF information, namely,
IHF-TOPSIS, is introduced to further demonstrate its effectiveness and applicability. By conducting a
comparative study, the effectiveness of the suggested approach is evaluated.

Keywords: β-covering rough set; decision making; intuitionistic hesitant fuzzy set; intuitionistic
hesitant fuzzy β-covering rough set

1. Introduction

Fuzzy set theory (FST) [1] has emerged as a significant method for dealing with
uncertainty and has undergone diverse advancements [2,3]. Formally speaking, FST is
among the theories initially conceived to extend classical set theory. Furthermore, the
relaxation can go beyond just fuzzy relations to any binary relation. This generalization
allows for the use of other types of relations, such as tolerance or similarity relations, which
do not essentially partition the universe into disjoint classes but still provide a way to
approximate sets. These binary relations can capture more nuanced relationships between
elements, offering greater flexibility in various applications. Atanassov [4] proposed the
idea of an intuitionistic fuzzy set (IFS) to improve the idea of an FS, which expands upon
the traditional notion of a set. Within an IFS, the elements possess not only degrees of
membership (m̆) but also degrees of nonmembership (n̆m̆). The theory of IFSs has found
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application in diverse domains, including logic programming [5,6], DM problems [7],
medical diagnosis [8], and more. It has demonstrated its effectiveness as a valuable tool
for addressing the complexities associated with determining the level of m̆ of an element
within a set, particularly in scenarios involving vagueness. Torra [9] expanded upon the
concept of an FS by introducing the idea of an HFS. HFS theory is designed to address
scenarios in which there is uncertainty in specifying the inclusion of an element within
a set, enabling a range of possible values. In conjunction with the aggregation operators
presented in [10–14], The HFS is employed to tackle group decision-making challenges.
Ref. [15] suggests the introduction of IHFSs; these arise from the amalgamation of IFSs and
HFSs. This concept proves beneficial in addressing situations characterized by uncertainty,
where specific values may simultaneously represent both m̆ and n̆m̆ for a given element. In
rough set (RS) theory, symmetry can also influence the approximations.

In classical rough set models, symmetry consideration can lead to different approxima-
tions and classifications of objects based on their relationship within the data. Pawlak [16,17]
introduced the RS, which has proven to be a valuable tool for handling uncertainty. How-
ever, its primary focus is on partitioning the universe to create approximation operators.
Recognizing this limitation, many researchers have dedicated their efforts to modifying
the stringent conditions of Pawlak’s RS. For instance, they have relaxed the equivalence
relation to a fuzzy relation and introduced a relation covering the universe. Several studies
have explored the extension of Pawlak’s RS, including the introduction of the FRS and
RFS by Dubois and Prade [18], as well as contributions from others in the field [19–23].
Rough set analysis in a fuzzy setting offers important benefits and insights that classical
settings are unable to fully achieve. Classical rough sets approach sets using lower and
upper boundaries, which helps them deal with ambiguity and insufficient information.
They do, however, make the clear distinction between membership and nonmembership.
Conversely, FSs support partial membership, which better captures the ambiguity and
vagueness present in many real-world issues. An FRS extends the concept of an RS by
approximating an FS within a crisp approximation space. This occurs in scenarios where
the values of conditional attributes are exact but the values of decision attributes exhibit
fuzziness. FRSs aim to establish the lower approximation (LA) and upper approximation
(UA) of a set. This becomes essential when the universe of the FS undergoes roughness,
either through an equivalence relation or by converting the equivalence relation into a
corresponding fuzzy relation. The amalgamation of FRSs and IFSs led Chinram et al. [24]
to introduce the IFRS. Additionally, the introduction of the HFRS allows for the application
of RS techniques in a hesitant fuzzy environment, focusing on establishing LA and UA
within such a domain. Additionally, the concept of an IHFS is included in the IHFRST,
which builds upon RST.

In order to successfully handle ambiguity, hesitation, and uncertainty in activities like
data processing, decision making (DM), and knowledge representation, IHFRST combines
the concepts of the RS, IHFS, and HFRS. According to the text, DM in a fuzzy environment
involves ranking alternatives based on decision information, and this is a common practice
in the actual world. MCDM emerges as an invaluable instrument for solving complex
problems in this context. Hwang and Yoon [25] were the pioneers in investigating this
approach. In the context of multicriteria group DM, total possible alternatives are assessed
based on conflicting and interactive criteria. The text also delves into the utilization of
the TOPSIS method for group DM in the IHF case. Upon reviewing prior research, it
appears that there has been limited exploration of the application of the CIHFRS in evalu-
ating IHF information within MCDM problems. This research gap motivated the present
study, which focuses on developing CIHFRS models using the intuitionistic hesitant fuzzy
β-neighborhood (IHF β-neighborhood) and intuitionistic hesitant fuzzy complementary
β-neighborhood (IHFC β-neighborhood). Furthermore, this paper investigates the prac-
tical applications of these models to MCDM problems related to the assessment of IHF
information. The advanced features of intuitionistic hesitant fuzzy rough sets (IHFRSs)
addressed the limitations of traditional fuzzy sets theory extensions such as the FS, IFS,
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and several others. The IHFRS builds on traditional models that utilize the value of lower
and upper approximations with membership and nonmembership from the unit interval
to represent the uncertainty of real-world challenges. The IHFRS extends the space for
information about DM problems. The abovementioned constraints motivated us to develop
similarity measures based on the IHFRS, which is a modified version of the IFRS that befits
the structure of IFRSs. The development of similarity measures for IHFRSs is of crucial
academic significance. Lin et al. [26] presented better fuzzy preference relation rough sets
into a multigranulation case. In an instant, exploring rough sets from a multigranulation
perspective can better deal with the ambiguous information in complex data, and it has rich
research content and value. Due to the uncertainty of IHF information, it is impossible to
directly make decisions, so we consider combining multigranulation RSs and IHFSs, which
is helpful for DM in IHF environments. Covering-based intuitionistic hesitant fuzzy rough
sets (CIHFRSs) offer a more effective approach to handling ambiguities. This is especially
helpful when there is uncertainty about numerous choices and the information is not merely
incomplete. In decision-making processes, CIHFRSs provide a complete framework that
covers the hesitancy and dual nature of intuitionistic fuzzy logic, especially in fields related
to risk assessment, financial analysis, and medical diagnosis. Decision making becomes
more reliable and accurate as a result. Further, a comprehensive framework for handling
complicated and uncertain information can be obtained by the study of covering-based
intuitionistic hesitant fuzzy rough sets, which improves the tools available for analysis,
modeling, and decision making in a variety of contexts.

The rest of this paper is organized as follows: Section 2 recalls some basic concepts of
the CIFS, CHFS, and IHFS. In Section 3, we introduce the four types of CIHFRS models via
IHF β-neighborhoods and IHFC β-neighborhoods. The corresponding axiomatic systems
are investigated. In particular, the rough and precision degrees of CIHFRS models are
discussed. In Section 4, based on the theoretical analysis of CIHFRS models, we put
forward the IHF-TOPSIS methodology for the MCDM problem with the evaluation of IHF
information. An effective example is given to illustrate the proposed methodology. Finally,
by comparative analysis, we find that it is more effective to deal with the MCDM problem
with the evaluation of IHF information based on CIHFRS models than with the evaluation
of intuitionistic fuzzy information based on CIFRS models and the evaluation of hesitant
fuzzy information based on CHFRS models in Section 5. In Section 6, we conclude this
paper, summarizing our findings and providing plans for further research.

2. Preliminaries

The notion of the IFS was first introduced by Atanassov [4] as a generalization of the
FS [1]. Further, in order to deal with a set of uncertain information, Torra [9] extended the
concept of the FS. Furthermore, these concepts are generalized by Chinram et al. [24], and
Zhou and Li [27] developed IFRSs, covering-based HFR sets. In the following subsections,
some basic definitions, operational laws, and extended forms of the IFS and HFS are
discussed.

2.1. Covering-Based Intuitionistic Fuzzy Rough Set

In this subsection, the notion of the IFS, operational laws of the IFS, and the covering-
based IFRS are presented. Moreover, score and accuracy functions are also given. The IFS can
be defined as follows:

Definition 1 ([4,28]). Assume that Ẋ ̸= ϕ is a universe of discourse; then an IFS î in Ẋ is defined by

î = {
〈
z, τ̂i(z), ϱî(z)

〉
| z ∈ Ẋ} (1)

where the functions τ̂i(z) : Ẋ −→ [0, 1] and ϱî(z) : Ẋ −→ [0, 1], denoting the degree of
membership and degree of nonmembership of z to î, respectively, and ∀ z ∈ Ẋ, τ̂i(z), ϱî(z) fulfill
0 ≤ τ̂i(z) + ϱî(z) ≤ 1. An intuitionistic fuzzy number (IFN) is denoted by

.
m =

〈
τ .

m, η .
m
〉
.
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Definition 2 ([29]). For an IFN,
.

m =
〈
τ .

m, η .
m
〉
, and the score and accuracy functions are defined,

respectively, by
Ŝ(

.
m) = τ .

m − η .
m

and
a(

.
m) = τ .

m + η .
m

where −1 ≤ Ŝ(
.

m) ≤ 1, 0 ≤ a(
.

m) ≤ 1.
Further, for IFNs

.
m1,

.
m2, the properties of score and accuracy functions are defined as fol-

lows [29]:

(1) If Ŝ(
.

m1) ≻ Ŝ(
.

m2), then
.

m1 ≻
.

m2.
(2) If Ŝ(

.
m1) ≺ Ŝ(

.
m2), then

.
m1 ≺

.
m2.

(3) If Ŝ(
.

m1) = Ŝ(
.

m2), then

(i) a(
.

m1) ≻ a(
.

m2) implies
.

m1 ≻
.

m2.
(ii) a(

.
m1) ≺ a(

.
m2) implies

.
m1 ≺

.
m2.

(iii) a(
.

m1) = a(
.

m2) implies
.

m1 ∼ .
m2.

Definition 3 ([30]). Assume that X ̸= ϕ is a universe of discourse and G = {G1, G2, . . . , Gn},
where Gi(i = 1, 2, 3, . . . , n) ∈ IF(X). For any IFN, β = (β1, β2). Then G is called an IF β-

covering of X if
(

n⋃
i=1

Gi

)
(κ) ≥ β, ∀ κ ∈ X. In this context, the pair (X,G) is represented as an IF

covering approximation space (IFCAS).

Definition 4. Assume that (X, G) is an IFCAS and G = {G1, G2, . . . , Gn} is an IF-β covering of
X for some β = (β1, β2); then,

Nβ

G(κ) =
⋂
{Gi ∈ G|Gi(κ) ≥ β, i = 1, 2, . . . , n} (2)

is referred to as an IF β-neighborhood of κ in X.

Definition 5 ([30]). Assume that (X, G) is an IFCAS, G = {G1, G2, . . . , Gm} is an IF β-covering of
X for some IFN β = (β1, β2), and X = {κ1,κ2, . . . ,κn}. Suppose that Nβ

G(κi)
=
{
Nβ

G(κi)
|κi ∈ X

}
is an IF β-neighborhood system induced by G, whereNβ

G(κi)
=

{〈
κj, τNβ

G(κi)
(κi,κj), ηNβ

G(κi)
(κi,κj)

〉
| j = 1, 2, . . . n

}
∀ i = 1, 2, . . . , n. For any A ∈ IF(X), the lower approximation (LA) and upper

approximation (UA) spaces of A with respect to Nβ
G represented as Nβ

G(A) and Nβ
G(A), respectively,

are two IFSs on X defined by

Nβ
G(A) =

{〈
κi, τNβ

G(A)
(κi), ηNβ

G(A)
(κi)

〉
| i = 1, 2, . . . n

}
(3)

and

Nβ
G(A) =

{〈
κi, τ

Nβ
G(A)

(κi), η
Nβ

G(A)
(κi)

〉
| i = 1, 2, . . . n

}
(4)

where

τNβ
G(A)

(κ) =
n∧

j=1

{ηNβ
G(κi)

(κi,κj) ⊻ τA(κj)}

ηNβ
G(A)

(κ) =
n∨

j=1

{τNβ
G(κi)

(κi,κj) ⊼ ηA(κj)}
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and

τ
Nβ

G(A)
(xi) =

n∨
j=1

{τNβ
G(xi)

(xi, xj) ⊼ τA(xj)}

η
Nβ

G(A)
(κ) =

n∧
j=1

{ηNβ
G(κi)

(κi,κj) ⊻ ηA(κj)}

Nβ
G(A) ,Nβ

G(A) : IF(X) → IF(X) are called the lower and upper IF rough approximation

operators (IFRAOs) with respect to Nβ
G, respectively. The pair (Nβ

G(A),Nβ
G(A)) refers to a covering-

based IF rough set (CIFRS).

2.2. Covering-Based Hesitant Fuzzy Rough Set

In this subsection, we examine the HFS, score function, and accuracy function of a
hesitant fuzzy element (HFE) and a hesitant fuzzy rough set (HFRS). The HFS can be
defined as follows:

Definition 6 ([9,31]). Assume that X ̸= ϕ universe of discourse; then an HFS denoted as Ĥ in the
set X can be defined as

Ĥ = {
〈
z, ΩĤ(z)

〉
| z ∈ X} (5)

where ΩĤ(z) is a collection of possible values belonging to the interval [0, 1] representing the degree
of membership of z ∈ X to Ĥ. If X is a singleton set, then ĥ(z) is a hesitant fuzzy element.

Definition 7 ([32]). Assuming that ĥ is an HF element, the score function of ĥ is defined as follows:

s(ĥ) =
1

l(ĥ)

l(
←→
h )

∑
s=1

ĥσ(s).

Furthermore [32], for any two hesitant elements, say, ḣ1, ḣ2, see as follows:

(i) If s(ĥ1) ≻ s(ĥ2), then ĥ1 ≻ ĥ2.
(ii) If s(ĥ1) = s(ĥ2), then ĥ1 ∼ ĥ2.

Definition 8 ([27]). Assume that X ̸= ϕ is a universe of discourse, G = {G1, G2, . . . , Gn} where
Gi(i = 1, 2, . . . , n) ∈ HF(X), and β = (β1, β2) can be any HFE, then G is called an HF β-covering

of X if h
n⋃

i=1
Gi(z) ≥ β,∀ z ∈ X. The pair (X, G) is called an HF β-covering approximation space

(HFCAS).

Definition 9 ([27]). Assume that (X, G) is an HFCAS and G = {G1, G2, . . . , Gn } is an HF-β

covering of X for some β = (β1, β2); then Nβ,G
1,z =

⋂{Gi ∈ G|hGi (z) ≥ β, i = 1, 2, . . . , n} and

Nβ,G
2,z = {≺ y, hNβ,G

2,z
(y) ≻ |y ∈ X} are called an HF β-neighborhood and HF complementary

β-neighborhood of z on X, respectively. Here, hNβ,G
2,z

(y) = hNβ,G
1,y

(z).

Definition 10. Assume that (X, G) is an HFCAS and G = {G1, G2, . . . , Gm} is an HF β-covering
of X for some HF elements β. For any ĥ ∈ HF(X), the LA and UA spaces of ĥ with respect to

Nβ
G represented as Nβ

G(ĥ) and Nβ
G(ĥ), respectively, are two HFSs on X defined by Nβ

G(ĥ) ={
z, ĥNβ

G(ĥ)
(z)
}

and Nβ
G(A) =

{
z, ĥ

Nβ
G(A)

(z)
}

, where ĥNβ
G(A)

(z) =
∧

y∈X
{ĥ

(Nβ
G)

c(y) ⊻ ĥA(y)}

and ĥ
Nβ

G(A)
(z) =

∨
y∈X
{ĥNβ

G
(y) ⊼ ĥA(y)}. Nβ

G(A),Nβ
G(A) : HF(X) → HF(X) are called

the lower and upper hesitant fuzzy rough approximation operators (HFRAOs) with respect to
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Nβ
G, respectively. The pair (Nβ

G(A),Nβ
G(Ã)) refers to a covering-based hesitant fuzzy rough

set (CHFRS).

2.3. Intuitionistic Hesitant Fuzzy Set

The concept of the IHFS was first introduced by Peng et al. [15] and is characterized
by a hesitant fuzzy membership degree and a hesitant fuzzy nonmembership degree. In
this subsection, a definition of the IHFS is presented, and some operational laws and
comparisons of the IHFNS are also discussed. The IHFS can be defined as follows:

Definition 11 ([15]). Assume that X ̸= ϕ universe of discourse; then an IHFS ΛIHFS on X
denoted by ΛIHFS can be defined as

ΛIHFS = {
〈
κ, ΦΛIHFS(κ), ΨΛIHFS

(κ)
〉
| κ ∈ X}, (6)

where ΦΛIHFS(κ) and ΨΛIHFS(κ) are mappings from X to the interval [0, 1] representing the
hesitant fuzzy MD and hesitant fuzzy NMD, respectively, and are the set of possible values
belonging to [0, 1] such that for hΛIHFS(κ) ∈ ΦΛIHFS(κ) ∃ ĥΛIHFS(κ) ∈ ΨΛIHFS(κ) with
hΛIHFS(κ) + ĥΛIHFS(κ) ≤ 1 and ∀ ĥΛIHFS(κ) ∈ ΨΛIHFS(κ) ∃ hΛIHFS(κ) ∈ ΦΛIHFS(κ) with
0 ≤ hΛIHFS(κ) + ĥΛIHFS(κ) ≤ 1. Further, IHFS(X) represents the set of all IHFSs. If X can
have only one element κ, then ⟨κ, ΦΛ(κ), ΨΛ(κ)⟩ is said to be an IHFN that is represented by
ė = ⟨Φė, Ψė⟩ for convenience.

Definition 12 ([15]). Assume that ė1 = ⟨Φė1 , Ψė1⟩ , ė2 = ⟨Φė2 , Ψė2⟩, and ė3 = ⟨Φė3 , Ψė3⟩ are
three IHFNs; then

(i) ζ ė =
〈
∪hė∈Φė{1− (1− hė)ζ},∪ĥė∈Ψė{ĥė}ζ

〉
, ζ ≻ 0.

(ii) ėζ =
〈
∪hė∈Φė{hė}ζ ,∪ĥė∈Ψė{1− (1− ĥė)ζ}

〉
, ζ ≻ 0.

(iii) ė1 + ė2 =
〈
∪hė1∈Φė1,hė2∈Φė2{hė1 + hė2 − hė1.hė2},∪ĥė1∈Ψė1,ĥė2∈Ψė2

{ĥė1.ĥė2}
〉

.

(iv) ė1 × ė2 =
〈
∪hė1∈Φė1,hė2∈Φė2{hė1.hė2},∪ĥė1∈Ψė1,ĥė2∈Ψė2

{ĥė1 + ĥė2 − ĥė1.ĥė2}
〉

.

Definition 13 ([33]). Assume that Ẋ ̸= ϕ is a universe of discourse; then for any B̄, C̄ ∈ IHFS(Ẋ).
The union B̄ ∪ C̄ and intersection B̄ ∩ C̄ of B̄ and C̄ are specified as follows:

B̄ ∪ C̄ = {⟨χ, ΦB̄(χ) ∪ΦC̄(χ), ΨB̄(χ) ∩ΨC̄(χ)⟩ | χ ∈ χ}

B̄ ∩ C̄ = {⟨χ, ΦB̄(χ) ∩ΦC̄(χ), ΨB̄(χ) ∪ΨC̄(χ)⟩ | χ ∈ χ}

where
ΦB̄(χ) ∪ΦC̄(χ) =

{
ν ∈ (ΦB̄(χ) ∪ΦC̄(χ))|ν ≥ max(Φ−B̄ (χ), Φ−C̄ (χ))

}
and

ΦB̄(χ) ∩ΦC̄(χ) =
{

ν ∈ (ΦB̄(χ) ∪ΦC̄(χ))|ν ≤ min(Φ+
B̄ (χ), Φ+

C̄ (χ))
}

and
ΨB̄(χ) ∩ΨC̄(χ) =

{
ν ∈ (ΨB̄(χ) ∪ΨC̄(χ))|ν ≤ min(Ψ+

B̄ (χ), Ψ+
C̄ (χ))

}
,

ΨB̄(χ) ∪ΨC̄(χ) =
{

ν ∈ (ΨB̄(χ) ∪ΨC̄(χ))|ν ≥ max(Ψ−B̄ (χ), Ψ−C̄ (χ))
}

The score and accuracy functions of the IHFS are, respectively, given by the following:

Definition 14 ([15]). Assume that ė = ⟨Φė, Ψė⟩ is an IHFN; the score function and accuracy
function of ė are defined, respectively, as (ė) = Φė−Ψė

2 , where Φė = sum of all elements in Φė
|Φė | , Ψė =

sum of all elements in Ψė
|Ψė | , and (ė) ∈ [−1, 1]; and A̧(ė) = Φė−Ψė

2 , where Φė = sum of all elements in Φė
|Φė | ,
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Ψė =
sum of all elements in Ψė

|Ψė | , and A̧(ė) ∈ [0, 1].

3. Covering-Based Intuitionistic Hesitant Fuzzy Rough Set (CIHFRS) Models

In this section, we define the CIHRS as an extension of the IHFS with a covering-
based rough set. We define intuitionistic hesitant fuzzy β-covering rough approximation
spaces, the intuitionistic hesitant fuzzy β-neighborhood, and the intuitionistic hesitant
fuzzy complementary β-neighborhood, and examples of the concepts are also presented.
Properties of the developed concepts are investigated in detail.

Definition 15. Assume that X is a universe of discourse, G = {G1, G2, . . . , Gm} where Gi(i =
1, 2, . . . , m) ∈ IHF(X), and β = (Φβ, Ψβ) IHFN; then G is called an IHF β-covering of X

if
m⋃

i=1
ℏ(x) ≥ β, ∀x ∈ X. The pair (X, G) is called an IHFCAS.

Definition 16. Assume that (X, G) is an IHFCAS, G = {G1, G2, . . . , Gm} is an intuitionistic
hesitant fuzzy β-covering of X, and β = (Φβ, Ψβ) is an IHFN; then N =

⋂{Gi ∈ G|Gi(x) ≥
β, i = 1, 2, . . . , m} is called an IHF β-neighborhood of x ∈ X.

Definition 17. Assume that (X, G) is an IHFCAS, G = {G1, G2, . . . , Gm} is an IHF β-covering
of X for some IHFN β = (Φβ, Ψβ), and X = {x1, x2, . . . , xn}.∀x ∈ X; then the set

Φ
Mβ

x
(y), Ψ

Mβ
x
(y) = ΦNβ

y
(x), ΨNβ

y
(x).∀y ∈ X (7)

Mβ
x is called an IHF-complement β-neighborhood of x in X. We represent M̃β

G = {Mβ
x |x ∈ X} as

the β-neighborhood system induced by the IHF complement through the IHF β-covering G, where
Mβ

x = {≺ y, Φ
Mβ

x
(y), Ψ

Mβ
x
(y) ≻ |y ∈ X}.

Example 1. Assume that (X, G) is an IHFCAS, and G = {G1, G2, G3, G4, G5} is an intuition-
istic hesitant fuzzy β-covering of set X. Take β = ⟨{0.1, 0.4, 0.5},{0.1, 0.3, 0.4}⟩, where X =
{κ1,κ2,κ3,κ4,κ5}, as shown in Table 1.

Table 1. Intuitionistic hesitant fuzzy β-covering matrix.

X/G G1 G2 G3 G4 G5

κ1 ⟨{0.2, 0.3, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.6}, {0.2, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}⟩ ⟨{0.1, 0.2, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.4, 0.6}, {0.2, 0.3, 0.4}⟩

κ2 ⟨{0.1, 0.3, 0.5}, {0.1, 0.2, 0.5}⟩ ⟨{0.2, 0.3, 0.6}, {0.1, 0.2, 0.4}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.5}⟩ ⟨{0.1, 0.3, 0.6}, {0.1, 0.2, 0.4}⟩ ⟨{0.1, 0.2, 0.4}, {0.1, 0.2, 0.3}⟩

κ3 ⟨{0.2, 0.3, 0.4}, {0.1, 0.3, 0.5}⟩ ⟨{0.1, 0.2, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.2, 0.4, 0.5}, {0.2, 0.3, 0.5}⟩ ⟨{0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.5}⟩

κ4 ⟨{0.1, 0.4, 0.5}, {0.2, 0.3, 0.4}⟩ ⟨{0.3, 0.4, 0.5}, {0.2, 0.4}⟩ ⟨{0.3, 0.4, 0.5}, {0.3, 0.4}⟩ ⟨{0.2, 0.3, 0.5}, {0.1, 0.3, 0.5}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}⟩

κ5 ⟨{0.2, 0.3, 0.4}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}⟩ ⟨{0.2, 0.3, 0.4}, {0.1, 0.2, 0.5}⟩ ⟨{0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.2, 0.5}⟩

Then Nβ
κ1 = G1 ∩ G5,Nβ

κ2 = G2 ∩ G4,Nβ
κ3 = G1 ∩ G4,Nβ

κ4 = G2 ∩ G3,Nβ
κ5 = G4 ∩ G5.

Calculating the value of the β-neighborhood, we obtain Table 2.

Table 2. Intuitionistic hesitant fuzzy β-neighborhood matrix.

Nβ
G κ1 κ2 κ3 κ4 κ5

κ1 ⟨{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}⟩

κ2 ⟨{0.1, 0.3, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.1, 0.3, 0.6}, {0.1, 0.2, 0.4}⟩ ⟨{0.1, 0.3, 0.5}, {0.1, 0.2, 0.4}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}⟩ ⟨{0.1, 0.3, 0.4}, {0.1, 0.2, 0.3}⟩

κ3 ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.5}⟩ ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.3}⟩ ⟨{0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.3}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}⟩

κ4 ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.3, 0.4, 0.5}, {0.2, 0.4, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}⟩

κ5 ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.4, 0.4}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.5}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩
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By using Definition 17, we obtain the IHF-complement β-neighborhood values as presented in
Table 3.

Table 3. Intuitionistic hesitant fuzzy complementary β-neighborhood matrix.

M̃β
G κ1 κ2 κ3 κ4 κ5

κ1 ⟨{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.5}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.4}⟩

κ2 ⟨{0.1, 0.3, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.6}, {0.1, 0.2, 0.4}⟩ ⟨{.1, 0.4, 0.4}, {0.1, 0.3, 0.3}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩

κ3 ⟨{0.1, 0.3, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.5}, {0.1, 0.2, 0.4}⟩ ⟨{0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.4, 0.4}, {0.1, 0.3, 0.4}⟩

κ4 ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}⟩ ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.3}⟩ ⟨{0.3, 0.4, 0.5}, {0.2, 0.4, 0.4}⟩ ⟨{0.1, 0.4, 0.4}, {0.1, 0.3, 0.5}⟩

κ5 ⟨{0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}⟩ ⟨{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩

Definition 18. Assume that (X, G) is an IHFCAS, G = {G1, G2, . . . , Gm} an intuitionistic
hesitant fuzzy β-covering of X for some IHFN β = (Φβ, Ψβ), and X = {x1, x2, . . . , xn}. For every

Ā ∈ IHF(X), the LA and UA of Ā with respect to Nβ
G are represented as Nβ

G(Ā) and Nβ
G(Ā),

respectively, which are two IHFSs in X, defined as

Nβ
G(Ā) = {x, ΦNβ

G(Ā)
(x), ΨNβ

G(Ā)
(x)} (8)

and
Nβ

G(Ā) = {x, Φ
Nβ

G(Ā)
(x), Ψ

Nβ
G(Ā)

(x)} (9)

where ΦNβ
G(A)

(x) = ⊼
y∈X
{Φ

(Nβ
x )c(y) ⊻ ΦA(y)} ΨNβ

G(A)
(x) = ⊼

y∈X
{Ψ

(Nβ
x )c(y) ⊻ ΨA(y)} and

Φ
Nβ

G(A)
(x) = ⊻

y∈X
{ΦNβ

x
(y) ⊼ ΦA(y)} Ψ

Nβ
G(A)

(x) = ⊻
y∈X
{ΨNβ

x
(y) ⊼ ΨÃ(y)}.N

β
G(A) ,Nβ

G(A) :

IHF(X) → IHF(X) are called the first type of LA and UA approximation operators of Ā with

respect to Nβ
G. The pair (Nβ

G(A),Nβ
G(A)) is said to be the first type of IHFβCRSs (I-IHFβCRSs).

Example 2 (continued from Example 1). Let

Ā =


⟨κ1, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩,
⟨κ3, {{0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}}⟩, ⟨κ4, {{0.4, 0.5, 0.6}, {0.1, 0.2, 0.4}}⟩,

⟨κ5, {{0.3, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩


By Definition 18, Nβ

G and Nβ
G are obtained as follows:

Nβ
G(A) =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩


and

Nβ
G(A) =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.5}, {0.1, 0.2, 0.4}}⟩,
⟨κ3, {{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩


Definition 19. Assume that (X, G) is an IHFCAS, G = {G1, G2, . . . , Gm} is an intuitionistic
hesitant fuzzy β-covering of X for some IHFN β = (Φβ, Ψβ), and X = {x1, x2, . . . , xn}. For every

Ā ∈ IHF(X), the LA and UA of Ā with respect to M̃
β
x denoted by Mβ

G and Mβ
G, respectively, are

IHFSs on X and defined as

Mβ
G(Ā) =

{〈
x, Φ

Mβ
G(Ā)

(x), Ψ
Mβ

G(Ā)
(x)
〉
|x ∈ X

}
(10)
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and

Mβ
G(Ā) =

{(
x,
〈

Φ
Mβ

G(A)
(x), Ψ

Mβ
G(A)

(x)
〉)
|x ∈ X

}
(11)

where Φ
Mβ

G(A)
(x) = ⊼

y∈X
{Ψ

(Mβ
x )c(A)

(y) ⊻ ΦA(y)}, Ψ
Mβ

G(A)
(x) = ⊻

y∈X
{Φ

(Mβ
x )c(A)

(y) ⊼ ΨA(y)}

and Φ
Mβ

G(A)
(x) = ⊻

y∈X
{Φ

Mβ
x (A)

(y) ⊼ ΦA(y)}, Ψ
Mβ

x (A)

(x) = ⊼
y∈X
{Ψ

Mβ
G(A)

(y) ⊻ ΨA(y)}. Mβ
G(A);

Mβ
G(A) : IHF(X)→ IHF(X) are said to be the second type of LA and UA operators of A with respect

to M̃β
x . The pair (Mβ

G(A), Mβ
G(A)) is called the second type of IHβCRSs (II-IHβCRSs).

Example 3 (continued from Example 1). Let

A =


⟨κ1, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩,
⟨κ3, {{0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}}⟩, ⟨κ4, {{0.4, 0.5, 0.6}, {0.1, 0.2, 0.4}}⟩,

⟨κ5, {{0.3, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩


By Definition 19, Mβ

G and Mβ
G are found out as follows:

Mβ
G(Ã) =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩


and

Mβ
G(Ã) =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩


From Examples 2 and 3, we obtain the following: I-CIHFRS models and II-CIHFRS

models do not directly relate, though the IHF β-covering induces the IHFC β-covering.

Definition 20. Assume that (X, G) is an IHFCAS, G = {G1, G2, . . . , Gm} is an intuitionistic
hesitant fuzzy β-covering of X for some intuitionistic hesitant fuzzy number (IHFN) β = (Φβ, Ψβ),

and X = {x1, x2, . . . , xn}. For every Ā ∈ IHF(X), the LA and UA of Ā with respect to Nβ
G and

M̃β
G represented by Kβ

G and Kβ
G, respectively, will be the IHFS on X defined by

Kβ
G Ā =

{〈
x, Φ

Kβ
G(Ā)

(x), Ψ
Kβ

G(Ā)
(x)
〉
|x ∈ X

}
(12)

and

Kβ
G Ā =

{〈
x, Φ

Kβ
G(Ā)

(x), Ψ
Kβ

G(Ā)
(x)
〉
|x ∈ X

}
(13)

where Φ
Kβ

G(Ā)
(x) = ⊼

y∈X

{
Φ

(̃M
β

G)
c
(y)⊻Φ

(Nβ
x)c(y)⊻ΦĀ(y)

}
, Ψ

Kβ
G(Ā)

(x) = ⊼
y∈X

{
Ψ
(M̃β

G)
c(y) ⊻

Ψ
(Nβ

x )c
(y) ⊻ ΨĀ(y)

}
and Φ

Kβ
G(Ā)

(x) = ⊻
y∈X

{
Φ

M̃β
G(Ā)

(y)⊼Φ
(Nβ

x)
(y)⊼ΦĀ(y)

}
, Ψ

Kβ
G(Ā)

(x) =

⊻
y∈X

{
Ψ

M̃β
G(A)

(y)⊼Ψ
(Nβ

x)
(y)⊼ΨĀ(y)

}
. Kβ

G(Ā), Kβ
G(Ā) : IHF(X)→ IHF(X), the third type of

LA and UA operators for set Ā with respect to Nβ
G and M̃β

G. This pair (Kβ
G(A), Kβ

G(A)) is referred to
as the IH βCRSs (III-IHβCRSs).
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Example 4 (continued from Example 1). Let

Ā =


⟨κ1, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩,
⟨κ3, {{0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}}⟩, ⟨κ4, {{0.4, 0.5, 0.6}, {0.1, 0.2, 0.4}}⟩,

⟨κ5, {{0.3, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩


By Definition 20, Kβ

G and Kβ
G are calculated as follows:

Kβ
G =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩


and

Kβ
G =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.5}, {0.1, 0.2, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩


Definition 21. Assume that (X, G) is an IHFCAS; let G = {G1, G2, . . . , Gm} be an intuitionistic
hesitant fuzzy β-covering of X for some IHFN β = (Φβ, Ψβ) and X = {x1, x2, . . . , xn}. For

every Ã ∈ IHF(X), the LA and UA of Ã with respect to Nβ
G and M̃β

G represented by Fβ
G and Fβ

G,
respectively, are the IHFSs on X defined as

Fβ
G =

{〈
x, Φ

Fβ
G(Ā)

(x), Ψ
Fβ

G(Ā)
(x)
〉
|x ∈ X

}
(14)

and

Fβ
G =

{〈
x, Φ

Fβ
G(Ā)

(x), Ψ
Fβ

G(Ā)
(x)
〉
|x ∈ X

}
(15)

where

Φ
Fβ

G(Ā)
(x) = ⊼

y∈X

{
Φ

(M̃β
G)

c(y) ⊼ Φ
(Nβ

x )c(y) ⊻ ΦĀ(y)
}

,

Ψ
Fβ

G(Ā)
(x) = ⊼

y∈X

{
Ψ
(M̃β

G)
c(y) ⊼ Ψ

(Nβ
x )c

(y) ⊻ ΨÃ(y)
}

and

Φ
Fβ

G(Ã)
(x) = ⊻

y∈X

{
Φ

M̃β
G(Ã)

(y) ⊻ Φ
(Nβ

x )
(y) ⊼ ΦÃ(y)

}
,

Ψ
Fβ

G
(Ã)(x) = ⊻

y∈X

{
Ψ

M̃β
G(Ã)

(y) ⊻ Ψ
(Nβ

x )
(y) ⊼ ΨÃ(y)

}
.

Fβ
G(Ã), Fβ

G(Ã) : IHF(X)→ IHF(X). The fourth type of LA and UA operators for set

Ā with respect to Nβ
G and M̃β

G are termed (Fβ
G(Ā), Fβ

G(Ã)). This pair is called the fourth type
of IHβCRSs(IV − IHβCRSs).

Example 5 (continued from Example 1). Let

Ā =


⟨κ1, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩,
⟨κ3, {{0.3, 0.4, 0.5}, {0.2, 0.3, 0.4}}⟩, ⟨κ4, {{0.4, 0.5, 0.6}, {0.1, 0.2, 0.4}}⟩,

⟨κ5, {{0.3, 0.4, 0.5}, {0.2, 0.4, 0.5}}⟩


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By Definition 21, Fβ
G and Fβ

G are calculated as follows:

Fβ
G =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩


and

Fβ
G =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩


Theorem 1. For every x in X, the outcomes for the degrees of m̆ and n̆m̆ in relation to the
approximation operators are as follows:

i) 0 ≤ Φ
Mβ

x (Ã)
(y) + Ψ

Mβ
x (Ã)

(y) ≤ 1

ii) 0 ≤ Φ
Mβ

x (Ã)
(y) + Ψ

Mβ
x (Ã)

(y) ≤ 1

Proof. First, we prove the inequality (i) by Definition 17. For any x ∈ X, it is obvious that
0 ≤ Φ

Mβ
x (Ã)

(y) + Ψ
Mβ

x (Ã)
(y). On the other side, we obtain

1−Ψ
Mβ

x (Ã)
(y) = 1−

∧{
Φ

Mβ
x (Ã)

(y) ∨ΨÃ(y)
}

=
∧{

(1−Φ
Mβ

x (Ã)
(y)) ∨ (1−ΨÃ(y))

}
≥
∧{

Ψ
Mβ

x (Ã)
(y) ∨ΦÃ(y)

}
= Φ

Mβ
x (Ã)

(y)

This shows that
0 ≤ Φ

Mβ
x (Ã)

(y) + Ψ
Mβ

x (Ã)
(y) ≤ 1

Similarly, as by Definition 17, for any x ∈ X, it is obvious that 0 ≤ Φ
Mβ

x (Ã)
(y) +

Ψ
Mβ

x (Ã)
(y). On the other side, we obtain

1−Ψ
Mβ

x (Ã)
(y) = 1−

∨{
Φ

Mβ
x (Ã)

(y) ∧ΨÃ(y)
}

=
∨{

(1−Φ
Mβ

x (Ã)
(y)) ∧ (1−ΨÃ(y))

}
≥
∨{

Ψ
Mβ

x (Ã)
(y) ∧ΦÃ(y)

}
= Φ

Mβ
x (Ã)

(y)

This shows that
0 ≤ Φ

Mβ
x (Ã)

(y) + Ψ
Mβ

x (Ã)
(y) ≤ 1

Theorem 2. Suppose (X, G) constitutes an approximation space known as an IHFCAS.

G = {G1, G2, . . . , Gm}
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is an intuitionistic hesitant fuzzy β-covering of X. For some intuitionistic hesitant fuzzy number
(IHFN), β = (Φβ, Ψβ). Assume that M̃β

x = {Mβ
x |x ∈ X} is the intuitionistic hesitant fuzzy-

complement β-neighborhood system induced by G. For any P, Q ∈ IHF(X), then

i) I f P ⊑ Q, then Mβ
G(P) ⊑ Mβ

G(Q) and Mβ
G(Q) ⊑ Mβ

G(Q).

ii) Mβ
G(P ∩Q) = Mβ

G(P) ∩Mβ
G(Q) and Mβ

G(P ∪Q) ⊇ Mβ
G(P) ∪Mβ

G(Q).

iii) Mβ
G(P ∪Q) = Mβ

G(P) ∪Mβ
G(Q) and Mβ

G(P ∩Q) ⊑ Mβ
G(P) ∩Mβ

G(Q).

iv)
(

Mβ
G(P)

)c
=

(
Mβ

G(P)c
)

and
(

Mβ
G(P)

)c
=
(

Mβ
G(P)c

)
.

Various distances between IFSs were introduced by several authors (Wang and Xin [34];
Xu and Yager [35]; Szmidt and Kacprzyk [36]). Here, we utilize Wang and Xin’s [34] idea of
IFS distances for IHFS distance in the following way:

Definition 22. Assume that (X, G) is an IHF-covering approximation space. Suppose that
A, B ∈ IHFS(X), where A = {⟨x, ΦA(x) ,ΨA(x)⟩|x ∈ X}, B = {⟨x, ΦB(x) ,ΨB(x)⟩|x ∈ X}.
Define the distance D(A, B) for A and B as follows:

D(A, B) =
1
|X|∑

(
∑ |ΦA(x)−ΦB(x)|+ ∑ |ΨA(x)−ΨB(x)|

4
+

max{∑ |ΦA(x)−ΦB(x)|, ∑ |ΨA(x)−ΨB(x)|}
2

)
Definition 23. Assume that (X, G) is an IHF-covering approximation space (IHFCAS),
and let G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some
IHFN, β = (Φβ, Ψβ). Consider the IHF β-neighborhood system Nβ

G =
{
Nβ

G(κ) | κ ∈ X
}

induced by G. For any A ∈ IHF(X), Nβ
G(A) and Nβ

G(A) are the UA and LA of A in relation to

Nβ
G, respectively. We define the rough and precision degrees of A with respect to Nβ

G, respectively,
as follows:

RNβ
G(A)

= D
(
Nβ

G(A),Nβ
G(A)

)
(16)

and
PNβ

G(A)
= 1− RNβ

G(A)
(17)

Example 6 (continued from Example 2).

Nβ
G(A) =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩


and

Nβ
G(A) =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.5}, {0.1, 0.2, 0.4}}⟩,
⟨κ3, {{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩


Applying the provided definition, we derive the roughness and precision degrees for

set A in relation to Nβ
G, respectively, as follows: RNβ

G(A)
= 0.08 andPNβ

G(A)
= 0.91.

Definition 24. Assume that (X, G) is an IHF-covering approximation space (IHFCAS), and let
G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some intuitionistic
hesitant fuzzy number (IHFN), β = (Φβ, Ψβ). Assume that Mβ

G =
{

Mβ

G(κ)|κ ∈ X
}

is an
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IHFCβ−neighborhood system induced by G. For any A ∈ IHF(X), Mβ
G(A) and Mβ

G(A) are the

UA and LA of A in relation to Nβ
G, respectively. We define the rough and precision degrees of A

with respect to Mβ
G, respectively, as follows:

R
Mβ

G(A)
= D

(
Mβ

G(A), Mβ
G(A)

)
and

P
Mβ

G(A)
= 1− R

Mβ
G(A)

Example 7 (continued from Example 2).

Mβ
G(A) =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩


and

Mβ
G(A) =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {0.1, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩


Applying the provided definition, we derive the roughness and precision degrees for

set A in relation to Mβ
G, respectively, as follows: R

Mβ
G(Ã)

= 0.10 and P
Mβ

G(Ã)
= 0.90.

From Examples 6 and 7, we obtain the following:
Any IHFS has distinct rough and precision degrees in relation to Mβ

G and Nβ
G, respectively.

Definition 25. Assume that (X, G) is an IHF-covering approximation space (IHFCAS), and let
G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some intuition-
istic hesitant fuzzy number (IHFN), β = (Φβ, Ψβ). Assume that Nβ

G =
{
Nβ

G(κ)|κ ∈ X
}

is a

β-neighborhood IHF system and Mβ
G =

{
Mβ

G(x)|x ∈ X
}

is an IHFCβ− neighborhood system

induced by G, respectively. For any Ã ∈ IHF(X), Kβ
G(Ã) and Kβ

G(Ã) are the upper and lower

approximations of Ã with respect to Nβ
G and Mβ

G, respectively. We define the rough and precision

degrees of Ã with respect to Kβ
G, respectively, as follows: R

Kβ
G(Ã)

= D
(

Kβ
G(Ã), Kβ

G(Ã)

)
and

P
Kβ

G(Ã)
= 1− R

Kβ
G(Ã)

.

Example 8 (continued from Example 4).

Kβ
G =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.5}}⟩


and

Kβ
G =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.5}, {0.1, 0.2, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩


Applying the provided definition, we derive the roughness and precision degrees for set A in

relation to Kβ
G, respectively, as follows: R

Kβ
G(Ã)

= 0.13 and P
Kβ

G(Ã)
= 0.86.
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Definition 26. Assume that (X, G) is an IHF-covering approximation space (IHFCAS), and let
G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some intuitionistic
hesitant fuzzy number (IHFN), β = (Φβ, Ψβ). Assume that Nβ

G =
{
Nβ

G(κ)|κ ∈ X
}

is an

IHFβ − neighborhood system and Mβ
G =

{
Mβ

G(x)|x ∈ X
}

is an IHFCβ-neighborhood system

induced by G, respectively. For any A ∈ IHF(X), Fβ
G(A) and Fβ

G(A) are the upper and lower

approximations of A with respect to Nβ
G and Mβ

G, respectively. We define the rough and precision

degrees of A with respect to Fβ
G, respectively, as follows: R

Fβ
G(A)

= D
(

Fβ
G(A), Fβ

G(A)

)
and

P
Fβ

G(A)
= 1− R

Fβ
G(A)

.

Example 9 (continued from Example 5).

Fβ
G =


⟨κ1, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩, ⟨κ2, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ4, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩,

⟨κ5, {{0.1, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩


and

Fβ
G =


⟨κ1, {{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}}⟩, ⟨κ2, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩,
⟨κ3, {{0.2, 0.4, 0.5}, {0.1, 0.4, 0.4}}⟩, ⟨κ4, {{0.3, 0.4, 0.5}, {0.1, 0.3, 0.5}}⟩,

⟨κ5, {{0.2, 0.4, 0.6}, {0.1, 0.3, 0.4}}⟩


Applying the provided definition, we derive the roughness and precision degrees for set A in

relation to Fβ
G, respectively, as follows: R

Fβ
G(Ã)

= 0.116 and P
Fβ

G(Ã)
= 0.883.

Theorem 3. Assume that (X, G) is an IHF-covering approximation space (IHFCAS), and let
G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some IHFN
β = (Φβ, Ψβ). Consider that Nβ

G =
{
Nβ

G(x)|x ∈ X
}

and M̃β
G =

{
M̃β

G(x)|x ∈ X
}

are an
IHFβ− neighborhood system induced by G, respectively. Suppose that A, B ∈ IHFS(X), then

i) A ⊑ B, then Kβ
G(A) ⊑ Kβ

G(B) and Kβ
G(A) ⊑ Kβ

G(B);

ii) Kβ
G(A ∩ B) = Kβ

G(A) ∩ Kβ
G(B) and Kβ

G(A ∪ B) ⊒ Kβ
G(A) ∪ Kβ

G(A);

iii) Kβ
G(A ∪ B) = Kβ

G(A) ∪ Kβ
G(B) and Kβ

G(A ∩ B) ⊑ Kβ
G(A) ∩ Kβ

G(B);

iv)
(

Kβ
G(A)

)c
= Kβ

G(A)c and
(

Kβ
G(A)

)c
= Kβ

G(A)c.

Proof. Assume that A = {⟨x, ΦA(x) , ΨA(x)⟩|x ∈ X} and B = {⟨x, ΦB(x) , ΨB(x)⟩|x ∈ X},
then the following holds:

(i) If A ⊑ B, then ΦA(x) ≤ ΦB(x) and ΨA(x) ≥ ΨB(x), and then

Φ
Kβ

G(A)
(x) =

∨{(
Φ

M̃β
G(x)

(x) ⊼ ΦNβ
G(x)

(x) ⊼ ΦA(x)
)}
≤
∨{(

Φ
M̃β

G(x)
(x) ⊼ ΦNβ

G(x)
(x) ⊼ ΦB(x)

)}
=

Φ
Kβ

G(B)
(x)

⇒ Φ
Kβ

G(A)
(x) ≤ Φ

Kβ
G(B)

(x)

In the same manner, we also show that

Ψ
Kβ

G(A)
(x) ≥ Ψ

Kβ
G(B)

(x)

holds. This states that
Kβ

G(A) ⊑ Kβ
G(B)
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Similar to the way shown above, we prove that

Kβ
G(A) ⊑ Kβ

G(B)

Hence, we have proved (i).

(ii)

Φ
Kβ

G(A∩B)
(x) =

∧{(
Ψ

M̃β
G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ Φ(A∩B)(x)

)}

=
∧{(

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦA(x) ∩ΦB(x)

)}

=
∧{(

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦA(x)

)}
∩
∧{(

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦB(x)

)}

= Φ
Kβ

G(A)
(x) ∩Φ

Kβ
G(B)

(x)

⇒ Φ
Kβ

G(A∩B)
(x) = Φ

Kβ
G(A)

(x) ∩Φ
Kβ

G(B)
(x)

In the same manner, we also show that

Ψ
Kβ

G(A∩B)
(x) = Ψ

Kβ
G(A)

(x) ∩Ψ
Kβ

G(B)
(x)

holds. This states that
Kβ

G(A ∩ B) = Kβ
G(A) ∩ Kβ

G(B)

Similar to the way shown above, we prove that

Kβ
G(A ∪ B) ⊒ Kβ

G(A) ∪ Kβ
G(A)

(iii) The proof shares similarities with (ii).

(iv)

Φ
Kβ

G(Ac)
(x) =

∧{
Ψ

M̃β
G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦAc(x)

}

=
∧{

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦB(x)

}

= Ψ
Kβ

G(A)
(x).

In the same manner, we also show that

Ψ
Kβ

G(Ac)
(x) = Φ

Kβ
G(A)

(x)

holds. This states that (
Kβ

G(A)
)c

= Kβ
G(A)c

Similar to the way shown above, we prove that(
Kβ

G(A)
)c

= Kβ
G(A)c
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Theorem 4. Assume that (X, G) is an IHF-covering approximation space (IHFCAS), and let
G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some intuitionistic
hesitant fuzzy number (IHFN), β = (Φβ, Ψβ). Consider that Nβ

G =
{
Nβ

G(x)|x ∈ X
}

and M̃β
G ={

M̃β

G(x)|x ∈ X
}

are an IHFβ− neighborhood system induced by G, respectively. Suppose that
A, B ∈ IHFS(X), then

i) A ⊑ B, then Fβ
G(A) ⊑ Fβ

G(B) and Fβ
G(A) ⊑ Fβ

G(B);

ii) Fβ
G(A ∩ B) = Fβ

G(A) ∩ Fβ
G(B) and Fβ

G(A ∪ B) ⊒ Fβ
G(A) ∪ Fβ

G(A);

iii) Fβ
G(A ∪ B) = Fβ

G(A) ∪ Fβ
G(B) and Fβ

G(A ∩ B) ⊑ Fβ
G(A) ∩ Fβ

G(B);

iv)
(

Fβ
G(A)

)c
= Fβ

G(A)c and
(

Fβ
G(A)

)c
= Fβ

G(A)c.

Proof. Assume that A = {⟨x, ΦA(x) , ΨA(x)⟩|x ∈ X} and B = {⟨x, ΦB(x) , ΨB(x)⟩|x ∈ X},
then

A = {⟨x, ΦA(x) , ΨA(x)⟩|x ∈ X} and B = {⟨x, ΦB(x) , ΨB(x)⟩|x ∈ X}

(i) If A ⊑ B, then ΦA(x) ≤ ΦB(x) and ΨA(x) ≥ ΨB(x), and then

Φ
Fβ

G(A)
(x) =

∨{(
Φ

M̃β
G(x)

(x) ⊼ ΦNβ
G(x)

(x) ⊼ ΦA(x)
)}

≤ ∨{(Φ
M̃β

G(x)
(x) ⊼ ΦNβ

G(x)
(x) ⊼ ΦB(x)

)}
= Φ

Fβ
G(B)

(x)

⇒ Φ
Fβ

G(A)
(x) ≤ Φ

Fβ
G(B)

(x)

In the same manner, we also show that

Ψ
Fβ

G(A)
(x) ≥ Ψ

Fβ
G(B)

(x)

holds. This states that
Fβ

G(A) ⊑ Fβ
G(B)

Similar to the way shown above, we prove that

Fβ
G(A) ⊑ Fβ

G(B)

Hence, we have proved (i).

(ii)

Φ
Fβ

G(A∩B)
(x) =

∧{(
Ψ

M̃β
G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ Φ(A∩B)(x)

)}

=
∧{(

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦA(x) ∩ΦB(x)

)}

=
∧{(

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦA(x)

)}
∩
∧{(

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦB(x)

)}

= Φ
Fβ

G(A)
(x) ∩Φ

Fβ
G(B)

(x)

⇒ Φ
Fβ

G(A∩B)
(x) = Φ

Fβ
G(A)

(x) ∩Φ
Kβ

G(B)
(x)

In the same manner, we also show that

Ψ
Fβ

G(A∩B)
(x) = Ψ

Fβ
G(A)

(x) ∩Ψ
Fβ

G(B)
(x)
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holds. This states that
Fβ

G(A ∩ B) = Fβ
G(A) ∩ Fβ

G(B)

Similar to the way shown above, we prove that

Fβ
G(A ∪ B) ⊒ Fβ

G(A) ∪ Fβ
G(A)

(iii) The proof shares similarities with (ii).

(iv)

Φ
Fβ

G(Ac)
(x) =

∧{
Ψ

M̃β
G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦAc(x)

}

=
∧{

Ψ
M̃β

G(x)

(x) ⊻ Ψ
Nβ

G(x)

(x) ⊻ ΦB(x)

}
= Ψ

Fβ
G(A)

(x).

In the same manner, we also show that

Ψ
Fβ

G(Ac)
(x) = Φ

Fβ
G(A)

(x)

holds. This states that (
Fβ

G(A)
)c

= Fβ
G(A)c

Similar to the way shown above, we prove that(
Fβ

G(A)
)c

= Fβ
G(A)c

Theorem 5. Assume that (X, G) is an IHF-covering approximation space (IHFCAS), and let
G = {G1, G2, . . . , Gm} be an intuitionistic hesitant fuzzy β-covering of X. For some intuitionistic
hesitant fuzzy number (IHFN), β = (Φβ, Ψβ). Consider that Nβ

G =
{
Nβ

G(κ)|κ ∈ X
}

and M̃β
G ={

M̃β

G(κ)|κ ∈ X
}

are an IHFβ− neighborhood system induced by G, respectively. Suppose that
A ∈ IHFS(X), then

i) Fβ
G(A) ⊑ Nβ

G(A) ⊑ Kβ
G(A);

ii) Fβ
G(A) ⊑ M̃

β
G(A) ⊑ Kβ

G(A);

iii) Kβ
G(A) ⊑ Nβ

G(A) ⊑ Fβ
G(A);

iv) Kβ
G(A) ⊑ M̃

β

G(A) ⊑ Fβ
G(A);

v) Fβ
G(A) = Nβ

G(A) ∩ M̃
β
G(A);

vi) Fβ
G(A) = Nβ

G(A) ∪ M̃
β

G(A);

vii) Kβ
G(A) = Nβ

G(A) ∪ M̃
β
G(A);

viii) Kβ
G(A) = Nβ

G(A) ∩ M̃
β

G(A).

Proof. Statements (i)–(iv) are obviously true from the definitions and now statement (v).
For any κ ∈ X, then
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Φ
Fβ

G(A)
(κ) =

∧{(
Ψ

M̃β
G(κ)

(κ) ∧ΨNβ
G(κ)

(κ) ∨ΦA(κ)
)}

∧{(
Φ

M̃β
G(κ)

(κ) ∧ΦNβ
G(κ)

(κ) ∨ΨA(κ)
)}

=
∧{(

Ψ
M̃β

G(κ)
(κ) ∨ΦA(κ)

)}
∧∧{(ΨNβ

G(κ)
(κ) ∨ΦA(κ)

)}∧{(
Φ

M̃β
G(κ)

(κ) ∨ΨA(κ)
)}
∧∧{ΦNβ

G(κ)
(κ) ∨ΨA(κ)

}

=

(
Φ

M̃β
G(A)

(κ) ∧ΦNβ
G(A)

(κ), Ψ
M̃β

G(A)
(κ) ∧ΨNβ

G(A)
(κ)

)
and

Ψ
Fβ

G(A)
(κ) =

∨{(
Φ

M̃β
G(κ)

(κ) ∨ΦNβ
G(κ)

(κ) ∧ΨA(κ)
)}∨{(

Ψ
M̃β

G(κ)
(κ) ∨ΨNβ

G(κ)
(κ) ∧ΦA(κ)

)}

=
∨{(

Φ
M̃β

G(κ)
(κ) ∧ΨA(κ)

)}
∨∨{(ΦNβ

G(κ)
(κ) ∧ΨA(κ)

)}∨{(
Ψ

M̃β
G(κ)

(κ) ∧ΦA(κ)
)}
∨∨{ΨNβ

G(κ)
(κ) ∧ΦA(κ)

}

=

(
Ψ

M̃β
G(A)

(κ) ∨ΨNβ
G(A)

(κ), Φ
M̃β

G(A)
(κ) ∨ΦNβ

G(A)
(κ)

)
Hence, we obtain

Fβ
G(A) =

{〈
κ, Φ

Fβ
G(A)

(κ), Ψ
Fβ

G(A)
(κ)

〉}

Fβ
G(A) =


〈 κ,

(
Φ

M̃β
G(A)

(κ) ∧ΦNβ
G(A)

(κ), Ψ
M̃β

G(A)
(κ) ∧ΨNβ

G(A)
(κ)

)
,(

Ψ
M̃β

G(A)
(κ) ∨ΨNβ

G(A)
(κ), Φ

M̃β
G(A)

(κ) ∨ΦNβ
G(A)

(κ)
) 〉

Fβ
G(A) =

{〈
κ,
(

Φ
M̃β

G(A)
(κ) ∧Ψ

M̃β
G(A)

(κ), Ψ
M̃β

G(A)
(κ) ∨Φ

M̃β
G(A)

(κ)
)〉}

∩{〈
κ,
(

ΦNβ
G(A)

(κ) ∧ΨNβ
G(A)

(κ), ΨNβ
G(A)

(κ) ∨ΦNβ
G(A)

(κ)
)〉}

= M̃
β
G(A) ∩Nβ

G(A)

Hence, this shows that statement (v) holds.
(vi) For any κ ∈ X, then

Φ
Fβ

G(A)
(κ) =

∨{(
Ψ

M̃β
G(κ)

(κ) ∨ΨNβ
G(κ)

(κ) ∧ΦA(κ)
)}∨{(

Φ
M̃β

G(κ)
(κ) ∨ΦNβ

G(κ)
(κ) ∧ΨA(κ)

)}

=
∨{(

Ψ
M̃β

G(κ)
(κ) ∧ΦA(κ)

)}
∨∨{(ΨNβ

G(κ)
(κ) ∧ΦA(κ)

)}∨{(
Φ

M̃β
G(κ)

(κ) ∧ΨA(κ)
)}
∨∨{ΦNβ

G(κ)
(κ) ∧ΨA(κ)

}

=

(
Φ

M̃
β
G(A)

(κ) ∨Φ
Nβ

G(A)
(κ), Ψ

M̃
β
G(A)

(κ) ∨Ψ
Nβ

G(A)
(κ)

)
and

Ψ
Fβ

G(A)
(κ) =

∧{(
Φ

M̃β
G(κ)

(κ) ∧ΦNβ
G(κ)

(κ) ∨ΨA(κ)
)}∧{(

Ψ
M̃β

G(κ)
(κ) ∧ΨNβ

G(κ)
(κ) ∨ΦA(κ)

)}
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=
∧{(

Φ
M̃β

G(κ)
(κ) ∨ΨA(κ)

)}
∧∧{(hNβ

G(κ)
(κ) ∨ΨA(κ)

)}∧{(
Ψ

M̃β
G(κ)

(κ) ∨ΦA(κ)
)}
∧∧{ΨNβ

G(κ)
(κ) ∨ΦA(κ)

}

=

(
Ψ

M̃
β
G(A)

(κ) ∧Ψ
Nβ

G(A)
(κ), Φ

M̃
β
G(A)

(κ) ∧Φ
Nβ

G(A)
(κ)

)
Hence, we obtain

Fβ
G(A) =

{〈
κ, Φ

Fβ
G(A)

(κ), Ψ
Fβ

G(A)
(κ)

〉}

Fβ
G(A) =


〈 κ,

(
Φ

M̃
β
G(A)

(κ) ∨Φ
Nβ

G(A)
(κ), Ψ

M̃
β
G(A)

(κ) ∨Ψ
Nβ

G(A)
(κ)

)
,(

Ψ
M̃

β
G(A)

(κ) ∧Ψ
Nβ

G(A)
(κ), Φ

M̃
β
G(A)

(κ) ∧Φ
Nβ

G(A)
(κ)

) 〉
Fβ

G(A) =

{〈
κ,
(

Φ
M̃

β

G(A)
(κ) ∨Ψ

M̃
β
G(A)

(κ), Ψ
M̃

β
G(A)

(κ) ∧Φ
M̃

β
G(A)

(κ)
)〉}

⋃{〈
κ,
(

Φ
Nβ

G(A)
(κ) ∨Ψ

Nβ
G(A)

(κ), Ψ
Nβ

G(A)
(κ) ∧Φ

Nβ
G(A)

(κ)
)〉}

= M̃
β

G ∪N
β
G(A).

Hence, this shows that statement (vi) holds and that (vii) and (viii) are similar to
(v).

4. The Model and Approach for MCDM Involving the Evolution of IHF Information,
Based on CIHFRS

MCDM presents a substantial challenge in DM, aiming to identify the most optimal
alternative by evaluating diverse criteria during the selection process. Also referred to
as multicriteria decision analysis (MCDA), this methodology is widely recognized for its
high accuracy and is considered a groundbreaking advancement in the field of decision
making [37,38]. Intuitionistic hesitant fuzzy sets (IHFSs) are acknowledged as an expanded
version of IFSs, encompassing both HFSs and IFSs. To showcase the enhanced decision-
making capabilities of IHFSs, a comparative analysis is conducted using the CIFRS model
and the Yang–CHFRS versions established in Sections 2.1 and 2.2, respectively. In this
context, two distinct models and approaches are developed to tackle MCDM problems.
The first approach involves assessing IHF information, considering the nuances provided
by IHFS. The second approach addresses MCDM problems utilizing the advantages of
both IHFS and conventional IFS/HFS procedures. These customized approaches assess IFS
and HFS data independently in order to offer all-inclusive answers for decision-making
situations.

4.1. A Method for MCDM with Evaluation of IHF Data Based on CIFRS and CHFRS Models

Using the CIFRS and CHFRS models as a starting point, we want to develop a solid
model and approach that are especially suited to solving MCDM challenges. Using the
complex subtleties offered by IHF data in DM processes, this model considers the appraisal
of IHF information. We develop an organized way for solving MCDM issues by smoothly
incorporating the analysis of IHF data. This entails creating an algorithm for generating
decisions that fully integrates IHF data and making sure that everything is understood
by providing a detailed breakdown of the steps involved in the procedure. Our aim is to
deliver a workable and efficient solution that improves decisions in uncertain and complex
contexts by utilizing insights of CIFRS and CHFRS models, as well as extending these to
deal with IHF information inside MCDM frameworks.
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The Problem of MCDM with Assessment of IHF Data-Based DMM

Assume that X = {x1, x2, . . . , xn} is an alternative set, and let Ḡ = {Ḡ1, Ḡ2, . . . , Ḡm}
be the set of criteria. Let ϖ = {ϖ1, ϖ2, . . . , ϖm}t be the weighted vectors of Ḡ. Given that

0 ≤ ϖi ≤ 1, i = 1, 2, . . . , m and
m
∑

i=1
ϖi = 1, let decision maker X provide the evaluation

values of the objects xi., where i = 1, 2, . . . , m with respect to the attribute set Ḡj, where
j = 1, 2, . . . , m by Ḡj(xi) =

〈
Φij, Ψij

〉
, which means that the degree to which xi holds

Ḡj is the value Φij and the degree to which xi does not hold Ḡj is the value Ψij. If Ψij
symbolizes the value, the difficulty in solving the DM issue is figuring out how to rank
each object according to preference assessments. An innovative answer to various types
of DM problems is provided in this section. Here, we provide the groundwork for an
approach and method for dealing with MCDM instances, particularly the inclusion of IHF
data evaluation. The CIFRS paradigm is utilized in combination with CHFRSs to complete
the full strategy. Our objective is to utilize IHF data to handle the complexities of MCDM,
which provides an intricate outlook for making decisions. Using the CIFRS and CHFRS
models, we guarantee an in-depth review that analyzes the complexity and opposition
found in DM scenarios.

4.2. DMM and Procedural Methods

We suggest the CIHFRS model, which involves the assessment of IHF information and
extends to the study of the MCDM problem. Three basic stages make up this strategy, which
includes the analysis of IHF information while addressing MCDM problems efficiently.
Finding the IHF DMÂ item among all of the potential options is the initial step in the
CIHFRS paradigm. This first step is critical because it establishes the framework for the
model’s latter phases, which provide an organized method of making decisions in the
face of ambiguity and hesitancy. Applying the IHF-TOPSIS approach, an IHF-positive
information system (IHF-PIS) is established:

P̂+ = {Gj, max{Ş(Gj(xi))}|1 ≤ j ≤ m}

and the IHF-negative information system (IHF-NIS) is

P̂− = {Gj, min{Ş(Gj(xi))}|1 ≤ j ≤ m}

We compute D̂+ and D̂−, the distances between the alternatives xi and IHF-PIS P+ and
IHF-NIS P−. Consequently, a new IHFS D̂ = (D̂+, D̂−) is formed. Thus, we develop the
multicriteria IHF DM information system (MCIHFDMIS) (X, G, P̂ , D̂). To elaborate further,
the IHF set representing the universe is determined based on evaluations provided by the
decision maker X, including the optimal calculations. In the second step, we calculate
the LA and UA of the IHF decision-making object within the universe. This calculation
incorporates a precision parameter denoted as P̄ (0 < β ≤ 1), where β is the threshold set
by decision maker X for consistency consensus within the CIHFRS model in the context
of MCDM.

As a result, a new IHFS is created. We therefore create the MCIHFDMIS (X, G, P, and
D) multicriteria IHF DM database. To clarify, the decision maker X provides evaluations,
including the best and worst optimum evaluations, from which the IHF set representing
the universe is derived. In the second phase, we compute the IHF decision-making object’s
LA and UA within the universe. After the first phase of finding the IHF DM item in the
universe of possible alternatives, the CIHFRS model generates a rating of all the alternatives.
The ideal item in the DM issue is finally identified by using a DM principle that was derived
from the previous phases. This ranking is based on that principle.

This paper introduces the foundational model and approach for addressing the MCDM
problem, specifically incorporating the assessment of interval-valued hesitant fuzzy (IHF)
information. The methodology operates within the framework of the CIHFRS model,
showcasing a structured and effective way to handle DM scenarios with uncertainty and
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hesitation. The main strategy, called IHF-TOPSIS, is put forth with the supposition that the
best option should be the one that is closest to the IHF-PIS and furthest from the IHF-NIS.
This entails applying a score function to identify both the IHF-PIS and the IHF-NIS.

P̂+ = {Gj, max{Ş(Gj(xi))}|j = 1, 2, . . . m}(1 ≤ i ≤ n)

= {
〈

G1, Φ+
1 , Ψ+

1
〉
,
〈

G2, Φ+
2 , Ψ+

2
〉
, . . .

〈
Gm, Φ+

m , Ψ+
m
〉
}

and
P̂− = {Gj min{Ş(Gj(xi))}|j = 1, 2, . . . m}(1 ≤ i ≤ n)

= {
〈

G1, Φ−1 , Ψ−1
〉
,
〈

G2, Φ−2 , Ψ−2
〉
, . . .

〈
Gm, Φ−m , Ψ−m

〉
}

Next, we calculate the weighted distances D̂+ and D̂− among the available alternatives.
xi and IHF-PIS P̂+ as well as IHF-NIS P̂− are computed as follows:

D̂+ =
m

∑
i=1

ϖid(Gj(xi), Gj(P+))

=
m
∑

i=1
ϖi

∑ |Φ+ij−Φ+ j|+∑ |Ψ+ij−Ψ+ j|
4 +

max{∑ |Φ+ij−Φ+ j|,∑ |Ψ+ij−Ψ+ j|}
2 (1 ≤ i ≤ n) and D̂− =

m
∑

i=1
ϖi.d(Gj(xi), Gj(P̂−))

=
m

∑
i=1

ϖi
∑ |Φ−ij−Φ− j|+ ∑ |Ψ−ij−Ψ− j|

4
+

max{∑ |Φ−ij−Φ− j|, ∑ |Ψ−ij−Ψ− j|}
2

(1 ≤ i ≤ n)

Here, we formulate a novel IHF structure. D̂ = (ΦD̂, ΨD̂) = (D̂+, D̂−). Next, we
calculate the LA and UA of the optimal and least favorable IHF DM objects within the
framework of the MCIHFDMIS, taking into account the P̄P β (0 < β ≤ 1), individually:

Φ
Mβ

G(D)
(xi) =

n∧
j=1

{Ψ
Mβ

G(xi)
(xi, xj) ⊻ ΦD(xj)}

Ψ
Mβ

G(D)
(xi) =

n∨
j=1

{Φ
Mβ

G(xi)
(xi, xj) ⊼ ΨD(xj)}

and

Φ
Mβ

G(Ã)
(xi) =

n∨
j=1

{Φ
Mβ

G(xi)
(xi, xj) ⊼ ΦD(xj)}

Ψ
Mβ

G(D)
(xi) =

n∧
j=1

{Ψ
Mβ

G(xi)
(xi, xj) ⊻ ΨD(xj)}

In the final step, we utilize ranking rules to evaluate all alternatives within the universe.
This evaluation is based on the LA and UA of the IHF decision-making object. We adhere
to the consistency consensus threshold throughout this process, ensuring that the rankings
maintain a level of coherence and agreement for β (0 < β ≤ 1).

Definition 27 ([15]). Assume that X ̸= ϕ finite universe and suppose that ë1 = ⟨Φë1 , Ψë1⟩,
ë2 = ⟨Φë2 , Ψë2⟩ are two IHFNs and E = {x, ΦE(x), ΨE(x)|x ∈ X} ∈ IHFS(X); then, assume
some basic operations as follows:

(i) ë1 + ë2 =
〈
∪µë1∈Φë1,µë2∈Φë2{µë1 + µë2 − µë1.µë2},∪νë1∈Ψë1,νë2∈Ψë2{νë1.νë2}

〉
.

(ii) ë1 × ë2 =
〈
∪µë1∈Φë1,µë2∈Φë2{µë1.µë2},∪νë1∈Ψë1,νë2∈Ψë2{νë1 + νë2 − νë1.νë2}

〉
.

Utilizing the aforementioned operators, we establish a ranking function applicable
to any alternative in the context of the MCDM problem, incorporating the evaluation of
IHF information.
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Additionally, let us assume that (X, G, P̂, D̂) represents an MCIHFDMIS.
For an IHF DM object, D̂ = (D̂+, D̂−) ∈ IHF(X), determined by the preference

information of decision maker X.

We refer to δ(xi) =Ş
(

Mβ
G(D)(xi) + Mβ

G(D)(xi)

)
, the ranking function of the alterna-

tive xi (i = 1, 2, . . . n).

4.3. An Algorithm Designed for MCDM with Assessment of IHF Data

This subsection delineates the stages of MCDM while integrating the assessment of
IHF information through the CIHFRS model, as illustrated below:

Input: MCIHFDMIS (X, G, P, D).
Output: The arrangement of sorting for all alternatives.
Step 1: Build IHF-PIS P+, where P̂+ = {Gj, max{Ş(Gj(xi))}|j = 1, 2, . . . m}(1 ≤ i ≤ n):

= {
〈

G1, Φ+
1 , Ψ+

1
〉
,
〈

G2, Φ+
2 , Ψ+

2
〉
, . . .

〈
Gm, Φ+

m , Ψ+
m
〉
} and IHF-NISP−

where

P̂− = {Gj min{Ş(Gj(xi))}|j = 1, 2, . . . m}(1 ≤ i ≤ n) = {
〈

G1, Φ−1 , Ψ−1
〉
,
〈

G2, Φ−2 , Ψ−2
〉
, . . .

〈
Gm, Φ−m , Ψ−m

〉
}.

Step 2: Compute the distance ΦD =D+ and ΨD =D− among the alternatives. xi and
IHF-PIS P+and IHF-NIS P− are computed individually.

Step 3: Compute the lower and upper approximations:

Φ
Mβ

G(D)
(xi), Ψ

Mβ
G(D)

(xi) and Φ
Mβ

G(Ã)
(xi), Ψ

Mβ
G(D)

(xi)

Step 4: Calculate the summation function: Mβ
G(D)(xi) and Mβ

G(D)(xi).
Step 5: Calculate the ranking function: δ(xi).
Step 6: Assign a ranking to each value across all alternatives.

4.4. A Demonstrative Example

In this subsection, we apply the MCDM model and approach, integrating the evalua-
tion of interval-valued hesitant fuzzy (IHF) information through CIHFRS models, to tackle
the car-selection problem. This application aims to enrich the MCDM problem by incorpo-
rating IHF information assessment within its framework. Following this, we elucidate the
IHF-TOPSIS principle and provide a detailed explanation of the procedure outlined in this
paper. We elucidate each step, using a practical example for illustration purposes, to ensure
a clear understanding of the methodology and its application in real-world scenarios. Let
X = {κ1,κ2,κ3,κ4,κ5} be the five cars that are selected, Mahindra XUV (κ1), Scorpio
(κ2), Duster (κ3), Vitara Breeza (κ4), and Fortuner (κ5), and compare this model using four
criteria: cost (G1), seating capacity (G2), engine power (G3), and maximum speed (G4). The
model of the car and comparison criteria are described in Table 4.

Table 4. The IHF β−Covering.

X/G G1 G2 G3 G4

κ1 ⟨{0.1, 0.2, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.1, 0.2, 0.6}, {0.2, 0.3, 0.4}⟩ ⟨{0.1, 0.2, 0.6}, {0.1, 0.2, 0.4}⟩ ⟨{0.1, 0.2, 0.5}, {0.1, 0.3, 0.4}⟩
κ2 ⟨{0.2, 0.3, 0.5}, {0.1, 0.2, 0.4}⟩ ⟨{0.1, 0.3, 0.4}, {0.2, 0.3}⟩ ⟨{0.1, 0.2, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.1, 0.3, 0.5}, {0.2, 0.3, 0.4}⟩
κ3 ⟨{0.1, 0.4, 0.5}, {0.2, 0.3, 0.5}⟩ ⟨{0.1, 0.3, 0.6}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.3, 0.4}, {0.1, 0.2, 0.5}⟩ ⟨{0.1, 0.2, 0.5}, {0.1, 0.2, 0.4}⟩
κ4 ⟨{0.1, 0.3, 0.4}, {0.1, 0.2, 0.5}⟩ ⟨{0.2, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.2, 0.4}, {0.1, 0.2, 0.3}⟩ ⟨{0.2, 0.3, 0.5}, {0.1, 0.3, 0.5}⟩
κ5 ⟨{0.3, 0.5, }, {0.1, 0.3, 0.4}⟩ ⟨{0.1, 0.2, 0.5}, {0.1, 0.3, 0.4}⟩ ⟨{0.2, 0.3, 0.5}, {0.1, 0.2, 0.3}⟩ ⟨{0.3, 0.4, 0.5}, {0.2, 0.3, 0.5}⟩
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Here, apply the pessimistic approach for MCDM problems in an IHFS environment.
When making decisions in risk-averse environments, where there is a need to rigorously
restrict the possibility of negative consequences, the pessimistic approach is often used.

Decision maker X evaluates the five cars based on their specialized knowledge, assign-
ing real values for each alternative concerning each attribute outlined in the table above.
Additionally, the weights for the attribute set are designated in the following order, respec-
tively: ϖ1 = 0.3276836160, ϖ2 = 0.2316384179, ϖ3 = 0.2090395481, and ϖ4 = 0.2316384181.
According to the IHF-PIS P̂+ and IHF-NIS P̂−, it follows that

P̂+ =

{
{⟨G1, {0.1, 0.5, 0.4}, {0.1, 0.3, 0.3}⟩}, {⟨G2, {0.1, 0.4, 0.4}, {0.1, 0.3, 0.3}⟩},
{⟨G3, {0.1, 0.3, 0.4}, {0.1, 0.2, 0.3}⟩}, {⟨G4, {0.1, 0.4, 0.5}, {0.1, 0.3, 0.4}⟩}

}

P̂− =

{
{⟨G1, {0.3, 0.2, 0.4}, {0.2, 0.2, 0.3}⟩}, {⟨G2, {0.2, 0.4, 0.4}, {0.2, 0.3, 0.3}⟩},
{⟨G3, {0.2, 0.2, 0.4}, {0.1, 0.2, 0.3}⟩}, {⟨G4, {0.3, 0.2, 0.5}, {0.2, 0.2, 0.4}⟩}

}
Next, find out the weighted distances ΦD̂ = D̂+ and ΨD̂ = D̂− among the alternatives

xi and IHF-PISP̂+and IHF-NIS P̂−, respectively, as follows:

ΦD+ = D+ =
0.2500000000

κ1
+

0.1766949153
κ2

+
0.2199152542

κ3
+

0.1868644068
κ4

+
0.2175141243

κ5

and

ΨD− = D− =
0.2138418079

κ1
+

0.1984463277
κ2

+
0.3108757062

κ3
+

0.2413841808
κ4

+
0.2468926554

κ5

Assume that the consistency consensus threshold IHFN β = ⟨0.2, 0.3, 0.4}, {0.1, 0.2, 0.5}⟩;
then G is an IHF β-covering of X, and then

Nβ
κ1 = G1 ∩ G3,Nβ

κ2 = G1 ∩ G2 ∩ G3,Nβ
κ3 = G2 ∩ G4,Nβ

κ4 = G2 ∩ G3 ∩ G4,Nκ5 = G3 ∩ G4

computing LA and UA Φ
Mβ

G(D)
(κi), Ψ

Mβ
G(D)

(κi) and Φ
Mβ

G(Ã)
(κi), Ψ

Mβ
G(D)

(κi)

Φ
Mβ

G(D)
(κi) =

0.1766949153
κ1

+
0.1766949153

κ2
+

0.1868644068
κ3

+
0.1766949153

κ4
+

0.1766949153
κ5

and
Ψ

Mβ
G(D)

(κi) =
0.5
κ1

+
0.5
κ2

+
0.4
κ3

+
0.4
κ4

+
0.4
κ5

Φ
Mβ

G(D)
(κi) =

0.5
κ1

+
0.5
κ2

+
0.4
κ3

+
0.4
κ4

+
0.4
κ5

and

Ψ
Mβ

x (D)

(κi) =
0.1984463277

κ1
+

0.1984463277
κ2

+
0.2
κ3

+
0.1984463277

κ4
+

0.1984463277
κ5

Now, compute the sum function Mβ
G(D)(κi) and Mβ

G(D)(κi). Now, compute the
ranking function function δ(κi):

δ =
0.2500000000

κ1
+

0.2500000000
κ2

+
0.2186864407

κ3
+

0.2176694916
κ4

+
0.2176694916

κ5

Ultimately, we reveal the optimal ranking for all cars based on the values of the ranking
function δ(κi)(i = 1, 2, 3, 4, 5) as follows:

κ1 ≈ κ2 ≥ κ3 ≥ κ4 ≈ κ5

As a result, we conclude the decision-making process for optimal selection by applying
multiple criteria decision making (MCDM) using CIHFRS models and incorporating an as-
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sessment of interval-valued hesitant fuzzy (IHF) data. Based on the numerical computations
and outcomes, the ultimate optimal decision is to choose both the first and second cars. Fur-
thermore, we leverage the model and methodology of MCDM by incorporating an assessment
of IF data based on CIFRS models. This enhancement strengthens the selection process for
cars within the MCDM framework, taking into account the assessment of IF data.

The respective weights of the attribute set are provided as follows: ŵ1 = 0.4563199563,
ŵ2 = 0.4150969151, ŵ3 = 0.2090395481, and ŵ4 = 0.06988806989. In accordance with
IF-PISP̂+ and IF-NISP̂−, as stated below,

P̂+ = {{C1, 0.40, 0.20}, {C2, 0.37, 0.25}, {C3, 0.33, 0.20}, {C4, 0.40, 0.23}}

P̂− = {{C1, 0.23, 0.33}, {C2, 0.27, 0.30}, {C3, 0.33, 0.27}, {C4, 0.27, 0.33}}

Next, find out the weighted distances τD̂ = D̂+ and ηD̂ = D̂− among the alternatives
xi and IF-PIS P̂+ and IF-NIS P̂−, which are presented individually as follows:

τD̂+ = D̂+ =
0.1489854627

κ1
+

0.1393366093
κ2

+
0.1456852307

κ3
+

0.1338049412
κ4

+
0.1323645236

κ5

ηD̂− = D̂− =
0.07517267269

κ1
+

0.06637626263
κ2

+
0.06301904178

κ3
+

0.06609370736
κ4

+
0.08660865413

κ5

Suppose the threshold for consistency and consensus is assumed. IFN β = ⟨{0.30},{0.27}⟩,
then G is an IF β covering of X.

Nβ
κ1 = G1 ∩ G3,Nβ

κ2 = G1 ∩ G2 ∩ G3,Nβ
κ3 = G2 ∩ G4,Nβ

κ4 = G2 ∩ G3 ∩ G4,Nβ
κ5 = G1 ∩ G3 ∩ G4

Compute the lower and upper approximations τ
Mβ

G(D)
(κi), η

Mβ
G(D)

(κi) and

τ
Mβ

G(Ã)
(κi), η

Mβ
G(D)

(κi):

τ
Mβ

G(D)
(κ) = 0.23

κ1
+

0.25
κ2

+
0.27
κ3

+
0.20
κ4

+
0.27
κ5

η
Mβ

G(D)
(κ) = 0.08660865413

κ1
+

0.08660865413
κ2

+
0.08660865413

κ3
+

0.08660865413
κ4

+
0.08660865413

κ5

τ
Mβ

G(D)
(κ) = 0.1323645236

κ1
+

0.1323645236
κ2

+
0.1323645236

κ3
+

0.1323645236
κ4

+
0.1323645236

κ5

η
Mβ

x (D)

(κ) = 0.06301904178
κ1

+
0.06301904178

κ2
+

0.06301904178
κ3

+
0.06301904178

κ4
+

0.06301904178
κ5

Now, compute the sum function Mβ
G(D)(κi) and Mβ

G(D)(κi):

Mβ
G(D) + Mβ

G(D) =


{κ1, 0.3319206832, 0.03044384043}, {κ2, 0.3492733927, 0.03309113090},
{κ3, 0.3666261022, 0.03573842137}, {κ4, 0.3058916189, 0.02647290472},

{κ5, 0.3666261022, 0.03573842137}


Now, compute the ranking function δ(κi):

∂ =
0.3014768428

κ1
+

0.3161822618
κ2

+
0.2701531975

κ3
+

0.2701531975
κ4

+
0.3308876808

κ5

In the end, we unveil the optimal arrangement for categorizing all cars according to
the criteria of the ranking function δ(κi)(i = 1, 2, 3, 4, 5) as follows:

κ5 ≥ κ2 ≥ κ1 ≥ κ3 ≈ κ4

Therefore, the DM process for optimal selection is finalized by employing CIFRS
model-based MCDM, which integrates the assessment of IF data. The quantitative com-
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putation outcomes indicate that the ultimate optimal decision identifies the fifth car. Sub-
sequently, in the IHFS, the nonmembership component is terminated. Following this, the
model and methodology of MCDM with HF information evaluation based on CHFRS
models are applied to address car selection issues. This approach is designed to enhance
problem solving within the MCDM framework, particularly in the context of HF informa-
tion evaluation.

The weights for the attribute set are provided in the following order: Ŵ1 = 0.3191489362,
Ŵ2 = 0.2553191490, Ŵ3 = 0.2127659574, and Ŵ4 = 0.2127659574. As per HF-PIS P+ and
HF-NIS P−, the following is indicated:

P+ = {{G1, {0.1, 0.2, 0.4}}, {G2, {0.1, 0.2, 0.4}}, {G3, {0.1, 0.2, 0.4}}, {G4, {0.1, 0.2, 0.5}}}

P− = {{G1, {0.2, 0.5, 0.5}}, {G2, {0.2, 0.4, 0.6}}, {G3, {0.2, 0.3, 0.6}}, {G4, {0.3, 0.4, 0.5}}}

Next, find out the weighted distances ĤD̂+ = D̂+ and ĤD̂− = D̂− among the alterna-
tives xi and HF-PIS P̂+ and HF-NIS P̂−, which are specified as follows, respectively:

ĤD+ = D+ =
0.1361702128

κ1
+

0.2361702128
κ2

+
0.1851063830

κ3
+

0.2191489362
κ4

+
0.3659574468

κ5

ĤD− = D− =
0.3638297873

κ1
+

0.3638297873
κ2

+
0.3638297873

κ3
+

0.3638297873
κ4

+
0.3638297873

κ5

Assuming the consistency consensus threshold HFN β = {0.2, 0.3, 0.4}, then G is an
HF β-covering of X. Nβ

κ1 = G2 ∩ G3,Nβ
κ2 = G1 ∩ G4,Nβ

κ3 = G1 ∩ G2,Nβ
κ4 = G2 ∩ G4,Nβ

κ5 =
G3 ∩ G4.

Compute the lower and upper approximations Ĥ
Mβ

G(D)
(κ) and Ĥ

Mβ
G(D)

(κ):

Ĥ
Mβ

G(D)
(κ) = 0.9

κ1
+

0.7
κ2

+
0.9
κ3

+
0.8
κ4

+
0.9
κ5

Ĥ
Mβ

G(D)
(κ) = 0.3638297873

κ1
+

0.3638297873
κ2

+
0.3638297873

κ3
+

0.3638297873
κ4

+
0.3638297873

κ5

Now , compute the sum function Ĥ
Mβ

G(D)
and Ĥ

Mβ
G(D)

:

Ĥ
Mβ

G(D)
+ Ĥ

Mβ
G(D)

=


{κ1, 0.9363829784, 0.3274468086}, {κ2, 0.8091489359, 0.2546808511},
{κ3, 0.9363829784, 0.3274468086}, {κ4, 0.8727659572, 0.2910638298},

{κ5, 0.9363829784, 0.3274468086}


Now, compute the ranking function δ(xi):

∂ =
0.6319148935

x1
+

0.5319148935
x2

+
0.6319148935

x3
+

0.5819148935
x4

+
0.6319148935

x5

Ultimately, we reveal the ideal classification for all cars based on the values derived
from the ranking function δ(xi)(i = 1, 2, . . . , 5) as follows:

κ1 ≈ κ3 ≈ κ5 ≥ κ4 ≥ κ2

Hence, we finalize the decision-making process for optimal selection through the
application of CHFRS models in MCDM, incorporating the assessment of HF information.
According to the numerical calculations, the ultimate optimal decision is to choose the first,
third, and fifth cars.

5. Comparison Analysis

The proposed model offers improved handling of hesitation, improved approxima-
tion accuracy, and enhanced representation of uncertainty, which makes it a significant
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improvement over traditional fuzzy covering rough set models in decision making. Due
to these advantages, it is an effective tool for complex decision-making situations where
ambiguity and unpredictability are frequent. Also, the proposed model approach proposes
a more comprehensive structure to deal with uncertainty and inaccuracy by integrating the
advantages of hesitant and intuitionistic fuzzy sets. In order to demonstrate the accuracy
and effectiveness of the proposed method, a comparative analysis is carried out using the
approaches outlined by Huang et al. in CIFRS [30] and Zhou et al. in CHFRS [39], both of
which represent specific cases within CIHFRS.

5.1. An Analysis Comparing the Current MCDM Method with CIFRS

A CIFRS may be seen as a particular instance of a CIHFRS, occurring when there is only
one element present in both the m̆ and n̆m̆ degrees. To facilitate a comparison, transforming
a CIHFRS to a CIFRS involves calculating the average values of m̆ and n̆m̆ degrees. Once
converted, the intuitionistic information is presented in Table 5. Subsequently, the broad
assessment values can be computed using TOPSIS within an IF environment. The final
ranking of alternatives is χ5 ≥ χ2 ≥ χ1 ≥ χ3 ≈ χ4, and χ5 is the desired alternative (in
Table 6). Observably, the ranking being derived from the technique recommended by the
outcome of the proposed technique contrasts with the CIFRS [30]. The primary objective is
to take the average value of m̆ and n̆m̆ degrees of the IFRS, which may result in information
falsification and loss. CIHFRSs prove to be more practical compared to CIFRSs as they
account for situations in which decision makers prefer to employ a multitude of potential
values for precisely articulating both m̆ and n̆m̆ degrees (in Table 7).

Table 5. The IF β-covering.

X/G C1 C2 C3 C4

κ1 ⟨{0.23}, {0.20}⟩ ⟨{0.30}, {0.30}⟩ ⟨{0.30}, {0.23}⟩ ⟨{0.27}, {0.27}⟩
κ2 ⟨{0.33}, {0.23}⟩ ⟨{0.27}, {0.25}⟩ ⟨{0.23}, {0.20}⟩ ⟨{0.30}, {0.30}⟩
κ3 ⟨{0.33}, {0.33}⟩ ⟨{0.33}, {0.27}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.27}, {0.23}⟩
κ4 ⟨{0.27}, {0.27}⟩ ⟨{0.37}, {0.27}⟩ ⟨{0.23}, {0.20}⟩ ⟨{0.33}, {0.30}⟩
κ5 ⟨{0.40}, {0.27}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.33}, {0.20}⟩ ⟨{0.40}, {0.33}⟩

Table 6. The IF β-neighborhood.

Nβ
G κ1 κ2 κ3 κ4 κ5

κ1 ⟨{0.23}, {0.23}⟩ ⟨{0.23}, {0.30}⟩ ⟨{0.27}, {0.30}⟩ ⟨{0.27}, {0.30}⟩ ⟨{0.23}, {0.27}⟩
κ2 ⟨{0.23}, {0.23}⟩ ⟨{0.23}, {0.25}⟩ ⟨{0.27}, {0.20}⟩ ⟨{0.23}, {0.20}⟩ ⟨{0.23}, {0.30}⟩
κ3 ⟨{0.27}, {0.33}⟩ ⟨{0.27}, {0.33}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.27}, {0.33}⟩
κ4 ⟨{0.23}, {0.27}⟩ ⟨{0.23}, {0.27}⟩ ⟨{0.33}, {0.30}⟩ ⟨{0.23}, {0.30}⟩ ⟨{0.23}, {0.30}⟩
κ5 ⟨{0.33}, {0.27}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.27}, {0.33}⟩ ⟨{0.27}, {0.33}⟩ ⟨{0.33}, {0.33}⟩

Table 7. The IFC β-neighborhood.

M̃β
G κ1 κ2 κ3 κ4 κ5

κ1 ⟨{0.23}, {0.23}⟩ ⟨{0.23}, {0.23}⟩ ⟨{0.27}, {0.33}⟩ ⟨{0.23}, {0.27}⟩ ⟨{0.33}, {0.27}⟩
κ2 ⟨{0.23}, {0.30}⟩ ⟨{0.23}, {0.25}⟩ ⟨{0.27}, {0.33}⟩ ⟨{0.23}, {0.27}⟩ ⟨{0.27}, {0.27}⟩
κ3 ⟨{0.27}, {0.30}⟩ ⟨{0.27}, {0.20}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.33}, {0.30}⟩ ⟨{0.27}, {0.33}⟩
κ4 ⟨{0.27}, {0.30}⟩ ⟨{0.23}, {0.20}⟩ ⟨{0.27}, {0.27}⟩ ⟨{0.23}, {0.30}⟩ ⟨{0.27}, {0.33}⟩
κ5 ⟨{0.23}, {0.27}⟩ ⟨{0.23}, {0.30}⟩ ⟨{0.27}, {0.33}⟩ ⟨{0.23}, {0.30}⟩ ⟨{0.33}, {0.33}⟩
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5.2. An Analytical Comparison between the Current MCDM Method and CHFRS

A CHFRS can also be measured as a specific instance of a CIHFRS when decision
makers solely consider m̆ degrees during assessment. To make a comparison, the CIHFRS
can be transformed into a CHFRS by excluding n̆m̆ degrees and taking only the m̆ degrees.
Hesitant information is depicted in Table 8, and the overall assessment values can be
calculated using TOPSIS in a hesitant fuzzy environment. The conclusive ranking of
alternatives is χ1 ≈ χ3 ≈ χ5 ≥ χ4 ≥ χ2, with χ1 identified as the optimal alternative (in
Table 9). Notably, the ranking derived from the approach advocated by the CHFRS [39]
aligns with the results of our proposed technique, affirming the validity of our approach.
Moreover, the remaining alternatives are not comparative, such as κ2 and κ3 or κ4 and κ5
(in Table 10).

Table 8. The HF β-covering.

X/G G1 G2 G3 G4

κ1 {0.1, 0.2, 0.4} {0.1, 0.2, 0.6} {0.1, 0.2, 0.6} {0.1, 0.2, 0.5}

κ2 {0.2, 0.3, 0.5} {0.1, 0.3, 0.4} {0.1, 0.2, 0.4} {0.1, 0.3, 0.5}

κ3 {0.1, 0.4, 0.5} {0.1, 0.3, 0.6} {0.1, 0.3, 0.4} {0.1, 0.2, 0.5}

κ4 {0.1, 0.3, 0.4} {0.2, 0.4, 0.5} {0.1, 0.2, 0.4} {0.2, 0.3, 0.5}

κ5 {0.3, 0.5} {0.1, 0.2, 0.5} {0.2, 0.3, 0.5} {0.3, 0.4, 0.5}

Table 9. The HF β-neighborhood.

Nβ
G κ1 κ2 κ3 κ4 κ5

κ1 {0.1, 0.2, 0.6} {0.1, 0.2, 0.4} {0.1, 0.2, 0.4} {0.1, 0.2, 0.5} {0.1, 0.2, 0.5}

κ2 {0.1, 0.2, 0.4} {0.1, 0.3, 0.5} {0.1, 0.3, 0.4} {0.1, 0.3, 0.4} {0.1, 0.2, 0.4}

κ3 {0.1, 0.3, 0.4} {0.1, 0.2, 0.5} {0.1, 0.3, 0.5} {0.1, 0.2, 0.5} {0.1, 0.2, 0.2}

κ4 {0.1, 0.2, 0.4} {0.1, 0.3, 0.4} {0.1, 0.3, 0.4} {0.2, 0.3, 0.5} {0.1, 0.2, 0.4}

κ5 {0.1, 0.2, 0.5} {0.3, 0.4, 0.5} {0.1, 0.2, 0.5} {0.1, 0.2, 0.5} {0.2, 0.3, 0.5}

Table 10. The HFC β-neighborhood.

M̃β
G κ1 κ2 κ3 κ4 κ5

κ1 {0.1, 0.2, 0.6} {0.1, 0.2, 0.4} {0.1, 0.3, 0.4} {0.1, 0.2, 0.4} {0.1, 0.2, 0.5}

κ2 {0.1, 0.2, 0.4} {0.1, 0.3, 0.5} {0.1, 0.2, 0.5} {0.1, 0.3, 0.4} {0.3, 0.4, 0.5}

κ3 {0.1, 0.2, 0.4} {0.1, 0.3, 0.4} {0.1, 0.3, 0.5} {0.1, 0.3, 0.4} {0.1, 0.2, 0.5}

κ4 {0.1, 0.2, 0.5} {0.1, 0.3, 0.4} {0.1, 0.2, 0.5} {0.2, 0.3, 0.5} {0.1, 0.2, 0.5}

κ5 {0.1, 0.2, 0.5} {0.1, 0.2, 0.4} {0.1, 0.2, 0.2} {0.1, 0.2, 0.4} {0.2, 0.3, 0.5}

Table 11 provides the ranking values for the preceding discussion. The advantages of
our proposed approach, as outlined in the above comparative analysis, can be summarized.
The IHFS is well suited for representing uncertain or fuzzy information in MCDM problems
due to the availability of two sets of m̆ and n̆m̆ degrees with various possible values, a
feature not achievable by the IFS and HFS. The IHFS can also be employed for processing
MCDM and comparison methods based on its inherent capabilities. After minor modifica-
tion of the IFS and HFS, the IHFS uses the general form of the IFS and HFS. Because it is
capable of supporting many degrees of membership and nonmembership simultaneously,
the intuitionistic hesitant fuzzy set is seen as superior to the intuitionistic fuzzy set and
the hesitant fuzzy set alone. This enables a fuller and more complex representation of



Symmetry 2024, 16, 693 28 of 30

uncertainty and hesitancy. This results in enhanced decision-making procedures and more
accurate and flexible modeling of complex problems.

Table 11. Analytical comparison with current methodologies.

Method Ranking

CIHFRS κ1 ≈ κ2 ≥ κ3 ≥ κ4 ≈ κ5

CIFRS [30] κ5 ≥ κ2 ≥ κ1 ≥ κ3 ≈ κ4

CHRF [39] κ1 ≈ κ3 ≈ κ5 ≥ κ4 ≥ κ2

6. Conclusions

The notion of the CIHFRS plays a vital role in order to deal with uncertainties in
real-world scenarios (in Table 12). In this paper, we initiated the notion some novel CIHFRS
models, namely, the IHF β-neighborhoods and the IHF complementary β-neighborhoods.
We presented examples of these new notions and investigated some of their properties in
detail. Particularly the rough and precision degrees of CIHFRS models were discussed
in detail. The relationships among these models were also presented. Further, by means
of the developed IHF β-neighborhoods and IHF complementary β-neighborhoods, we
constructed four types of CIFRS models, and the relationship among these models was also
discussed. Furthermore, we applied the proposed models to the MCDM problem under an
IHF environment. The developed CIHFRS models not only enriched granular computing
and CIHFRSs but also proposed a novel perspective for MCDM with IHF information.
Moreover, we presented a numerical example for the application and effectiveness of the
developed approach. Finally for the proposed approach, we compared it with existing
studies. From this analysis, we found that the method developed in this paper is more
effective to deal with an MCDM problem with IHF information based on CIHFRS models
than an MCDM problem with the evaluation of IF and HF information based on CIFRS
and CHFRS, respectively. In future, the developed approach will extend to the interval-
valued intuitionistic hesitant fuzzy setting, Pythagorean hesitant fuzzy setting, and q-rung
orthopair hesitant fuzzy setting.

Table 12. Summary of the current research work on the CIFS, CHFR and CIHFRS.

Research Area Objectives Methodologies

CIFS in MCDM

Optimization of flow systems Evaluate and rank flow
system configurations AHP, TOPSIS, ANP

CFHS in MCDM

Risk assessment Evaluate risks in controlled flow
heat systems Fuzzy MCDM, risk analysis models

CIHFRS in MCDM

Integrated system optimization Optimize combined heat and flow systems Hybrid MCDM models, integrated assessment
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Abbreviations

List of Symbols
m̆ Degrees of membership
n̆m̆ Degrees of nonmembership
X Finite universe set
.

m Intuitionistic fuzzy numbers
î Intuitionistic fuzzy set
Ĥ Hesitant fuzzy set
ΛIHFS Intuitionistic hesitant fuzzy set
ė Intuitionistic hesitant fuzzy numbers
N Neighborhood
Ş Score function
Ā Accuracy function
⊼ Minimum
⊼ Maximum
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